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Chapter 1

Tutorial #1 - many-body
path-integral formalism and the
Hubbard-Stratonovich
transformation

1.1 References for this tutorial

Altland & Simons Chapter 4 & 6.
Mahan

1.2 Introduction

In this tutorial we have two objectives: (i) to prove the identity (1.9). The
motivation will be to show that quantum averages of many-body systems
in thermal equilibrium can be computed using Feynman’s path integral for-
malism. (ii) To provide a rigors formalism in which the phenomenological
Ginzburg-Landau (GL) theory of a superconductor can be related to it’s
underlying Fermionic theory. Here the motivation is obvious.

1.3 Coherent-state path-integral

Let me quickly go over a few basic properties of the eigen-state of the an-
nihilation operator a with eigen-value ψ, a.k.a known as the coherent state

|ψ〉 ≡ eζψa
†|0〉 (1.1)
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6 CHAPTER 1. TUTORIAL #1 - PATH-INTEGRAL FORMALISM

where ζ = 1 (ζ = −1) for Bosons (Fermions).

1.3.1 c-numbers

In the simpler case a describes a bosonic degree of freedom and ψ is simply
a c-number. We will make use of three basic identities

〈ψ1|ψ2〉 = eψ̄1ψ2 (1.2)

which implies the second identity (which is known as the resolution of iden-
tity)

1 =

∫
dψ̄dψ e−ψ̄ψ |ψ〉〈ψ| (1.3)

Note that ψ is taken to be a vector with a discrete set of components ψi
corresponding to the underlying Fock space. Thus it’s continuum limit will
be a field, for example ψ(x). Additionally, ψ̄ψ ≡

∑
i ψ̄iψi and dψ̄dψ ≡∏

i
dψ̄idψi
π

. The third identity we will need is the Gaussian integral of the
complex variables ψ and ψ̄ ∫

dψ̄dψ e−ψ̄Aψ =
1

|A|
(1.4)

where A is a matrix with a positive definite Hermitian part.

1.3.2 Grassmann numbers

If the operator a describes a fermionic excitation things are a bit more com-
plected. The eigen-value ψ can not be an ordinary complex number, because
the operators ai anti-commute amongst themselves, such that if the ψi’s were
simple c-numbers then 〈ψ|aiaj|ψ〉 = 0 would directly follow. Thus we need
objects that anti-commute, these are known as Grassmann numbers:

ψiψj = −ψjψi (1.5)

The operations of integration and derivation with these numbers are defined
as follows ∫

dψ = 0 ;

∫
dψ ψ = 1 (1.6)

and

∂ψ ψ = 1 (1.7)
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The overlap between two coherent states and the resolution of identity remain
in the form of (1.2) and (1.3). The Gaussian integral on the other hand is
significantly different ∫

dψ̄dψ e−ψ̄Aψ = |A| (1.8)

where A can be any matrix. Exercise: use (1.5) and (1.6) to prove (1.8).

1.4 Imaginary-time many-body path-integrals

In what follows we will prove the following identity

Z = Tre−β(Ĥ−µN̂) =

∫
D[ψ, ψ̄]e−

∫ β
0 dτ(ψ̄∂τψ+H[ψ̄,ψ]−µN [ψ̄,ψ]) (1.9)

where H and N are the Hamiltonian and particle number respectively and
ψ, ψ̄ are c-numbers (Grassmann variables) in the case that the particles have
Bosonic (Fermionic) mutual statistics. The boundary conditions of this path
integral is ψ(0) = ζψ(β) and ψ̄(0) = ζψ̄(β). As mentioned above, our
motivation will be computing expectation values of quantum many-body
systems in thermal equilibrium, for example

〈Â〉 =
1

Z

∫
D[ψ, ψ̄]A[ψ, ψ̄]e−

∫ β
0 dτ(ψ̄∂τψ+H[ψ̄,ψ]−µN [ψ̄,ψ]) (1.10)

Question: why did we choose a coherent state path integral? and not say a
real space or momentum path integral.

