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Abstract

The vortex-matter in superconductors is generally believed to exist in two main phases, vortex-solid and vortex-liquid.
Recent investigations of the phase diagram of anisotropic high-temperature superconductors indicate, however, the existence
of at least three distinct phases: relatively ordered quasi-lattice, highly-disordered entangled vortex-solid, and a liquid phase.
A theoretical analysis in terms of an extended Lindemann criterion provides a quantitative description of the resulting
vortex-matter phase boundaries and the behavior of the transition lines with varying anisotropy and disorder. q 1998
Elsevier Science B.V.

1. Introduction

Vortex-matter in type-II superconductors provides
a remarkable example of a condensed state with

w xtunable parameters 1 . In contrast to conventional
condensed matter systems, the density of constituent

Ž .particles magnetic flux-lines and their interactions
can be changed over several orders of magnitude in a
controllable way, by simply varying the external
magnetic field. In addition, experiments with high-

Ž .temperature superconductors HTSC enable investi-
gation of the important effects of thermal fluctua-
tions. Vortex systems also offer a most convenient

) Corresponding author. Tel.: q1 630 252 3765; Fax: q1 630
252 7777.

tool to investigate disordered media, another central
issue in condensed matter physics. Recently devel-
oped experimental techniques allow for controlled
introduction of both point and correlated defects in
HTSC, providing a basis for systematic studies of the
effects of disorder. Vortex matter is therefore a very
rich field for both experimental and theoretical re-
search.

The traditional view of a superconductor in the
mixed state was that a homogeneous solid vortex
lattice phase exists in a field interval between the
lower critical field H , where vortices start to pene-c1

trate into the superconductor, and the mean field
upper critical field H , above which superconduc-c2

tivity disappears. In the context of HTSC, however,
the understanding of the enhanced role of thermal
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fluctuations has lead to a prediction of vortex lattice
melting and existence of two distinct vortex phases,

w xvortex solid and vortex liquid 2 . However, the
presence of quenched disorder and its interplay with
thermal fluctuations appears to result in an even
more complex mixed state phase diagram. In this
paper we demonstrate that in the highly anisotropic
HTSC in the presence of disorder there are at least
three distinctly resolved phases of the vortex matter:
a weakly disordered quasi-lattice, a highly disordered
solid, and a liquid phase.

The structure of the vortex phases and the search
for possible phase transitions in vortex matter have
become one of the central issues in the study of the
behavior of HTSC samples in a magnetic field. In
general, structural defects and inhomogeneities in a
material pin the vortex lines: vortices cannot move
when the applied current is below a certain threshold
called the critical current. In HTSC this pinning is
usually weak due to the high operating temperatures,
peculiar parameter values, and large anisotropy. This
means that flux lines cannot be effectively pinned by
one defect and an ensemble of defects is usually

w xrequired to collectively pin the vortices 1 . It has
therefore been suggested that the pinned lattice forms
a glassy state which is characterized by divergent
barriers for vortex motion. These barriers give rise to
a strongly non-linear response to an infinitesimal

w xdriving force 1,3 . The common understanding be-
fore the advent of HTSC was that there is a unique
disordered vortex-solid state, and that the main effect
of varying the degree of material disorder would be a
quantitative change in the size of the pinning correla-
tion volume in which the ground state of the glassy
phase is formed. Our understanding of the nature of
the vortex solid phase has subsequently been ex-
tended by several recent experimental studies of
HTSC, and in particular of the highly anisotropic

Ž .Bi Sr CaCu O BSCCO crystals. These results2 2 2 8

suggest the existence of at least two distinctly re-
w xsolved solid phases of the vortex matter 4–9 , and

have stimulated several recent theoretical treatment
w x10–16 based on the generalization of the Linde-

w xmann criterion on the systems with disorder 17,18
w xand numerical simulations 19,20 .

