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In this note, we explain how to use the code packages MagInverter2D and MagInverter1D to invert noisy

measurements of the magnetic field to obtain the underlying current density. For the theory behind the

method, see [3]. In what follows, we assume that we are given:

• d - the thickness of the sample,

• h - an estimate of the height above the surface of the sample,

• px - the pixel size in px as a length-2 vector with px(1) being the pixel size along the first dimension

and px(2), along the second dimension. If the pixels are squares (px(1)=px(2)), the value in px can

be a scalar.

• B - the noisy measurement of the normal component of the magnetic field,

• mu_0 - the value of the permeability of free space. Note that this value sets the units for the lengths,

the magnetic field, and the current density.

• lambdaArr - an array of values for the Tikhonov regularization parameter λ. To choose an appropriate

value for λ, we minimize some function by first sampling it on a relatively sparse grid given by lambdaArr

and then applying the fminbnd solver on intervals containing each local minimum on the grid to refine

their value, finally choosing the global minimum.

For the purposes of the examples used in [3] and the demonstrations shown in this note, we assume lengths (h,
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d, px) are given in microns, magnetic fields (B) are given in Guass, the current density is given in mA/µm2

and mu_0= 4π.

1 Reconstruction of two-dimensional measurements using the di-

rect and stream function methods

To reconstruct currents using the FFT-based methods, we use the functions reconstructCurrentsFFT direct

and reconstructCurrentsFFT stream for the direct and stream function methods, respectively. Their syntax

is identical apart from the function name:

[jx,jy] = reconstructCurrentsFFT_direct(mu_0,h,d,px,data,lambdaArr,plotF,imposeRefBC,p);

where we have three options:

• plotF - a boolean option to plot the projected SURE function sampled on lambdaArr. Note that

since it was shown in [3] that the projected SURE method consistently either outperforms or performs

similarly to GCV, only the projected SURE method is used in this function.

• imposeRefBC - a boolean option specifying whether or not to impose reflections. If the underlying

current distribution is known to be fully contained in the measurement window (i.e., the field was

measured on a window larger than the sample and contains its entirety), boundary conditions are not

needed and the user should set imposeRefBC=0. If, however, the current distribution extends beyond

the measurement window (as is usually the case), boundary conditions are essential and the user should

set imposeRefBC=1.

• p - a layer of width ceil(p*size(data)) adjacent to the boundary to be excluded from the projected

SURE parameter-choice method to preclude potential edge effects. The default value if p is not supplied

or if p is left empty is p=.1.

To demonstrate the above code, we use the function generateExamplesFFT which generates the examples

used in [3] by using:
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[JxN,JyN,dataC] = generateExamplesFFT(flag,mu_0,h,d,px);

where flag∈ {1, 2, 3} is the example number from [3], the output JxN, JyN are matrices representing the

true x− and y− current densities and dataC represents the clean data. Specifically, we generate the second

example used in [3] at a height h = 1 µm above a sample of width d = 0.05 µm and square pixels with

side length 1 µm by setting in the above code flag=2; mu_0=4*pi; h=1; d=.05; px=1. We then add

white Gaussian noise to the clean data of variance σ2 = 10−2 max |B| to generate the noisy measurement as

data = dataC + 1e-2*max(abs(dataC(:)))*randn(size(dataC));. A view from above of the clean and

noisy data is presented in Fig. 1. We then set lambdaArr = logspace(-12,3,1e3) to be our sparse λ array

and reconstruct the currents using the direct method, impose boundary conditions by setting imposeRefBC=1

and use p=0.1 to reconstruct the currents. The resulting reconstruction along with the true current density,

is given in Fig. 2, with the produced error being

MSD =
||jx; true − jx||2 + ||jy; true − jy||2

||jx; true||2 + ||jy; true||2
= 0.0124.

We also show the projected SURE function used to estimate the regularization parameter in Fig. 3, generated

by setting the plot option plotF=1.

If we are interested in comparing the MSD values of the solution obtained by the GCV and projected SURE

parameter-choice methods against the optimal one, we can use the functions reconstructCurrentsFFT direct MSD

and reconstructCurrentsFFT stream MSD for the direct and stream function methods, respectively, with

the syntax

[Gmin,GPmin,Mmin,alphaG,alphaGP,alphaM] ...