Let start with the definition of the trace

Z = Tre−β(Ĥ−µN̂) =
∑
n

〈n|e−β(Ĥ−µN̂)|n〉 (1.11)

Notice that each term in this sum is the probability amplitude of finding the
the system at the same Fock state it started in, i.e. |n〉, after a time t = i~β,
which, as you know, can be casted to a Feynman path integral. In the first
step we will want to ”get rid” of the summation over n, to do so we insert
the resolution of identity (1.3) into equation (1.11)

Z =
1

π

∫
dψ̄dψ e−ψ̄ψ

∑
n

〈n|ψ〉〈ψ|e−β(Ĥ−µN̂)|n〉 (1.12)

Now need to shift the factor 〈n|ψ〉 around. In the case of bosonic particles
this is just a number and it commutes with anything. In the case of fermions
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it is a Grassmann number and therefore collects a minus sign which can be
absorbed into the coherent state

Z =
1

π

∫
dψ̄dψ e−ψ̄ψ 〈ζψ|e−β(Ĥ−µN̂)|ψ〉 (1.13)

Now let us continue to the second step: we divide the imaginary-time evolu-
tion operator into M small steps

e−β(Ĥ−µN̂) =
[
e−δ(Ĥ−µN̂)

]M
(1.14)

where δ = β/M . In the third step we insert M resolutions of identity in the
expectation value in equation (1.13)

〈ζψ|[e−δ(Ĥ−µN̂)]M |ψ〉 =

∫ M∏
m=1

dψ̄mdψme−
∑
m ψ̄mψm× (1.15)

〈ζψ|ψ1〉〈ψ1|e−δ(Ĥ−µN̂)|ψ2〉〈ψ2|e−δ(Ĥ−µN̂)|ψ3〉〈ψ3|...|ψM〉〈ψM |e−δ(Ĥ−µN̂)|ψ〉

=

∫
ψ0=ζψM ;ψ̄0=ζψ̄M

M∏
m=1

dψ̄mdψmeψ̄
0ψ0−δ

∑M
m=0(δ−1(ψ̄m−ψ̄m+1)ψm+H[ψ̄m+1,ψm]−µN [ψ̄m+1,ψm])

where we have denoted ψ0 = ζψM+1 = ψ. Now if we insert this expression
in (1.13) we get

Z =

∫
ψ0=ζψM ;ψ̄0=ζψ̄M

M∏
m=0

dψ̄mdψme−δ
∑M
m=0(δ−1(ψ̄m−ψ̄m+1)ψm+H[ψ̄m+1,ψm]−µN [ψ̄m+1,ψm])

(1.16)
Finally, the fourth step, we take M →∞ and obtain (1.9), where

D[ψ̄, ψ] ≡ lim
M→∞

M∏
m=0

dψ̄mψm (1.17)

1.5 The Hubbard-Stratonovich transformation

In the class you have seen the static GL theory of a superfluid/superconductor

fGL =

∫
ddx

(
α|∆|2 +

1

2m?
|(∇− ie?A)∆|2 + β|∆|4

)
(1.18)

This theory was suggested by Vitaly L. Ginzburg and Lev D. Landau in 1950
on a phenomenological basis and captures almost all the observed phenom-
ena in conventional superconductivity. The field ∆(x) is bosonic, and the
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question is how does the bosonic effective theory emerge from the underlying
fermionic one? Here we will not discuss the full procedure including RG from
the atomic scale, but rather start at the point where the effective theory is
applicable, that is, where the electrons have attractive interactions

S =

∫
dτddx

(
ψ̄

(
∂τ + ieφ− (−i∇− eA)2

2m
− µ

)
ψ − gψ̄↑ψ̄↓ψ↓ψ↑

)
(1.19)

and

Z =

∫
D[ψ̄ψ]e−S (1.20)

The only part in (1.19) that is really ”hard” to diagonalize is the interaction
term. To decouple it we use a a trick known as the Hubbard-Stratonovich
transformation (HST). This is done by using the simple identity∫
D[∆̄,∆]e

∫
dτddx( 1

g
|∆|2−∆ψ̄↑ψ̄↓−∆̄ψ↓ψ↑) =

∫
D[∆̄,∆]e

∫
dτddx

(
1
g |∆−gψ↑ψ↓|

2
−gψ̄↑ψ̄↓ψ↓ψ↑

)

= Ne−
∫
dτddxgψ̄↑ψ̄↓ψ↓ψ↑ (1.21)

where N is simply the result of the integral over ∆. Thus (1.19) can be
rewritten as

SHS =

∫
dτddx

(
ψ̄

(
∂τ + ieφ− (∇− ieA)2

2m
− µ

)
ψ + ∆ψ̄↑ψ̄↓ + ∆̄ψ↓ψ↑ −

1

g
|∆|2

)
(1.22)

and

Z =
1

N

∫
D[ψ̄ψ, ∆̄,∆]e−SHS (1.23)