Fig. 1 shows a proposed phase diagram of a
Žrepresentative highly anisotropic HTSC like

.BSCCO in presence of weak point disorder. We

Ž .Fig. 1. Schematic phase diagram on a logarithmic scale of highly
anisotropic HTSC in the mixed state based on experimental results
in BSCCO. The vortex-liquid state can be either liquid of vortex
lines or a gas of vortex pancakes. The liquid phase is determined
by T ) EE , EE . The quasi-lattice phase is a rather ordered solidpin el

state characterized by EE )T ,EE . The entangled solid is a highlyel pin

disordered vortex-solid phase with EE )T ,EE . The quasi-latticepin el
Ž .melts or sublimates through a first-order lattice-melting transi-

tion described by EE sT. The disorder-driven solid-entanglementel

transition occurs at lower temperatures at fields characterized by
EE s EE . Melting of the entangled solid occurs at the glassel pin

melting transition where EE sT. The three transition lines mergepin

at the critical point T , where the elastic, pinning, and thermalcp

energies are comparable.

distinguish three main vortex phases: the high-tem-
perature high-field vortex-liquid and two vortex-solid
phases which are hereafter referred to as the low-field
quasi-lattice and the high-field entangled-solid. As
we show below, the existence of two distinct solid
phases is the result of point disorder. Elastic interac-
tions govern the structure of the vortex-solid at low
fields, forming a quasi-lattice in which a well-de-
fined lattice structure is preserved and long range
order is only weakly destroyed. At higher fields
disorder dominates and vortex–pin interactions result
in an entangled solid where elementary cells of
vortex lattice are twisted and dislocations proliferate
w x10,12,13,19,20 . An important question is the order
of the thermodynamic transitions between the vari-
ous phases. Due to its long range order, the quasi-
lattice is expected to melt through a first-order lat-

Ž .tice-melting transition at high temperatures Fig. 1 .
Extensive experimental studies including transport
w x w x21–27 , magnetization 28–31 , AC susceptibility
w x w x32,33 , and calorimetric 34 methods, have estab-



( )V. Vinokur et al.rPhysica C 295 1998 209–217 211

lished the existence of such a first-order transition in
clean YBCO and BSCCO crystals. The entangled
solid, on the other hand, should melt through a

w xcontinuous glass-melting transition 1,3,35,36 . The
solid entanglement transition was recently shown to

w xbe very sharp 8 and is possibly a second-order
solid–solid transition.

In this paper we describe a phenomenological
model which enables us to derive the three transition
lines using a unified simple approach developing and

w xextending the approach of 10–16 . We pay a special
attention to application of the model to layered su-
perconductors, which was missing in the above stud-
ies, and compare the results with the experimental
data on BSCCO single crystal. The model is based
on the Lindemann criterion which is generalized
w x17,18 to apply to a system containing disorder. The
vortex–vortex interactions are accounted for by a

w xmean-field-like ‘cage model’ description 17 . Our
analysis is able to describe both the experimentally
derived phase diagram and the recently observed

w xshifts of the transition lines with anisotropy 8,37
w xand disorder 9 rather well.

2. Theoretical approach

The classical Lindemann criterion describes the
melting transition in terms of a mean square thermal
displacement of the constituent particles. In the con-
text of a vortex-lattice, melting occurs when the
mean thermal displacements of vortex-lines from
their equilibrium positions become a certain fraction

² 2: 2 2of the vortex-lattice spacing a , u sc a , where0 L 0

c is the Lindemann number which for the vortex-L
w xlattice is between 0.1–0.2 1 . This Lindemann crite-

rion can be described in terms of characteristic ener-
gies: the vortex lattice melts when the energy of
thermal fluctuations becomes equal to the elastic
energy barriers keeping vortices near their equilib-
rium positions in the lattice:

TsEE . 1Ž .el

In the presence of point disorder, competition
between the elastic tension of the vortex and the
random field induced by defects gives rise to a
rugged energy landscape and rough vortex paths.
These disordered configurations contribute to the

w xentropic part of the vortex free energy 18 . The
characteristic energy, EE , which describes the depthpin

of the disorder-induced potential wells for vortex
lines, is called the pinning energy. With this addi-
tional energy coming into play one can generalize
the Lindemann criterion for a disordered system by

w xincluding EE into the energy balance 17,18 . As apin

result, all three lines on the phase diagram of Fig. 1
can be obtained by balancing the appropriate charac-
teristic energies. The first-order melting transition of
the quasi-lattice occurs when the temperature matches

Ž .the elastic barriers as given by Eq. 1 . At low
temperatures the influence of quenched disorder ef-
fectively increases with increasing magnetic field as
described below, and at some characteristic field the
disorder-induced positional entropy dominates the
elastic barriers. This causes the transition from the
quasi-lattice to the highly-disordered entangled vor-
tex-solid. The solid-entanglement transition field BE

is thus determined by

EE sEE . 2Ž .pin el

Finally, melting of the entangled solid occurs at
temperatures where the pinning energy matches the

w xenergy of thermal fluctuations 18 :

TsEE . 3Ž .pin

In the vicinity of the critical point, T , where thecp

three lines merge, all three energy scales have to be
taken into account.

