Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering (CARS)

by

Andreas Volkmer

3rd Institute of Physics,
University of Stuttgart,
Pfaffenwaldring 57
70550 Stuttgart,
Germany

a.volkmer@physik.uni-stuttgart.de

Universität Stuttgart

AG Volkmer
(Coherent microscopy & single-molecule spectroscopy)
Noninvasive three-dimensional characterization of mesoscopic objects within complex heterogeneous systems

- with high spatial resolution,
- with high spectral resolution,
- with high temporal resolution,
- and with high sensitivity.
Fluorescence-based microscopy

- Confocal fluorescence laser scanning microscopy
- Two-photon induced fluorescence laser scanning microscopy

Limitations of fluorescence-based spectroscopic studies:

- dye labeling required (photo-toxicity)
- perturbation of structure and dynamics by fluorophore
- photo-stability (# emitted photons)
Fluorescence photobleaching of Rhodamine 6G / water

CW (one-photon) excitation at 514 nm

Pulsed fs (two-photon) excitation at 800 nm

Pulsed fs (one-photon) excitation at 350 nm

Excited-state photolysis model:

Intrinsic chemical contrast mechanism

Chemical contrast mechanism based on molecular vibrations, which is intrinsic to the samples: NO requirement of natural or artificial fluorescent probes!

![Graph](image)

<table>
<thead>
<tr>
<th>species</th>
<th>Raman bands / cm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA backbone, C-O stretching</td>
<td>~ 1000</td>
</tr>
<tr>
<td>Polypeptide backbone, C=O stretching (Amide I)</td>
<td>1500-1700</td>
</tr>
<tr>
<td>Lipids, C-H stretching</td>
<td>2900-3000</td>
</tr>
</tbody>
</table>

Infrared microscopy:
- low spatial resolution (~2-3 µm)
- low S/B ratio
- water absorption

Spontaneous Raman microscopy:
- weak signal
 - requirement for high excitation power
- fluorescence background
CARS fundamentals

induced third-order polarization:

\[P_{AS}^{(3)}(\omega_{AS}) = \left[\chi^{(3)}(\omega_{AS}) + \chi_{nr}^{(3)} \right] E_P^2(\omega_P) E_S^* (\omega_S) \]

CARS signal:

\[I_{CARS} \propto \left| P_{AS}^{(3)}(\omega_{AS}) \right|^2 \quad (\omega_{AS} = 2\omega_P - \omega_S) \]

Resonant CARS

\[\chi^{(3)} = \frac{1}{\Omega - (\omega_{p1} - \omega_s)} + i\Gamma \]

Non-resonant CARS

\[\chi_{nr} = const. \quad \rightarrow \text{No vibrational contrast!} \]

Two-photon enhanced non-resonant CARS
Development of CARS Microscopy

1982 - Duncan, Reintjes, Manuccia, *Optics Lett.* 7, 350

Picosecond visible laser, Noncollinear geometry

Onion-skin cells, soaked in D₂O

(CARS image on the 2450-cm⁻¹ band of D₂O)

Femtosecond near-IR laser,
Collinear geometry,
Forward detection

853 nm (100 µW)
1135 nm (100 µW)
⇒ CARS signal at 675 nm
(Raman-shift of 2913 cm⁻¹, on resonance with C-H vibrations)
Advantages of CARS-microscopy

• Intrinsic sensitivity to specific chemical bonds
 => No dye labeling
• Coherent signal enhanced by orders of magnitudes
 => Less laser power required compared to conventional Raman
 compared to spontaneous Raman signal microscopy
• No population of higher electronic states
 => No photobleaching
• Confinement of nonlinear excitation to confocal volume
 => Inherent 3D spatial sectioning capability
Theory of collinear CARS microscopy

Distinct features:

(i) Under tight focusing conditions -> breakdown of paraxial approximation

(ii) Actual extent of wave-vector mismatch is controlled by geometry for propagation directions of both incident beams and the CARS radiation

(iii) Heterogeneous sample of Raman scatterers of arbitrary shape and size embedded in nonlinear medium
(i) Description of a tightly focused Gaussian field

Amplitude distribution

Phase distribution ($\phi-kz$)

Wave-vector mismatch in collinear CARS microscopy

Wave-vector mismatch in collinear beam geometry:

phase matching condition: \(D \ll \pi/|\Delta k| \)

(interaction length \(\ll \) coherence length)

\[\Delta k = k_{AS} - (2k_p - k_s) \]

F-CARS \(|\Delta k| = 0 \) (forward-detected)

E-CARS \(|\Delta k| = \frac{4\pi n}{\lambda_{as}} \) (epi-detected)

C-CARS \(|\Delta k| = \frac{4\pi n}{\lambda_s} \) (counter-propagating)

(iii) CARS signal generation for microscopic scatterer

Assuming:

- tightly focused incident Gaussian fields
- Incident fields are polarized along the x axis
- refractive index mismatch between sample and solvent is negligible

Simulated size dependence of CARS signals

Experimental characterization of CARS microscopy for a single 500-nm polystyrene bead in water (Raman shift ~1600 cm$^{-1}$)

(a) F-CARS xy-image

(b) E-CARS xy-image

(c) C-CARS xy-image

(d) F-CARS xz-image

FWHM 0.34 µm

FWHM 0.36 µm

FWHM 1.18 µm

Picosecond CARS imaging of a live unstained cell

Epithelial cells
@ Raman shift ~1570 cm\(^{-1}\)
(amide I)