Now the Fermionic theory is quadratic

SHS =

∫
dτddx

(
Ψ̄
(
G−1 +X

)
Ψ− 1

g
|∆|2

)
(1.24)

where

G−1 =

(
[Ge

0]−1 0
0 [Gh

0 ]−1

)
=

(
∂τ + ieφ− (−i∇−eA)2

2m
− µ 0

0 ∂τ − ieφ+ (i∇−eA)2

2m
+ µ

)
(1.25)

and

X =

(
0 ∆
∆̄ 0

)
(1.26)
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and where the space of these matrices is the Nambu space Ψ̄ = (ψ̄↑, ψ̄↓, ψ↓,−ψ↑)
We can perform the path integral over the fermi fields using (1.8)

Z =
1

N

∫
D[ψ̄ψ, ∆̄,∆]e−SHS =

1

N

∫
D[∆̄,∆]det

[
G−1 +X

]
e
∫
dτddx 1

g
|∆|2

(1.27)

=
1

N

∫
D[∆̄,∆]e−(−

∫
dτddx 1

g
|∆|2−log det[G−1+X]) =

1

N

∫
D[∆̄,∆]e−(−

∫
dτddx 1

g
|∆|2−Tr log[G−1+X])

Therefore the effective bosonic theory is given by

Seff = −
∫
dτddx

1

g
|∆|2 − Tr log

[
G−1 +X

]
(1.28)

= −
∫
dτddx

1

g
|∆|2 − Tr log G−1 − Tr log [1 + GX]

= −
∫
dτddx

1

g
|∆|2 − Tr log G−1 − Tr

(
GX +

1

2
GXGX + ...

)
where the coefficients are

TrGX = 0 (1.29)

1

2
TrGXGX = Π(ω, q) =

1

βΩ

∑
νk

Ge
0(ν, k)Gh

0(ω − ν, q − k) (1.30)

TrGXGXGX = 0 (1.31)

and so on and so forth. The general form of the Fourier transformed Green’s
functions is

Ge
0(ν, k) =

1

−i ν + εk − µ
and

Gh
0(ν, k) =

1

−i ν − εk + µ

Here, to simplify i have neglected the electro-magnetic field (φ,A). The
microscopic value of the quadratic GL parameters in (1.18) are then given
by

α

2
=

1

g
− Π(0, 0) (1.32)

and
1

2m?
= −1

2
∂2
qΠ(q, 0)|q=0 (1.33)
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To compute sums of the form (1.30) we need to integrate over ν and
k. Here i have hidden a few subtleties under the rug. First of all upon
performing the Fourier transform of the imaginary-time fields

ψ(τ) =
1√
β

∑
ν

ψ(ν)e−iντ (1.34)

we needed to use the waves of the form e−iντ that obey the boundary condi-
tions ψ(0) = ζψ(β), thus ν is quantized

νn =

{ 2nπ
β

Bosons
(2n+1)π

β
Fermions

(1.35)

These imaginary-time frequencies are known as Matsubara frequencies. Sum-
ming over them is a whole story to itself and i will not specify here how to
do it, rather i will state the identity

ζ

β

∑
n

1

−iνn + x
=

{
nB(x) Bosons
nF (x) Fermions

(1.36)

where nB(x) (nF (x)) is the Bose (Fermi) distribution function at temperature
β−1. Students that wish to understand how to perform these sums are invited
to read in Altland & Simons pages 169-172 or the book by Mahan. Exercise:
use (1.36) to perform the integral over ν in (1.30). Note that since the Greens
functions here describe propagation of Fermionic particles ν is a Fermionic
Matsubara frequency.
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Chapter 2

Tutorial #2 - Renormalization
Group approach to interacting
electrons and the mean-field
gap equation

2.1 References for this tutorial

[1]Altland & Simons pages 276-279
[2]”Renormalization-group approach to interacting fermions” by R. Shankar,
Review of modern physics 66, 129 (1992)
[3]Morel & Anderson, Physics Review, 125, 1263 (1962)

2.2 Mean-field gap equation

To obtain the mean-field gap equation we return to equation (1.22) which was
obtained by performing the HS transformation. The mean-field solution of
this action is equivalent to seeking it’s saddle point, which essentially means
neglecting all of the quantum fluctuation effects. To find the saddle point
solution for ∆(x, τ) we take a variation of the action with respect to ∆̄(x, τ)
and average over Fermi feilds.

