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Abstract

The depth of a cell of a multicellular organism is the number of cell divisions it underwent since the zygote, and knowing
this basic cell property would help address fundamental problems in several areas of biology. At present, the depths of the
vast majority of human and mouse cell types are unknown. Here, we show a method for estimating the depth of a cell by
analyzing somatic mutations in its microsatellites, and provide to our knowledge for the first time reliable depth estimates
for several cells types in mice. According to our estimates, the average depth of oocytes is 29, consistent with previous
estimates. The average depth of B cells ranges from 34 to 79, linearly related to the mouse age, suggesting a rate of one cell
division per day. In contrast, various types of adult stem cells underwent on average fewer cell divisions, supporting the
notion that adult stem cells are relatively quiescent. Our method for depth estimation opens a window for revealing tissue
turnover rates in animals, including humans, which has important implications for our knowledge of the body under
physiological and pathological conditions.
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Introduction

Direct observation of cell divisions, which was used to

reconstruct the cell lineage of the 959 somatic cells of Caenorhabditis

elegans [1] implicitly yielded also the depths of these cells. However,

direct observations cannot be done for humans and mice since

they are opaque and have a tremendous number of cells [2].

Instead, calculations based on cell numbers, proliferation kinetics

and various theoretical assumptions have been used to estimate the

depths of human [3] and mouse [4] oocytes (approximately 25 cell

divisions in both), and of human sperm (approximately 30

divisions at age 15 with additional 23 divisions per year thereafter

[3]). The evolutionary-biology concept of a molecular clock [5] – a

relatively constant rate of molecular evolution – has also been

suggested for estimation of cell depths using either epigenetic [6]

or genetic [7] mechanisms. An association between depth and

increase in methylation was demonstrated in cell populations of

endometrial glands [6]. Mutations in microsatellites (MS;

repetitive DNA sequences) have been used to analyze histories of

human colorectal tumors, estimating that tumor cells underwent

on average about 2,300 divisions since the beginning of tumor

progression and 280 divisions since the final clonal expansion

[7,8]. Nevertheless, the depths of the vast majority of human and

mouse cells are unknown, and no systematic method for their

estimation has been proposed so far.

Results

Correlation Between Genetic Distance and Cell Depth
Our work develops the notion of genetic molecular clocks into a

quantitative method for depth estimation of single cells of any

type. When a cell divides, its DNA is replicated with almost perfect

fidelity, yet somatic mutations occur in every cell division [9].

These somatic mutations, which were previously shown to encode

the cell lineage tree [9], also encode precise information regarding

cell depth. The idea is simple: deeper cells tend to acquire more

mutations, hence genetic distance from the zygote and cell depth

are strongly correlated (Figure 1A). In principle, any mutation may

assist for depth analysis, yet mutations in MS are particularly well

suited for depth analysis given that MS are highly abundant in

human and mouse [10], and slippage mutations (which insert or

delete repeated units) in MS occur at relatively high rates [10] and

are coupled to cell division [10]. Moreover, animals with

mutations in key mismatch repair (MMR) genes display very high

mutation rates in MS [11,12].

Computer Simulations
We use the zygote genome as a reference against which mutations

are determined (Figure 1A). Each analyzed cell is assigned an

identifier [9], a vector representing the mutations that the cell

accumulated at a set of analyzed alleles. To assess the theoretical
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potential of depth analysis using genomic MS we performed

computer simulations based on data we previously obtained

regarding the numbers of MS and their mutation rates in human

and mouse [9]. We simulated wild-type and MMR-deficient

mutational behaviour on cells at various depths and estimated their

precision using a maximum-likelihood approach (see Materials and

Methods). As expected, increasing the number of analyzed alleles,

using faster mutation alleles, or analyzing deeper cells – each

improves depth estimation score (Figure 1B; a boundary case occurs

in wild-type simulations in depth 10 cells, in which error increases

with increasing number of alleles, see Materials and Methods). Using

the entire set of genomic MS in wild-type human and mouse enables

to estimate the depth of cells (at least 10 divisions deep) with precision

greater than 95% (Figure 1B). In MMR-deficient organisms, 100

alleles are sufficient to estimate depths of cells (at least 10 divisions

deep) with precision greater than 70% (Figure 1B).

