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1. The XY – sine-Gordon duality and the BKT critical behavior 

In this question you are asked to show the equivalence between the XY model to the sine-Gordon 

model: 

𝑆𝑆𝐺 =
𝑐

2
∫ 𝑑2𝑥  (∇𝜃)2 − 𝑔 ∫ 𝑑2𝑥  cos 𝜃. 

Where 𝜃 is a non-compact real scalar field. 

a. Expand 𝑍𝑆𝐺 = ∫ 𝐷𝜃 𝑒−𝑆𝑆𝐺  in powers of 𝑔 explicitly and show that it has the form  
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Where the 〈〉 brackets denote averaging with the free part  𝑆0 =
𝑐

2
∫ 𝑑2𝑥  (∇𝜃)2. Hint: recall that the 

free part is transnationally invariant such that 〈(∏ 𝑒𝑖𝜃𝑎𝑁
𝑎=1 )(∏ 𝑒−𝑖𝜃𝑏𝑀

𝑏=1 )〉 is non-zero only for 𝑁 = 𝑀. 

b. Using the properties of the Gaussian average, namely  

〈𝑒𝐴〉 = 𝑒
1
2

〈𝐴2〉 

for 𝐴 which is a linear combination of the field 𝜃, and the following identity 
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show that the partition function may be written as follows 
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where 𝜎𝑖 denotes the sign of the vortex and 𝜉 is a short length cutoff. This is exactly the partition 

function of the Coulomb gas obtained in class! 

c. Repeat the derivation of the RG differential equations near the BKT transition, namely 



𝑑𝑦

𝑑𝑙
= 𝑥𝑦 ;  

𝑑𝑥

𝑑𝑙
= 𝑦2 

What are 𝑥 and 𝑦 in terms of 𝑐 and 𝑔? ( Here 𝑙 = log
𝑟

𝜉
 )  

d. Use the above equations to determine the screening length  𝜉+ on the disordered side close to the 

transition. Do this by estimating the value of the running parameter 𝑙 at which 𝑥 and 𝑦 reach order 1. 

Explain physically why   is the screening length.  

e. Use the scaling argument to explain why the singular part of the full action 

𝑆 =
1

2
∫ 𝑑2𝑥 [−𝛼|𝜓|2 + 𝛽|𝜓|4 + 𝐽 (∇ψ)2] 

behaves like 𝑆 ∼
1

𝜉2 in the disordered side close to the transition. Deduce from this behavior that the 

free energy is (or the action is) perfectly analytic to all orders at the transition. 

f. Obtain the superfluid stiffness 𝐽 as a function of 𝑡 = 𝑇 − 𝑇𝑐 and show that it has a universal jump at 

𝑇𝑐. 

  

2. Mean-field approximation of the BKT transition point – In this question you are asked to use the 

variational principle in order to obtain the critical temperature at which a two-dimensional 

superconductor undergoes a Berezinksii-Kosterlitz-Thouless (BKT) transition between a state in which 

the order parameter’s correlations decay like a power and a state at which they decay exponentially.  

We will use the vairational action 

𝑆𝑉 = ∫ 𝑑2𝑥 [
𝑐

2
(∇𝜃)2 + m2 𝜃2] 

where 𝑚2 is a variational parameter to estimate the ground state of 𝑆𝑆𝐺 from question 1. Notice that 

we can write 

𝑍𝑆𝐺 = ∫ 𝐷𝜃 𝑒−𝑆𝑆𝐺 = ∫ 𝐷𝜃 𝑒−𝑆𝑉𝑒−(𝑆𝑆𝐺−𝑆𝑉) = 𝑍0〈𝑒−(𝑆𝑆𝐺−𝑆𝑉)〉 

Where the brackets denote averaging with 𝑆𝑉. The variaitonal principle amounts to making the 

following approximation.   

𝑍𝑆𝐺 ≈ 𝑍0𝑒−〈(𝑆𝑆𝐺−𝑆𝑉)〉 ≡ 𝑍𝑉 . 

a. Show that 𝐹𝑆𝐺 ≤ 𝐹𝑉, where 𝐹𝑆𝐺  is the free energy defined by the relation 𝐹𝑆𝐺 =

−𝑇 log[𝑍0〈𝑒−(𝑆𝑆𝐺−𝑆𝑉)〉] and therefore 𝐹𝑉 = 𝐹0 + 𝑇〈(𝑆𝑆𝐺 − 𝑆𝑉)〉. 

b. Compute 〈(𝑆𝑆𝐺 − 𝑆𝑉)〉 and minimize the free energy 𝐹𝑉  



with respect to m . Here you will need to introduce some ultraviolet cutoff Λ which represents a 

microscopic scale at which the theory breaks down. 

c. Show that m  , find  . By taking Λ → ∞ find the critical value of 𝑐 separating the massive and 

massless phases.  