δSHS
δ∆̄

= −1

g
∆(x, τ) + 〈ψ↑(x, τ)ψ↓(x, τ)〉 = 0

which gives

∆(x, τ) = g(τ)〈ψ↑(x, τ)ψ↓(x, τ)〉 = g(τ)F (x, τ) (2.1)

13
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where the expectation value is known as the anomalous Green’s function. To
obtain an expression for F let’s look at the full Green’s function

G(x, τ) =

(
Ge(x, τ) F (x, τ)
F̄ (x, τ) Gh(x, τ)

)
=

(
〈ψ̄↑ψ↑〉 〈ψ↑ψ↓〉
〈ψ̄↓ψ̄↑〉 〈ψ↓ψ̄↓〉

)
which is defined by the operatorial relation(

∂τ − ∇
2

2m
− µ ∆(x, τ)

∆̄(x, τ) ∂τ + ∇2

2m
+ µ

)(
Ge(x, τ) F (x, τ)
F̄ (x, τ) Gh(x, τ)

)
=

(
1 0
0 1

)
(2.2)

Omitting the x and τ indices, we can write two relations(
∂τ −

∇2

2m
− µ

)
F + ∆Gh = 0 (2.3)

∆̄F +

(
∂τ +

∇2

2m
+ µ

)
Gh = 1 (2.4)

Solving for F we obtain[
∆̄−

(
∂τ +

∇2

2m
+ µ

)
∆−1

(
∂τ −

∇2

2m
− µ

)]
F = 1→ (2.5)

F =

[
|∆|2 −∆

(
∂τ +

∇2

2m
+ µ

)
∆−1

(
∂τ −

∇2

2m
− µ

)]−1

∆

Using (2.1) we obtain the desired result, a closed equation for the gap

∆ = g

[
|∆|2 −∆

(
∂τ +

∇2

2m
+ µ

)
∆−1

(
∂τ −

∇2

2m
− µ

)]−1

∆ (2.6)

Generally, this equation is hard to solve. However, it can greatly simplify if
∆ is rather flat for times longer than tD ∼ 1/ωD and varies slowly in space.
In this case we can neglect the spatial and temporal dependance of ∆ in the
denominator. The idea is that ∆� ωD such that for frequencies of the order
of ωD the gap ∆ is just a small correction, and thus it can be substituted by
∆0 which is it’s value at ω = 0. Equation (2.6) assumes the form

∆(x, τ) = g(τ)
1

|∆0|2 −
(
∂τ + ∇2

2m
+ µ
) (
∂τ − ∇

2

2m
− µ

)∆(x, τ) (2.7)

To solve, we transform to Matsubara frequencies and momentum space

∆(ω) = − 1

βΩ

∑
ω

∑
k

g(ω − ν)∆(ν)

ν2 + ξ2
k + |∆0|2

(2.8)
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where ν and ω are bosonic and fermionic Matsubara frequencies, ξ = k2/2m−
µ, Ω is the volume of the system and we have used the convolution theorem.
Notice that we have taken g (and also ∆) to be a function of time but
independent on space. This mimics a local interaction with retardation. We
will demonstrate the retardation effect in the exercise. For now let us keep get
a feeling of this equation by considering ∆ and g which are time independent,
equation (2.7) assumes the form

1

g
=
∑
ν k

1

ν2 + ξ2 + |∆|2

First we sum over the fermionic Matsubara frequencies, we can use the iden-
tity (1.36) and the fact that

1

ω2 + x2
=

(
1

iω + x

)(
1

−iω + x

)
= − 1

2x

(
1

iω + x
− 1

iω − x

)
(2.9)

to obtain

1

g
=

1

Ω

∑
k

1− 2nF (
√
ξ2 + |∆|2)

2
√
ξ2 + |∆|2

=
1

Ω

∑
k

tanh
(
βEk

2

)
2Ek

(2.10)

where Ek =
√
ξ2 + |∆|2.

Let us use the gap equation to obtain the transition temperature, namely
where ∆ = 0. In this case we have

1

g
=

∫ ωD

0

dξν(ξ)
tanh

(
βcξ
2

)
ξ

≈ ν

∫ βcωD/2

0

dx
tanh (x)

x
≈ ν log βcωD (2.11)

where ν(ξ) is the DOS and ν is the DOS at Fermi level. Inverting this
equation we obtain

kBTc = ωD e
− 1
νg (2.12)

2.3 RG

2.3.1 Introduction to RG

In what follows we will derive the Gell-Mann differential equation that gov-
erness the renormalization group flow of the cooper channel interaction term
in a fermionic theory with a Fermi surface

dg

d logD
=
ν

2
g2 (2.13)
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where D is the bandwidth, ν is the DOS at Fermi level and V is the flowing
interaction constant describing interactions in the cooper channel

HI = g

∫
ddkddk′ ψ†↑(k)ψ†↓(−k)ψ↓(−k′)ψ↑(k′) (2.14)

Before we dive into the specifics of how to technically obtain this equation
let us first understand the general picture.