3. The solid-entanglement transition

The essential aspects of single vortex pinning by
w xweak disorder can be summarized as follows 1 .

Being an elastic object, the vortex line accommo-
dates itself to the random landscape and follows a
rough optimal path determined by the balance be-
tween the elastic and pinning energies. The geometry
of these optimal paths is characterized by their

Ž . ²w Ž . Ž .x2:1r2 ² :roughness, u L s u L yu 0 , where . . .
indicates averaging over both thermal and quenched
disorder, u is the transverse displacement of the
vortex line, and L is the distance along the line. At

Ž . Ž . zlarge distances u L fj LrL , where z,3r5 isc
Ž 2 4 .1r3the roughness exponent, L s e j rg is thec l
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Larkin pinning length, and e se 2e is the vortexl 0

line tension. Here e is the anisotropy parameter,
2 Ž .2e sF r 4pl , F is the flux quantum, l is the0 0 0

London penetration depth, j is the coherence length,
and g is the variance of the strength of point disor-
der. The pinning length L is the size of a coherentlyc

pinned vortex segment and defines a length over
which low-lying metastable vortex states are formed.
The characteristic pinning energy of a vortex seg-

Ž . Ž .2zy1ment of length L)L is EE L ,T LrL ,c pin dp c

where T is the pinning energy of the coherentlydp

pinned segment, while the characteristic energy for
Ž . 'L-L is EE L , g L .c pin

From the point of view of vortex lattice stability
the effect of point defects is two-fold. On the one
hand, defects localize the vortex line within low
lying metastable states which are separated from
neighboring metastable states by barriers of order
EE , and thus harden the vortex solid. On the otherpin

hand, pinning stimulates transverse wandering of
vortex lines. These frozen-in wanderings can destroy
long-range order of the vortex lattice in a manner
analogous to the action of the thermal noise and may
generate topological defects in the lattice.

The structure of the vortex solid is determined by
a competition between the pinning and elastic ener-
gies. We consider a representative vortex as being
confined in the cage of transverse size a due to the0

rest of the lattice. The total elastic energy of the
vortex is a sum of the confining harmonic potential
of the cage and the tilting energy of the vortex line,

2 Ž 2 .EE sc u Lqe u rL , where u and L are theel 66 l

transverse and longitudinal sizes of vortex distortion
respectively, and c ,e r4a2 is the vortex-lattice66 0 0

shear modulus. Minimization of the elastic energy
with respect to L gives the characteristic size of the
longitudinal fluctuation L as0

L s e rc ,2´ a . 4Ž .(0 l 66 0

The characteristic longitudinal length L defines the0

size of elastic screening of local distortions of the
vortex line in the cage. In other words, local elastic
fluctuations of the caged vortex separated by dis-
tances L4L become independent. L can there-0 0

fore be viewed as the longitudinal size of the elastic
cage. The characteristic elastic energy of the vortex
in the cage thus becomes EE s´e u2ra . Near theel 0 0

solid-entanglement transition we expect u2 sc2 a2 ,L 0

and therefore

EE s´e c2 a . 5Ž .el 0 L 0

The characteristic pinning energy of the represen-
tative vortex line in the cage depends on the relation
between L and the pinning length L . If L )L ,0 c c 0

the pinning energy in the cage is EE , g L ,(pin 0
Ž .1r22g´ a . In the opposite limit, a vortex line has0

enough room to follow the optimal path consisting of
many segments of the length L , and a rough vortexc

configuration with the mean lateral displacement u
Ž . zA L rL forms within the cage. In what follows0 c

w xwe restrict ourselves to this more practical limit 10 .
If s-L -L , where s is the interlayer spacing thec 0

pinning energy becomes

2zy1
EE sT L rL , 6Ž . Ž .pin dp 0 c

Ž 2 .1r3where T s ge j is the depinning temperaturedp l
w xof a single vortex line 1 . In highly anisotropic

Ž .superconductors like BSCCO ´f1r100 L be-c

comes much smaller not only than the cage longitu-
dinal size L , but also than the interlayer spacing s.0

In this case the pancake vortices are pinned individu-
ally and the pinning energy per cage assumes the
form:

2zy1
EE sU L rs , 7Ž . Ž .pin p 0

'where U sp g s is one pancake pinning energy.p

The important observation here is that while the
elastic energy per cage decreases with field as EE Ael

By1r2, the pinning energy decays only as EE Apin

By1r10. Therefore elastic forces dominate at low
fields, and as a result a rather ordered quasi-lattice is
formed. At elevated fields, however, the disorder
induced lateral displacements distort the cages and
break up the quasi-lattice configuration. The transi-
tion from almost regular to strongly distorted vortex
configuration can be visualized as follows.