 

3. Dissipative quantum tunneling – In question 1 of problem set 3 you have obtained the Josephson 

relation for the supercurrent through a weak link between two superconductors. There, we have 

completely neglected the effect of spatial fluctuations in the superconducting leads. In this question 

we take them into account and see that they dissipate the current. Consider two one-dimensional 

superfluids connected by a weak link at 𝑥 = 0, which are described by the following Lagrangian 

𝐿 = ∑ [𝜓𝑎
+ (𝜕𝜏 −

𝜕𝑥
2

2𝑚
) 𝜓𝑎 + 𝑢(|𝜓𝑎|2 − 𝜌0)2]

𝑎=1,2

− 𝐸𝐽(𝜓1
+𝜓2 + H. c. )𝛿(𝑥) 

a. Use the polar representation 𝜓𝑎 = √𝜌𝑎𝑒𝑖𝜙𝑎  and the transformation to the relative and sum 

representation of phase and density 𝜙 = (𝜙1 − 𝜙2)/2, Φ = 𝜙1 + 𝜙2, 𝜌 = 𝜌1 − 𝜌2 and Ρ =

(𝜌1 + 𝜌2)/2, to show that in the limit of √〈𝜌2〉 ≪ 〈Ρ〉 = 𝜌0 the Lagrangian reduces to 

𝐿 = 𝑖𝜌𝜕𝜏𝜙 +
1

2𝑚
(

(𝜕𝑥𝜌)2

2𝜌0
− 2𝜌0(𝜕𝑥𝜙)2) +

𝑢

2
𝜌2 + 𝑔 cos 2𝜙(0, 𝜏) 

What is 𝑔? 

b. Integrate out the fluctuations of 𝜌 and obtain the effective Lagrangian 

𝐿 =
1

2v𝐾
[(𝜕𝜏𝜙)2 + (v 𝜕𝑥𝜙)2] + 𝑔 cos 2𝜙(0, 𝜏) 

What are v and 𝐾? 

c. Discuss the renomalization group flow of the coupling constant 𝑔. Note that the perturbation 

𝑔 is localized at 𝑥 = 0, therefore, the first step is to integrate all modes at 𝑥 ≠ 0 to obtain an 

effective 1+0 dimensional action describing the junction. Use the relation between the 

Green’s function 𝐺(𝜏) = 〈𝜙 (0, 𝜏)𝜙(0,0)〉 and the action that generates it 

𝐿0 = 𝜙0(𝜏)𝐺−1(𝜏 − 𝜏′)𝜙0(0) 

to obtain the 𝐿0. What is 𝐺(𝜔)? What is the mechanical analog of this system? 

Now perform the RG transformation according to the following step: 



i. Define a cutoff 𝐷 and separate the modes 𝜙0(𝜔) into two types: “slow” where |𝜔| <

𝐷/𝑏 and “fast” where 𝐷/𝑏 < |𝜔| < 𝐷, where 𝑏 = 1 + 𝛿𝐷/𝐷 and 𝛿𝐷 is athin shell to 

be integrated out. 

ii. Integrate out the “fast” modes up to lowest order needed in 𝑔 such that you obtain 

an effective action for the “slow” modes. 

iii. Redefine the frequency 𝜔′ = 𝛼𝜔 such that the limits of integration are stretched 

over to span over −𝐷 < |𝜔′| < 𝐷. What is 𝛼? Complete the RG transformation by  

redefining the slow fields 𝜙0(𝜔′) such that the action 𝑆0 = ∫ 𝑑𝜔′
𝐷

−𝐷
𝐿0(𝜔′) stays 

invariant.  

iv. Obtain a differential equation by taking 𝛿𝐷 → 0. What is the critical value of 𝐾? What 

is the behavior of 𝑔 for 𝐾 > 𝐾𝑐 and 𝐾 < 𝐾𝑐. 

d. Draw the flow diagram in the plane of 𝑔 and 𝐾. 