Just from it’s name you can understand that RG contains two ingredients:
(i) renormalization of coupling constants and (ii) a scale transformation which
transforms the renormalized action to a form which is identical to the original
one. Let us see how this works:

renormalization of coupling constants. Generally, interactions can scatter
particles from any two states in momentum space to any other two, as long
as momentum is conserved. However, due to the Pauli principle at low tem-
peratures kBT � εF only processes where the two incoming and outgoing
particles lie in a small energy shell around the Fermi energy εF ± kBT will
be important. In such a case one can define a high energy cutoff D � kBT

1.
Now, consider this situation in the context of second order perturbation the-
ory, we can integrate out processes in which a pair scatters to two high-energy
states εk ∼ D and then scatter back down to the Fermi surface. The energy
correction in second order perturbation theory has the general form of some
coupling constant squared over the energy of the virtual high-energy state.
In our case we have two scattering events for the numerator, i.e. g2, and an
energy denominator of order D, that is

g(D − δD)→ g(D)− ν (g(D))2

D
(2.15)

where i have inserted the DOS to set the units straight. In RG we take
δD � D and obtain a differential equation of the form (2.13), indeed (2.15)
reduces to something of the form of (2.13) in this limit.

Scale transformation. The process of integrating out states in the small
shell D − δD < ε < D modifies the theory. It is important to complete
the process by bringing it back to it’s original form, such that the physics
predicted by the renormalized action will be identical to that of the original
one up to a change in the couplings. To do this we re-scale the energy and
momenta in the system, for example

ω → ω′ =
D

D − δD
ω ≈

(
1 +

δD

D

)
ω = bω (2.16)

1Note that here we take temperature as a typical energy scale that cuts off the flow,
and actually we are going to do our analysis at zero temperature where something else
will replace this cutoff.
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where ω is energy, for example the frequency dependence of the Fermi oper-
ators. As we will see this re-scaling may also lead to a flow of the coupling
constants in the theory.

Comment: If one wishes to perform the RG process in Hamiltonian for-
malism he must keep in mind that the energy are also be renormalized. In
other words the Schrodinger equation itself is modified and therefore the
wave-function must be renormalized to compensate this.

2.3.2 Specifics of the RG transformation

Let us now start with the detailed process. The first step is to divide the
action into to two parts

S = S0 + SI (2.17)

where S0 is the part of the action we can diagonalize and will be called the
fixed point part and SI represents all the additional terms that will ”flow”
and will be called the couplings part. In the case of interacting Fermions
with a Fermi surface the fixed point part is given by

S0 =

∫
dω

∫
ddk ψ̄

(
iω +

k2

2m
− εF

)
ψ (2.18)

where ψ = (ψ↑, ψ↓)
T. It turns out that the strong renormalization effects

occur close to the Fermi energy where D � εF . Therefore we can linearize
the spectrum around this point

S0 =

∫
dΩ kd−1

F

∫
dω

∫ Λ

−Λ

dδk ψ̄ (iω + vF δk)ψ (2.19)

where dΩ represents integration over the d-dimensional solid angle, vF =
kF/m, δk = k − kF , kF =

√
2mεF and Λ is a momentum cutoff of the linear

spectrum. The bandwidth for the RG will be taken to be D = vFΛ.
Our coupling term will simply be the contact interactions between the

fermions

SI = U4

∫
d1d2d3d4 ψ†↑(4)ψ†↓(3)ψ↓(2)ψ↑(2)δ(1 + 2− 3− 4) (2.20)

where dj = dωjd
dkj, ψ(j) = ψ(ωj,kj) and δ(1+2−3−4) = δ(ω1 +ω2−ω3−

ω4)δ(k1 +k2−k3−k4). However, writing the interaction in this form it does
not contain any information about the cutoff Λ. Actually limiting the phase
space we allow this interaction to scatter particles limits it greatly, especially
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in the limit Λ� kF . To see why we may consider the delta function for the
sum of incoming and outgoing momenta

δ(k1 + k2 − k3 − k4) ≈ 1

kF
δ(n1 + n2 − n3 − n4)

where nj is unit vector pointing in the direction of the momentum vector
kj . This delta function is limited to three cases

(I) Direct θ14 = θ23 = 0 (2.21)

(II) Exchange θ13 = θ24 = 0 (2.22)

(III) Cooper θ12 = 0 & θ34 = 0 (2.23)

where θij is the angle between ni and nj . The idea is that the interaction
term can be decoupled into these three cases, each of which will start from the
coupling strength U4. Then we can focus only on the renormalization of these
interactions, which will evolve differently under the RG process. In Shankars
review he denotes the direct interactions by the function F (θ12) which, indeed
can only be a function of θ12. Similarly the exchange interaction is weighted
by −F (θ12) and the Cooper channel by V (θ13).