A Method for Estimating Cell Depth from Somatic
Mutations

These simulations assume that the mutational behaviour of MS

alleles is simple, consistent, and completely known to us. In

practice this is not the case: although some macro-properties of

MS mutational behaviour are known [10], the precise behaviour

of each MS allele is unknown, and is not readily obtainable.

Instead of attempting to decipher the mutational behaviour of

Figure 1. Cell depth analysis. (A) The depth of a cell is the number of divisions it underwent since the zygote. The figure shows a tiny part of the
cell lineage tree of an organism – a binary tree representing the exact pattern of cell divisions of its developmental history from a single cell to its
current state. The tree depicts not only the lineage relations between cells, but also their depths, obtained by projecting them to the depth axis. A
correlation between genetic distance and cell depth is shown in a small fraction (5 MS alleles) of the genome. Each allele is assigned a relative allelic
value – a whole number equal to the difference between the number of repeats of that allele and the number of repeat units of the corresponding
allele in the zygote. Mutations are coloured in red. (B) Computer simulations of MS mutations and depth estimations based on a maximum likelihood
approach. Cells at various depths were simulated accumulating MS stepwise mutations according to wild-type and MMR-deficient mutation rates
(p = 2.5*1025 and p = 0.01, respectively). Depth estimation errors were scored according to the log (base 2) of the ratio between the estimated and
simulated depths.
doi:10.1371/journal.pcbi.1000058.g001

Author Summary

All the cells in our body are descendants of a single cell – the
fertilized egg. Some cells are relatively close descendants,
having undergone a small number of cell divisions, while
other cells may be hundreds or even thousands of divisions
deep. So far, science was unable to provide even gross
estimates for the depths of the vast majority of human and
mouse cells. In this study, we show that precise depth
estimates of cells can be obtained from the analysis of non-
hazardous mutations that spontaneously accumulate during
normal development. The concept behind the method is
simple: deeper cells tend to acquire more mutations and
‘‘drift away’’ from the original DNA sequence of the fertilized
egg. Knowing how deep cells are is the key to many
fundamental open questions in biology and medicine, such
as whether neurons in our brain can regenerate, or whether
new eggs are created in adult females.

Estimating Cell Depth from Somatic Mutations
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every allele in our set of MS, we employed a model-free approach,

which utilizes global properties of the set, thus masking the

idiosyncrasies of specific alleles. We previously showed that when

reconstructing the lineage relations between a set of cells of an ex

vivo cultured cell tree (CCT) with known depths, there is a linear

correlation between the reconstructed and actual depths [9]. Here

we continued to investigate this relation, which is the basis of

assigning actual depths in our suggested method. A description of

the method is shown in Figure 2: a calibration CCT is created and

reconstructed using the Neighbor-Joining (NJ) algorithm [13]

using the distance function ‘Absolute-distance’ (Figure 2A; this

distance measure has previously been suggested to scale linearly

with time [14]). A multiplier – a number representing the ratio

between the reconstructed and actual depths – is obtained

(Figure 2B), and is consequently used for in vivo depth estimations

(Figure 2C).

The Method Is Well Supported
Successful depth estimation based on our suggested method

depends on the fulfilment of three conditions: (i) there is a good

linear correlation between reconstructed and actual node depths in

CCTs; (ii) this correlation is similar between similar experiments,

i.e. a multiplier obtained from the correlation in one experiment

can be used in another; (iii) this multiplier can be reliably

transferred from ex vivo to in vivo experiments. Below we show that

each of these conditions is indeed fulfilled. Figure 2B shows a

linear correlation in human CCTs [9] (R2 = 0.94 and 0.87 for

CCTs A and C, respectively) and a newly-created mouse CCT.