In the quasi-lattice phase the most preferable vor-
tex trajectories are those that slightly wiggle about
the equilibrium positions in a perfect lattice as repre-
sented at Fig. 2a. At low field, the random disorder
weakly perturbs the parabolic potential of the cage,
as shown schematically in Fig. 2b. Then the local
minima corresponding to the metastable states lo-
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Ž .Fig. 2. Schematic behavior of a vortex-line in the cage potential due to neighboring vortices perturbed by point disorder. a Representative
Ž . Ž .vortex line wondering within the cage due to action of point defects. b At low fields below the entanglement transition B-B theE

Ž .pinning energy EE due to disorder is much smaller than the elastic energy EE . c With increasing field the pinning energy becomespin el

relatively more important resulting in rougher potential landscape. At the entanglement transition field BsB the potential displays twoE
Ž . Ž .competing minima of the same depth due to the competition of cage and pinning energy, as follows from Eq. 2 . d At fields B)B theE

enhanced relative wandering of the vortices due to point disorder results in quenched entanglement and permutations of neighboring
vortices. Local twisting of the cage gives rise to the formation of dislocations.

cated far from the center of the cage are not occu-
pied. As field is increased the potential landscape

Ž .becomes more rough. The meaning of Eq. 2 is that
at the solid-entanglement transition the depth of the
potential minima due to disorder becomes compara-
ble to the depth of the main valley as represented in
Fig. 2c. These minima are located at distances of the
order of a from the center, and become more0

favorable with increasing field. As a result, at Bs
B , the vortex line can switch its position abruptly toE

a trajectory which is considerably displaced from its
original position near the perfect lattice site. Another
way to think about the transition is to noting that the
mean lateral deviations of the best trajectories accu-
mulated over a distance equal to L become of the0

order of the lattice constant a at BsB . This gives0 E

rise to twist deformations in the vortex lattice. Con-
sequently, permutations of neighboring vortices oc-
cur and an entangled vortex configuration is formed
as shown schematically in Fig. 2d. Note that the
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region where two neighboring vortices switch their
positions is essentially an element of a dislocation
lying in the ab-plane. One can therefore expect that
at this solid-entanglement transition closed loops of
vortex transmutations will appear, i.e. dislocation
loops will proliferate. A similar description has re-

w xcently been suggested in Refs. 10,12,13,19,20 . We
emphasize, however, that there is currently no de-
tailed theory for the entangled solid phase. In partic-
ular, the origin of the enhanced pinning which is
observed in this phase and which gives rise to the

w xsecond magnetization peak 6–9 requires further
study.

By comparing the pinning and elastic energies
Ž Ž . Ž ..Eqs. 5 – 7 we now derive the solid entanglement
transition field

2z°
T 1yz0

B , s-L -L0 c 0ž /Tdp~B s 8Ž .E Ž .1r 1yz
Upc

B , L -s-L2 D c 0¢ ž /Up

where B sc2F rj 2, T sc ´e jr2, and U s0 L 0 0 L 0 pc

c2 se rp . B sF ´ 2rs2 is the 3D–2D crossoverL 0 2D 0
Žfield. Taking the typical parameters for YBCO ls

˚ ˚ .2000 A, js20 A, ´s1r7, s-L -L one findsc 0

T f20 K. The exact value of the depinning temper-0

ature is not known at present, but the expected Tdp

lies in the interval 20–60 K. As a result the solid
entanglement transition in YBCO is expected to
occur at very high fields, B ,B f20 T. In BSCCOE 0

L -s and the value of B is very sensitive toc E

anisotropy and to the magnitude of the Lindemann
number c which is not necessarily equal to its valueL

for the lattice melting transition. Assuming the usual
value c f0.16 and taking ´s1r100 we obtainL

U f7 K, B s900 G, and estimating the pancakepc 2D

pinning energy in BSCCO as U fT f10 K wep dp

arrive at B f370 G in a very good agreement withE
w xthe experimentally observed values 4–9,37 . B isE

predicted to decrease with crystal anisotropy, B AE
2 w x´ , in agreement with the experiments 8,37 . The

important result here is, however, that B decreasesE
w xwith increasing disorder 6,7,9 , due to an increase of