Overall, the partition function is then given by

Z =

∫
D[ψ, ψ̄]e−S0−SI (2.24)

The second step is to divide the action into fast and slow parts, lets
start with the fixed point part

Sf0 =

∫
dω

∫
dΩ

∫ −Λ/b

−Λ

dk kd−1 ψ̄f (iω + vFk)ψf (2.25)

+

∫
dω

∫
dΩ

∫ Λ

Λ/b

dk kd−1 ψ̄f (iω + vFk)ψf

and

Ss0 =

∫
kd−1
F dΩ

∫
dω

∫ Λ/b

−Λ/b

dδk ψ̄s (iω + vF δk)ψs (2.26)

where b = 1 + δΛ/Λ is larger than 1. This part separates nicely since S0 =
Sf0 + Ss0. However, the interaction term mixes between fast and slow modes
such that we have

SI = SssI + SsfI + SffI (2.27)

where the important term has four Fermion terms of the form

SsfI ∼ ψ̄f↑ ψ̄
f
↓ψ

s
↓ψ

s
↑ + ψ̄f↑ ψ̄

s
↓ψ

s
↓ψ

f
↑ + ψ̄s↑ψ̄

f
↓ψ

s
↓ψ

f
↑ + ... (2.28)
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𝑘𝐹 

2Λ 

𝛿Λ 

𝜖 

𝑘 
𝑘𝐹  

𝑘𝐹 + 𝛬 
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𝛬

𝑏
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𝛬
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Fast modes 

Slow modes 

𝛿𝐷 

𝐷 

Figure 2.1: (Top) The Fermi surface and the states in momentum space
we wish to consider. The grey shaded region are the band width Λ = D/vF
and the blue strips are the states we call fast modes which we integrate out.
(Bottom) The dispersion from side view with the lineraiztion close to the
chemical potential (the black dashed line is the chemical potential.)
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i.e. involves two fast and two slow particles. Over all the partition function
has the form

Z =

∫
D[ψ, ψ̄] exp

[
−Ss0 − S

f
0 − SssI − S

sf
I − S

ff
I

]
(2.29)

The third step is to integrate out the fast modes. Formally, the partition
function assumes the form

Z =

∫
D[ψ, ψ̄] e−S

s
0−SssI 〈e−S

sf
I −S

ff
I 〉f (2.30)

where the 〈〉f brackets denote averaging over fast-modes. Of course this aver-
aging can not be done exactly, otherwise we would simply solve the problem,
but it can be done perturbativly. The idea is to use the cumulant expansion
which relates the expectation value of an exponential to the exponential of
expectation values

〈egÔ〉f = eg〈Ô〉f+ g2

2 (〈Ô2〉f−〈Ô〉2f)+... (2.31)

In our case gÔ = −SfsI −S
ff
I . Here we will focus only on the first non-trivial

correction, which is of order U2
4 . Note that from all the possible diagrams we

will only be interested in those that have two incoming and two outgoing slow
modes since they are the ones that renormalize the interaction term (see top
panel of Fig.[2.2]). Comment: Terms that have an odd number of slow modes
have also an odd number of fast ones and therefore vanish under averaging
due to symmetry. Terms that have only two slow modes will renormalize the
chemical potential, this will not interest us here since it is self consistently set
to satisfy particle number. The term −〈Ô〉2 essentially cancels all diagrams
in 〈Ô2〉 which are the square of some simpler diagram, i.e. disconnected
diagrams. Thus only connected diagrams will interest us. Given all these
simplifications the only two diagrams that contribute to second order (one-
loop) are presented in the middle panel of Fig.[2.2]. To see why lets look at
the formal expression

U2
4

2

(
〈Ô2〉f − 〈Ô〉2f

)
=
U2

4

2

∫
|δk|<Λ/b

d1d2d3d4

∫
Λ>|δk|>Λ/b

d5d6d7d8× (2.32)

ψ̄s↑(4)ψ̄s↓(3)〈ψ̄f↑ (8)ψ̄f↓ (7)ψf↓ (6)ψf↑ (5)〉fψs↓(2)ψs↑(1) δ(vertex1)δ(vertex2)

This is the most general way of writing a one-loop diagram with the structure
of the top panel diagram in Fig.[2.2]. The two ways in which this term can
be contracted are schematically presented in the bottom of Fig.[2.2].
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Let us postponed the actual calculation of these diagrams to later on. For
now we can say that if we have indeed computed these diagrams then they
give us the following renormalization

U4 → U ′4 = U4 +
U2

4

2
(ZS′ + BCS) (2.33)

Note that this equation is schematic, actually only special types of interac-
tions will be renormalized.