Multipliers of human CCTs are very similar – 411 and 421 for

CCTs A and C, respectively. Depth estimations of nodes from one

CCT based on a fit obtained from the other CCT are extremely

precise: the average error when estimating the depth of a node

from CCT A based on a fit obtained from CCT C is 6.4%64.1%

(and 11%611% vice versa, for the estimation of CCT C nodes

based on a fit obtained from CCT A). The multiplier of mouse

CCT is different (256), reflecting the differences between

mutational behaviour of our human and mouse MS sets. To

further demonstrate that multipliers can be transferred between

similar experiments, we performed computer simulations in which

a multiplier obtained from one randomly generated tree was used

to estimate depths of cells of other similar random trees. These

simulations show that when 100 alleles (with mutation rate p = 1/

100) are analyzed, depths of 90% of the samples are estimated

with mean error of less than 30% (data not shown). To show that

ex vivo and in vivo mutation rates are consistent we analyzed the

percent of mutations in a set of 130 MS alleles in the mouse CCT

Figure 2. Estimating cell depths from somatic mutations. (A) Our method for in vivo cell depth estimation employs a calibration system based
on a cultured cell tree (CCT) – an ex vivo tree with known topology and well-estimated edge lengths. A CCT created from an Mlh12/2 mouse cell line
(of similar background to the mice in which we performed depth analyses) is shown. CCT leaves (M1–M10) were analyzed over a panel of about 100
MS loci, and a tree was reconstructed using the method described in ref. [9] (Neighbor-Joining [NJ] phylogenetic algorithm and ‘Absolute-distance’
distance function were used; see Materials and Methods). Reconstructed depths of all leaves (except for M2, an outlier omitted from analysis) were
very similar, with a standard deviation of less than 8% of the mean. (B) Linear correlation between actual and reconstructed depths of human and
mouse CCTs. Circles represent CCT nodes; numbers indicate multipliers in each CCT. (C) A multiplier obtained from a CCT is used to calibrate the
depths of cells in the reconstructed cell lineage tree.
doi:10.1371/journal.pcbi.1000058.g002

Estimating Cell Depth from Somatic Mutations
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samples and multiple samples obtained from four Mlh12/2 mice.

The correlation coefficient (r = 0.44) was found to be highly

significant (p,1026).

Next we checked whether depth analysis is sensitive to the

number of analyzed cells and the specific choice of analyzed

alleles. To test the former, we generated random trees with 50

leaves and simulated MS stepwise mutations at various rates. We

reconstructed the trees, with increasing subsets of leaves (3–50).

Depth estimates of a single leaf (included in all subsets) varied by

less than 5% between reconstructions demonstrating that our

method is robust to the number of analyzed cells (data not shown).

To test the latter, we calculated a fit for the mouse CCT by

bootstrapping the data 1000 times (see Materials and Methods),

obtaining a mean fit of 251628. This demonstrates that the

obtained multiplier (256) is not sensitive to the specific choice of

alleles.

Depth Estimations of Cells In Vivo
We applied the method and estimated depths of 163 cells of

various types sampled from four MMR-deficient (Mlh12/2, see

[15]) mice aged 5.5–40 weeks (Table 1 and Table S1). Identifiers

of analyzed cells (see Table S4) were obtained elsewhere [16,17]

(Text S1 describes materials and methods for obtaining identifiers

cells from mice aged 5.5–13 weeks). Each identifier [9] represents

the mutations that the corresponding cell sample acquired at the

set of loci in comparison to the zygote. Experiment mice have a

dual genetic background (C57Bl/6 X 129SvEv), therefore the two

alleles of each MS locus are potentially heterozygous, and are

considered to mutate completely independent. Our analysis of

eight oocytes isolated from the right ovary of a 5.5 week old mouse

showed that their average depth is 29 cell divisions (Figure 3A),

slightly higher than previous estimates of about 25 cell divisions

[4]. The average depth of four types of adult stem cells (satellite,

kidney, mesenchymal, hematopoietic) from mice 5.5–13 weeks old

ranged from 24–40 cell divisions. These results, when contrasted

to the observed depth of differentiated cells such as B-cells (see

below), lend support to the view that a general trait of stem cells is

their relative quiescence [18]. Satellite cells are adult stem cells

positioned under the basal lamina of muscle fibers, which are

responsible for the remarkable regenerative capacity of adult

skeletal muscle [19]. Depths of satellite cells isolated from various

muscles and myofibers ranged from 14 to 75. This wide range of

depths suggests that the progenitors of some cells were activated

Table 1. Estimated cell depths according to cell type and
mouse age.