= reconstructCurrentsFFT_direct_MSD(mu_0,h,d,px,data,lambdaArr,plotF,imposeRefBC,p,JxN,JyN)

where the additional inputs are the true x− and y− current densities, and the outputs are:

• Gmin,GPmin - the MSD value obtained by using the GCV and projected SURE parameter-choice

methods, respectively.

• Mmin - the minimal MSD value.
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Figure 1: Normal component of the magnetic field for second example (a) without noise, (b) with noise of

variance σ2 = 10−2 max |Bz|.

• lambdaG,lambdaGP,lambdaM - the values of λ found by GCV, projected SURE and the one minimizing

the MSD, respectively.

The same syntax applies also to reconstructCurrentsFFT stream MSD that uses the stream function method.

Note that setting plotF=1 here will generate plots of GCV, P-SURE and MSD versus λ, with appropriate

labels for the y-axis to distinguish between them. Note also that here, we must specify p and cannot leave it

empty. For the example in Fig. 1, we got Gmin=0.0123, GPmin = 0.0124, Mmin=0.0123.
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Figure 2: Absolute value of the current densities |J| =
√
j2x + j2y for (a) the true distribution, (b) the

distribution reconstructed from the noisy data Fig. 1.
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Figure 3: Projected SURE method for the noisy data in Fig. 1.
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2 Reconstruction of one-dimensional current distributions from

one-dimensional measurements

For a one dimensional problem, we assume that there is only current flowing in the x direction J = jx(y)x̂ in

the thin film, and that we have a noisy measurement of the z component of the field on a portion of the y

axis Bz = Bz(y). Note that we have to assume the current is degenerate along the x− axis for the continuity

equation ∇ · J = ∂jx
∂x = 0 to hold, and that since jx is degenerate along x, so is Bz. In such a case, the field

can be written as the convolution

Bz(y) =

∫ ∞
−∞

K1(x, y, z, d) ∗ jx(y)dx = W1(y, z, d) ∗ jx(y),

where the kernel K1(x, y, z, d) is defined in Eq.(3.30) in [3] while its x integral is given by

W1(y, z, d) =
µ0

2π
sign(y)

[
arccos

(
|y|√

y2 + (z + d/2)2

)
− arccos

(
|y|√

y2 + (z − d/2)2

)]
.

If we use the concept of surface currents as in [3], the resulting one-dimensional kernel would be

Z1(y, z) =
µ0

2π

y

y2 + z2
.

For one dimensional problems we do not use FFT because the small scale of the problem and the fact that

the continuity equation is automatically satisfied and does constrain our solution enables us to directly solve

the equation without assuming any boundary conditions on the problem (such as the periodic boundary

conditions imposed by FFT or the reflexive ones used in [3]). The theory behind the algorithms used here is

described in [2]. To invert a noisy measurement we use:

[lambda,j,fm] = reconstructCurrents1D(mu_0,h,d,px,b,lambdaArr,imposeRefBC,plotF,method);

where the variable names have identical interpretation to the 2D case. The additional input method can take

on four value - ’SS’, ’DFA’, ’GCV’, ’SURE’ - and specifies the parameter-choice method to be used for

the reconstruction. If method is left unspecified or empty, the default method is ’SS’. As an example of a

1D problem, consider the current distribution and its clean and noisy field shown in Fig. 4. To generate

this example, we took the true current density to be the true solution of the shaw test problem from
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Figure 4: (a) Clean and (b) noisy magnetic fields for one-dimensional example.

Hnasen’s Regularization Toolbox in [1] such that [~,~,j_true] = shaw(1e3);. We then generate the

coefficient matrix A as A = generateTomoMatrix1D(mu_0,h,d,px,length(j_true),0); and compute the

true data as b_true = A*j_true;. Finally, we contaminate the data with white Gaussian noise of variance

σ2 = 10−2 max |btrue| as b = b_true + sqrt(1e-2)*max(abs(b_true))*randn(size(b_true));. Using

the same parameter values as before, we reconstruct the currents without boundary conditions and with

the default method. The solution is shown in Fig. 5b along with the relative error the solution produced of

||jtrue − jλ||2/||jtrue||2 =8.4104e-04.
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Figure 5: (a) The minimum value of the SS function versus height values λ for the data in Fig. 4. (b) True

and reconstructed solution for the data in Fig. 4.
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