The fourth step is to stretch the momenta and frequency such that the
fixed point part goes back to itself. This can be done by performing a change
of variables

ω′ = b ω ; δk′ = b δk (2.34)

which will give us

Ss0 = b−3

∫
kd−1
F dΩ

∫
dω′
∫ Λ

−Λ

dδk′︸ ︷︷ ︸
b−2

ψ̄ (iω′ + vFk
′)︸ ︷︷ ︸

b−1

ψ (2.35)

Thus, the fixed point part will be invariant under this transformation if

ψ′ = b−
3
2ψ (2.36)

Using this scaling we find that the interaction term

SssI = U4

∫
|k|<Λ/b

d1d2d3d4︸ ︷︷ ︸
b−8

ψ̄↑(4)ψ̄↓(3)ψ↓(2)ψ↑(1)︸ ︷︷ ︸
b6

δ(1 + 2− 3− 4)︸ ︷︷ ︸
b−2

(2.37)

goes back to it’s original form (2.20). In other words the four fermion in-
teraction term is also invariant under the RG transformation???!!! Well, we
haven’t computed the higher order corrections yet, so actually it is invariant
up to the order of U4, which is also called the tree-level. When a coupling
term is invariant under the RG transformation up to tree-level we call it
marginal. Exercise: show that the term µ

∫
dωddk ψ̄ψ grows by a factor of

b under the transformation (and is thus relevant) and that λ
∫
dωddk k4 ψ̄ψ

shrinks by a factor of b−1 (and is thus irrelevant). Comment: It will be
instructive to show that fermi interactions with more than 4 fields are irrel-
evant. To see this let us write a 6 field interaction

S6 = U6

∫
d1d2d3d4d5d6︸ ︷︷ ︸

b−12

ψ̄(6)ψ̄(5)ψ̄(4)ψ(3)ψ(2)ψ(1)︸ ︷︷ ︸
b9

δ(1 + 2 + 3− 4− 5− 6)︸ ︷︷ ︸
b2

(2.38)
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𝑘1 ↑  

𝑘2 ↓  𝑘3 ↓  

𝑘4 ↑  

𝑘1 ↑  

𝑘2 ↓  𝑘3 ↓  

𝑘4 ↑  𝑘 + 𝑃 ↑  

−𝑘 ↓  

𝑘1 ↑  

𝑘2 ↓  

𝑘3 ↓  

𝑘4 ↑  

𝑘 + 𝑄′ ↑  𝑘 ↓  

Cooper (BCS) Exchange (ZS’) 

𝜓 ↑ 4 𝜓 ↓ 3   〈𝜓 ↑ 8  𝜓 ↓ 7 𝜓↓ 6 𝜓↑ 5 〉𝑓  𝜓↓ 2 𝜓↑ 1  Cooper (BCS) -  

𝜓 ↑ 4 𝜓 ↓ 3   〈𝜓 ↑ 8  𝜓 ↓ 7 𝜓↓ 6 𝜓↑ 5 〉𝑓  𝜓↓ 2 𝜓↑ 1  Exchange (ZS’) -  

Figure 2.2: (Top) The generic structure of a diagram that renormalize
SssI , which contains two incoming and two outgoing slow modes with any
number of fast modes in the middle. The red circle represents any diagram
in-which all propagators belong to fast modes and is not simply a square
of a simpler diagram. (Middle) The two important diagrams at one-loop
level. Here blue (red) lines represent propagators of slow (fast) modes. The
intermediate momenta are P = k1 + k2, Q′ = k1 − k3 and k is the loop
momentum which is summed over. (Bottom) The two different ways in-
which the one-loop correction can be contracted with two connected vertices
and their corresponding diagrams.
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overall this gives b−1 such that at order one the demential equation is dU6/d log b =
−U6. Thus, overall both the coupling and the fixed point part are go back
to their original form due to the stretching. We can sum our results with the
following equation

U4(D − δD) = U4(D) +
U2

4 (D)

2
(ZS′ + BCS) (2.39)

→ dU4

dD
= −U

2
4

2
(ZS′ + BCS)

Again remember that this equation is schematic.
Finally, let us return to step two and compute the ZS’ and BCS diagrams.