Mouse Cell Type Source
Estimated
depth

ML7 (75), Age:
5.5 wk

Satellite cell (57) Various muscles and
myofibers

37.561.9

Oocyte** (8) Right ovary 28.665.4

B cell** (10) Spleen 33.863.8

ML2 (26), Age:
10 wk

Satellite cell (10) Various muscles and
myofibers

28.463.2

Kidney stem cell (8) Kidney 40.167.7

B cell* (8) Spleen 67.168.7

ML4 (25), Age:
13 wk

Satellite cell (12) Various muscles and
myofibers

36.363.6

Mesenchymal stem
cell (5)

Femur/tibia 27.667.4

Hematopoietic stem
cell (2)

Femur/tibia 24.064.0

B cell* (5) Spleen 78.6635.4

NK cell* (1) Spleen 42.0

ML8 (37), Age:
40 wk

Tumor** (23) Thoracic cavity/lung 237.068.4

Epithelial** (14) Lung 117.3618.0

Numbers in parentheses represent the number of cells in each experiment/cell
type. Estimated depths represent mean (6standard error of the mean) number
of cell divisions for each cell type. Cells were amplified either in culture
(unmarked), or by whole genome amplification (*GenomePlex, Sigma;
**GenomiPhi, GE).
doi:10.1371/journal.pcbi.1000058.t001

Figure 3. In vivo depth estimations. Depth estimates of various cells
sampled from mice aged 5.5–40 weeks. (A) Box plots of depths
according to cell type and mouse age. Box (blue) displays the middle
50% of the data from the lower to upper quartiles (median is red). Ends
of vertical lines (whiskers) indicate minimum and maximum data values,
unless outliers (marked by ‘+’) are present, in which case the whiskers
extend to a maximum of 1.5 times the inter-quartile range. Stars depict
cell types with statistically significant different average depths (p,0.05).
(B) Average depths of satellite cells and B cells as a function of mouse
age. While depths of satellite cells did not correlate to age, depths of B
cells showed a linear correlation (R2 = 0.97) to age, corresponding to
about one cell division per day. Error bars denote standard errors of the
mean.
doi:10.1371/journal.pcbi.1000058.g003

Estimating Cell Depth from Somatic Mutations
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due to events of muscle repair [20] or that satellite cells are a

heterogeneous population, for example with respect to the rate of

cell division [21]. Nevertheless, the average depths of satellite cells

were quite similar (38, 28 and 36; Figure 3B) even though they

were sampled from mice at different ages (5.5w, 10w and 13w,

respectively). This suggests that most of the satellite cell population

in various muscles and myofibers originated during embryonic

development, without extensive proliferation in adult life under

normal circumstances, and confirms that satellite cells are

mitotically quiescent in mature muscle [22]. In contrast, there

was a linear correlation between the average depth of B-cells and

mouse age (R2 = 0.97; Figure 3B). The slope of the linear

correlation (6.3) suggests that the turnover rate of splenic B-cells

(or progenitors) is about once per day in adults mice. Moreover, B-

cells were deeper than satellite cells in 10–13 week old mice

(statistically significant in 10 weeks, but not in 13 weeks).

Comparison of lung epithelial cells and tumor cells (from various

tumor foci) isolated from a 40 week old mouse showed that tumor

cells are significantly deeper than epithelial cells (average depths

237 and 117, respectively; Frumkin D., et al., submitted). Two

possible explanations for this large difference are that tumor cells

divide more rapidly than normal epithelial cells, or that the tumor

founder cell was deeper than the epithelial cells, creating a shift for

the entire tumor cell population. Another possible explanation is

that tumor cells acquire mutations faster than wild type cells.

While this may be true in general, it is unlikely in this specific

example, since both normal and tumor cells in our Mlh12/2

mice are completely deficient in mismatch repair.

The DNA of analyzed cells was amplified either by ex vivo

culture or by whole genome amplification (WGA; see Table 1).