Fig. 3. Experimental phase diagram of BSCCO in presence of
weak point disorder as inferred from local magnetization measure-

w xments 9 . Open symbols indicate the location of the first-order
Ž .transition, B T , and the filled symbols show the position of them

Ž .solid entanglement transition B T , square – as-grown crystal,E

circle – after 2.5 MeV electron irradiation to a dose of 3=1018

cmy2 , triangle – after 6=1018 cmy2 electron irradiation. The
enhanced point disorder induced by electron irradiation results in

Ž .a shift of the solid entanglement transition B T to lower fieldsE
Ž .accompanied by a downward bending of the melting line B T .m

The critical point T is shifted to higher temperatures withcp

increased disorder.

U , as demonstrated in Fig. 3 for an electron irradi-p

ated BSCCO crystal.
Ž .When deriving the transition field of Eq. 8 we

neglected the electromagnetic interactions between
pancakes and for simplicity accounted for their
Josephson coupling only. Another important note is
that weak disorder, such that U -U , cannot causep pc

Ž .solid entanglement. Indeed, according to Eq. 8
U -U implies B )B , and the transition shouldp pc E 2D

fall into the 2D domain. Bearing in mind that the
condition B)B is equivalent to L -s, one notes2D 0

that the cage is now confined to a single layer and,
accordingly, holds only one pancake. Then the elas-
tic energy stored in the cage near the supposed
transition is merely U and the corresponding pin-pc

Ž .ning energy in the cage i.e. per pancake is U . Forp

the entanglement to occur these two energies have to
match, in conflict with the assumed condition U -p

U . We therefore conclude that solid entanglementpc

may occur only if disorder is sufficiently strong,
U )U and that the transition itself falls in thisp pc

case into the 3D domain, B -B . A further obser-E 2D
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Ž .vation is that at low temperatures EE T is constantpin
Ž . Ž .which results in a flat B T as given by Eq. 8 .E

Ž .However, with increasing temperature, EE T , de-pin

creases due to thermal smearing of the pinning po-
Ž . Ž .tential. As a result, following Eq. 2 , B T isE

expected to show an upturn at intermediate tempera-
tures, as is indeed observed in BSCCO crystals with

w xvarious anisotropies 8,37 and also indicated in
Fig. 3.

4. Glass and lattice melting

To complete the description of the proposed phase
diagram in Fig. 1 we now turn to the melting transi-
tions. In the quasi-lattice phase the effective pinning
at high temperatures is very weak. Weak disorder
distorts the lattice only on length scales much larger

w xthan the inter-vortex spacing 1 . Melting, on the
other hand, is governed by the vortex fluctuations on
short scales of the order of a . As a result the0

first-order melting line is determined by the conven-
Ž .tional Lindemann relation as in Eq. 1 :

F ´ 2e 2c4
0 0 L

B T , . 9Ž . Ž .m 2T

As one moves along the lattice melting line to lower
temperatures and higher fields the role of disorder
increases. This results in the termination of the first-
order transition at the critical point T . At T thecp cp

lattice melting line splits into the solid entanglement
Ž Ž . Ž .. Ž Ž ..Eqs. 2 and 8 and the glass melting Eq. 3
transitions as shown in Fig. 1. Evidence which may
be consistent with a continuous glass melting transi-
tion has been observed both in YBCO and BSCCO

w xsamples 35,36 . Further, suppression of the first-
order melting was demonstrated by introduction of
point defects into an untwinned YBCO crystal via

w xelectron irradiation 38 . However, the detailed
mechanism of freezing of the vortex liquid into the
entangled solid remains controversial and appeals for
further experimental and theoretical study.

Although a rigorous description of the transition
lines in the vicinity of the critical point T is notcp

available at present, a rough estimate of the position
of the critical point can be obtained by extrapolating

the three transition lines to the point where all three
characteristic energies are equal:

5r4
Up

T sEE B sEE B ,p U , 10Ž . Ž . Ž .cp el E pin E pc ž /Upc

which with the chosen values of parameters gives
T f35 K for BSCCO in a good agreement withcp

w xexperiment 8,9,28,37 . Upon increasing disorder the
critical point is expected to shift towards higher
temperatures, as indeed observed in Fig. 3.