As an example we will do this in two-dimensions which can be generalized
to any dimension. Let us start with the ZS’ diagram

ZS′ = − kF
8π2

∫
dω

∫ 2π

0

dφ

∫
δΛ

dδk
1

iω − vF δk
1

i(ω + ν)− vF (|k + Q′| − kF )
(2.40)

where Q′ = k1 − k3, ν = ω1 − ω3 and δΛ denotes summation over regions
where both Λ/b < |δk| < Λ and Λ/b < ||k + Q′| − kF | < Λ (i.e. the overlap
between the blue shaded areas in Fig.[2.3]). We will consider only static
corrections to the interactions such that ω1 = ω2 = ω3 = ω4 = 0 such that
ν = 0. Thus we have

ZS′ = − kF
8π2vF

∫
dω

∫ 2π

0

dφ

∫
δΛ

dδk
nF (δk)− nF (|k + Q′| − kF )

|k + Q′| − kF − δk
(2.41)

where we have used the identity (1.36)∫
dω

1

iω − x1

1

iω − x2

=

∫
dω

1

x2 − x1

(
1

iω − x1

− 1

iω − x2

)
=
nF (x1)− nF (x2)

x2 − x1

Now the integration is only over the region in-which both Λ/b < |δk| < Λ and
Λ/b < ||k + Q′| − kF | < Λ. It is easy to see from Fig.[2.3] that this diagram
will have contributions of order δΛ only for Q′ = 0. This means that this
diagram only contributes to processes where k1 = k3, i.e. it renormalizes
the exchange interaction −F (θ12) (in Shankar’s notations). Unfortunately,
as Q′ is taken to zero the window of integration given by the Fermi functions
focusses around the Fermi surface, a region where only slow modes exist.

We are left with the BCS diagram which has the form

BCS = − kF
8π2

∫
dω

∫ 2π

0

dφ

∫
δΛ

dδk
1

−iω − vF δk
1

iω − vF (|k + P | − kF )
(2.42)
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𝑸′ 

region of integration 
which is proportional to∼ 𝛿Λ2 

𝛿Λ 

Figure 2.3: The overlap between the strips of fast particles that integrated
out in the exchange channel with finite momentum Q′. The diagram shows
that aside from Q′ = 0 all Q′’s contribute δΛ2 which can be neglected.

Again, in the limit δΛ → 0 only the P = 0 (i.e. k1 = −k2) will con-
tribute. Thus only the interaction between pairs with opposite momenta will
be renormalized, this is nothing but the Cooper channel denoted by V (θ13)
(in Shankar’s notations). Since we are interested in contact interaction and
V (θ13) is isotropic we will denote it by a constant g. Let us go back to
computing the BCS diagram, we use the identity∫

dω
1

iω − x1

1

−iω − x2

= −
∫
dω

1

x2 + x1

(
1

iω − x1

− 1

iω + x2

)
(2.43)

= −nF (x1)− nF (−x2)

x1 + x2

=
1− nF (x1)− nF (x2)

x1 + x2

Thus, as we take P → 0 we obtain

BCS = − kF
8π2vF

∫
dω

∫ 2π

0

dφ

∫
Λ/b<|δk|<Λ

dδk
1− 2nF (δk)

2δk
= −ν

2
log b

(2.44)
where we have used the identity ν = kF/2πvF . Finally, finally we have
arrived at the desired result. If we denote V the running coupling constant
standing infront of an interaction in the Cooper channel (2.14) then we have
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g(Λ− δΛ) = g(Λ)− ν

2
g2(Λ) log

(
1 +

δΛ

Λ

)
(2.45)

as we take δΛ to zero we obtain

dg

d log Λ
=

dg

d logD
=
ν

2
g2 (2.46)

or in a unitless form
dΓ

d log Λ
=

Γ2

2
(2.47)

where Γ = νg.

2.3.3 The superconducting transition temperature

It would be a waste to do all the hard work with no play. Let us see what
this equation can do. Let us assume that around D = ωD the interaction
(2.14) in the Cooper channel becomes attractive but small. Now we reduce
the cutoff from ωD towards zero. Of course the Gell-Mann equation (2.47)
predicts that V will become more and more negative until it will diverge to
−∞. However, we must keep in mind that our RG analysis holds only if Γ
is small, namely if Γ < 1. Therefore let us stop the cutoff reduction when
Γ = 1 and denote that bandwidth as Dfinal = kBTc such that by integrating
both sides of (2.47) we have∫ kBTc

ωD

dΓ

Γ2
=

1

Γ(ωD)
− 1 =

1

2
log

ωD
kBTc

which gives

kBTc ≈ ωD e
− 2
ν|g(ωD)| (2.48)

Equivalently we can write an expression for the interaction as a function
temperature

g(T ) =
g(ωD)

1 + νg(ωD) log ωD
T

(2.49)
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