NIH3T3 cells
@ Raman shift ~2860 cm\(^{-1}\)
(C-H stretch)
Simulation of CARS spectra as a function of pulse widths

\[\chi^{(3)} = \frac{A}{\Omega - (\omega_p - \omega_s) - i\Gamma} + \chi_{nr}^{(3)} \]

The CARS intensity is:

\[I_{CARS} = \int_{-\infty}^{+\infty} \left| P^{(3)}(\omega_{as}) \right|^2 d\omega_{as} \]

\[2\Gamma = 10 \text{ cm}^{-1} \quad \text{... line width} \]

\[\Omega \quad \text{... vibration frequency} \]

\[\chi_{nr}/A = 0.2 \]

The CARS intensity is:

- Pulse width 0.5 ps (29 cm\(^{-1}\))
- Pulse width 2 ps (7.5 cm\(^{-1}\))
- Raman profile
- Pulse width 10 ps (1.5 cm\(^{-1}\))

Raman profile

CARS intensity (a.u.)

\(x \quad 200 \quad 400 \quad 600\)

\(\omega_p - \omega_s - \omega_R \text{ (cm}^{-1}\)
CARS intensity vs. excitation pulse spectral width

The CARS microscope

- Synchro-Lock system
- PZT drivers & galvo’s
- 14 GHz Loop Gain
- 80 MHz Loop Gain
- 6.7 ps Ti:sapphire mode-locked oscillator
- 6.7 ps Ti:sapphire mode-locked oscillator
- Telescopes
- Pol
- BC
- microscope
- Sample
- 3D scanner
- Objective lens NA=1.4
- Dichroic beamsplitter
- Filters
- APD
Multiplex-CARS Microspectroscopy in the Frequency-Domain

- acquisition of CARS spectrum in one"shot"!
Example: Monitoring the thermodynamic state of phospholipid membranes in the C-H stretch region

DSPC
\(T_g = 55^\circ C \)

entropy

DOPC
\(T_g = -20^\circ C \)

Model system for Stratum Corneum lipids

Raman spectra in CH-stretching mode region

\[\nu_a(CH_2) \]

\[\nu_s(CH_2) \]

\[\nu_a(CH_2)_{cycl} \]

wavenumbers /cm\(^{-1}\)
Hyper-spectral CARS imaging of a Stratum Corneum

Existence of cholesterol-enriched micro-domains
(see Poster by Nandakumar et al : Mo-4)
CARS microspectroscopy in the time-domain

Raman Free Induction Decay (RFID):

\[|E_p(t)|^2, |E_s(t)|^2 \quad |P^{(3)}(\tau, t)|^2 \quad |E_p'(t)|^2 \]

\[I_{CARS}(\tau) \]

time

Three-color CARS set-up:
Example: RFID imaging of 1-μm polystyrene bead

\[\lambda_{P1} = 714.6 \text{ nm (} \approx 85 \text{ fs)} \]
\[\lambda_S = 914.1 \text{ nm (} \approx 115 \text{ fs)} \]
\[\lambda_{P2} = 798.1 \text{ nm (} \approx 185 \text{ fs)} \]

Quantum beat recurs at \(\approx 1280 \) fs (mode beating at difference frequencies of \(\approx 26 \text{ cm}^{-1} \))

Complete removal of the non-resonant CARS contributions!

\[\frac{S}{B}(\tau=0) \approx 3 \]
\[\frac{S}{B}(\tau=484 \text{ fs}) \approx 35 \]

Simplifying coherent Raman microscopy by use of a nonlinear optical imaging technique which maps only the **imaginary part of** \(\chi^{(3)} \)
Stimulated Raman gain for probe laser in the presence of strong pump laser, when frequency difference equals Raman frequency

\[
P(\omega_2) = \chi^{(3)}(-\omega_2; \omega_2, -\omega_1, \omega_1) \cdot E(\omega_2) \cdot |E(\omega_1)|^2
\]

Advantages:
- Depends only on the Im \(\chi^{(3)} \)
- Linear on \(\chi^{(3)} \)
- Linear on number density
- Linear in pump and Stokes intensities
- Automatic Phase matching

Disadvantage: Tiny signal over huge background signal from the Stokes field!
Pixel intensity ∝ No. of C=C bonds

- No signal from surrounding water
- No interference effect in image contrast

Nandakumar, Kovalev, Volkmer, manuscript in preparation
Summary

- Under tight focusing conditions, size-selectivity in CARS signal generation is introduced by wave-vector mismatch geometries, e.g. epi-detected CARS (E-CARS) microscopy
 - allows efficient rejection of bulk solvent signal
 - E-CARS is easily implemented with a commonly used confocal epi-fluorescence microscope
- Combination of CARS microscopy with spectroscopic techniques provides wealth of chemical and physical structure information within a femto-liter volume in both the frequency-domain (multiplex CARS microspectroscopy) and time-domain (RFID imaging)
 - allows rejection of nonresonant background contributions by polarization-sensitive and time-delayed detection schemes
- Highly sensitive tool for the chemical mapping of unstained live cells in a spectral region for DNA, membranes and proteins.

- First demonstration of Stimulated Raman Scattering (SRS) microscopy on model systems of polystyrene beads embedded in water
 - No interference effects with nonresonant contributions from both object and matrix
 - SRS spectra qualitatively reproduce the Raman spectra
Acknowledgements

Harvard University

X.S. Xie
J.-X. Cheng
L.D. Book

3. Physikalishe Institut, Universitat Stuttgart:

P. Nandakumar
A. Kovalev

Roswell Park Cancer Institute, Buffalo, NY:

A. Sen
M. Koehler

Emmy Noether Program

Faculty of Arts and Sciences of Harvard University