Qualitatively we speculate that the effects of dis-
order-induced fluctuations and thermal fluctuations
sum so that for any given field the melting occurs at
a lower temperature relative to the clean limit with
no EE . Thus weak point disorder should result in apin

downward shift and in flattening of the lattice melt-
ing as T is approached from above. Fig. 3 clearlycp

w xshows this behavior in BSCCO crystals 8,9,28,37 .
Ž .The flattening of the first-order transition line B Tm

near T is observed in as-grown crystals due tocp

intrinsic disorder. Incremental increase of point dis-
order through electron irradiation results in a down-

Ž .ward shift of B T in the vicinity of T , andm cp

flattening towards the solid-entanglement transition
sets in at progressively higher temperatures.

It should be emphasized that the description of the
different vortex phases above and as shown in Fig. 1
is not unique. If the role of pinning is substantially
enhanced with respect to thermal fluctuations, the
critical point T can be shifted all the way up to thecp

critical temperature, and the first-order melting of the
quasi-lattice disappears. In this case the quasi-lattice
transforms with increasing field into the entangled
solid phase at all temperatures, as reported recently

w xfor Nd Ce CuO crystals 39 .1.85 0.15 4yd

Finally, an interesting test of the solid entangle-
ment transition is incorporation of a low dose of
columnar defects by heavy ion irradiation. This is
expected to confine transverse vortex fluctuations
w x17 , thus preventing vortex entanglement. We can
estimate the minimum density of columnar defects,
n, necessary to suppress the entanglement by requir-
ing EE c GEE p . Here the upper index p stands forpin pin

point disorder and c for correlated disorder due to
columnar defects. The pinning energy of a pancake
stack of length ´ a centered around a given colum-0

nar defect can be estimated as ´ a e . Taking into0 0
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account that only a fraction of vortices is trapped
near columnar defects we arrive at EE c ,´ na3 e .pin 0 0

Since at the entanglement transition EE p ,´e c2 a ,pin 0 L 0

one arrives at the condition for the columnar defects
to suppress the quenched entanglement as

B )c2 B , 11Ž .F L E

where B snF is the so called matching field. ForF 0

c f0.16 and B f400 G we find that B shouldL E F

exceed 12 G in order to suppress the quenched
entanglement transition. Such a suppression of the
entanglement transition at very low doses of colum-
nar defects was recently observed in BSCCO crystals
w x9 .

5. Conclusion

We have presented a qualitative description of the
phase diagram of anisotropic superconductors with
transition lines derived from the Lindemann criterion
generalized on the systems with disorder. Several
notes are in order. First of all one has to bear in mind
that Lindemann criterion, being a powerful phe-
nomenological tool for evaluation of the position of
the supposed transitions, tells us nothing about the
nature of the resulting phases nor can it even guaran-
tee the existence of the transition at all. In this
respect the creation of the rigorous theory of the
solid entanglement transition discussed above re-
mains an appealing task for future research. To be
fair, one should note at this point that to the best of
our knowledge no theory exists for the phase transi-
tion in a real 3D system. One of the most long-stand-
ing problems in the field of statistical mechanics and
physics of phase transition is the problem of the
conventional melting. The use of the Lindemann
criterion in this case is based rather on our deep
belief that melting does exist than on any rigorous
theory. One can consider thus a study of the solid
entanglement as a part of massive efforts towards the
general theory of phase transformations. A less
philosophical and more technical point is that for the
more accurate description of the transition line mag-
netic interactions between pancakes should be taken
into account. The detailed calculations are somewhat
technical and go beyond the scope of this paper, so
we will present them in the forthcoming publication

w x40 . And the last but not least important note is that
the quantitative theory of the entangled solid itself
remain an uncompleted task. In particular, the basic
observation, the abrupt increase of the apparent criti-

Ž .cal current or persistent current did not receive a
quantitative explanation. On the qualitative level one
can understand this phenomenon as a result of the

Ž .combined action of two effects: i increase of the
true critical current due to availability of more deep

Ž .pinning potential wells for each pancake and ii the
suppression of pancake creep due to trapping by
these low-lying pinning states. The former effect
gives rise to an increase in the critical current ap-
proximately by a factor of ln arj rln c arj( Ž . Ž .L
Ž w x .see 40 for more detail , providing thus a jump in
J by a factor of f1.5 for BSCCO parameters. Thec

creep suppression can lead to a further increase of
the jump in the persistent current, but the quantita-
tive theory of this effect remains the task for future
research.
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