Although mutations might occur in culture, analysis of cell clones

is with high probability identical to analysis had it been performed

on the clone’s founder cell ([9]; fixation for a mutation during cell

culture would be largely undetectable because there are no

bottlenecks during the procedure). However, WGA might

generate artefact mutations [23] leading to increased depth

estimates. Our control experiments show that WGA introduces

0.9–1.2% artefact mutations (in GenomiPhi and GenomePlex,

respectively; [16]). We recalculated cell depths assuming these

artefact mutation levels in WGA samples, obtaining depths smaller

by 18% on average, see Materials and Methods).

Discussion

In conclusion, we developed a method for estimating depths of

cells in vivo complementary to our previous method for lineage

analysis [9], and applied it to various types of mouse cells. The

method is composed of two independent steps: first, relative depths

are assigned to sampled cells, which are then transformed to

absolute depths using an external calibration system in the form of

a CCT. Each CCT is applicable only to the analysis of in vivo cells

of similar background to those of the CCT. Alternative

calibrations are also possible, for example, by the fluorescent

labelling of cells followed by analysis of their intensity (which

dilutes approximately by half in each cell division [24]). Similar

depth estimates (16% difference on average, data not shown) can

be obtained independent of tree reconstruction simply by

correlating the number of mutations and cell depth. In future,

calibration may be discarded altogether if reliable in vivo depths

estimates can be obtained for a certain group of cells, using any

method, which can then be used for internal calibration with other

cells.

Horwitz and colleagues also recently developed a method for

cell lineage analysis based on somatic mutations in polyguanine

repeat DNA sequences [25], very similar to our previous method

[9]. They reconstructed a tree of cell samples from a 7-month old

wildtype mouse, in which branch lengths correspond to the

number of cell divisions. In light of the recent rapid technological

advances in high-throughput genomic analysis, we also believe

that the direction of this methodology is heading towards the

analysis of wild-type organisms, including humans. Nevertheless,

at present our preference was to analyze MMR-deficient mice

because MS in these mice have elevated mutations rates, which

enable analyzing a relatively small number of MS with repeat units

of two letters (e.g. ‘AC’) and more. Such MS are preferable over

mononucleotide sequences because their PCR stutter patterns are

much reduced, making analysis more precise and thus more

reliable. Analysis of wildtype organisms based on such MS is not

practical at present, as it would require analysis of thousands of

MS loci. While not ideal, we believe our analysis may give a lot of

useful and reliable data since MMR-deficient humans [11] and

mice [12] have been shown to develop normally.

The reconstructed tree obtained by Horwitz and colleagues [25]

is unrooted, hence it is not possible to infer the depth of their

analyzed cells. Analysis of unrooted trees enables to infer the

number of cell divisions between any two samples which is the sum

of cell divisions from each sample to their common ancestor (this

could be referred to as ‘‘depth of cell lineage since X’’, X being

their common ancestor). In our analysis we infer the identifier of

the zygote with high precision (based on tail DNA, see [16]), which

enables to reconstruct a rooted tree. Based on this, we can estimate

the depth of single cells, and use the term ‘‘depth’’ as shorthand for

‘‘depth of cell lineage since the zygote’’.

Our depth estimations of oocytes were highly similar to previous

reports, providing an independent confirmation for the precision

and correctness of our method. Nevertheless, depth estimations

may be imprecise to some extent due to various factors, such as the

stochastic nature of mutations, differences between ex vivo and in

vivo mutation rates, and different mutation rates between different

tissues. In this case of the latter, obtaining tissue-specific mutation

rates would enable to perform a compensation step, thus

minimizing the error in depth estimations. Beyond the potential

of static depth analysis at a specific timepoint, iterative depth

analysis at various timepoints can reveal the turnover rates of

various tissues under physiological and pathological conditions

[26]. For example, depths of a stable tissue which does not

turnover is expected to remain constant with time, while depths of

non-stable tissues are expected to increase at a rate dependant on

the turnover rate. An alternative method for qualitatively

obtaining relative cell turnover rates between tissues was

previously suggested based on retrospective birth dating of cells

[26]. Similarly, analysis of injected stable isotopes was used to

determine the turnover rate of blood in mice and rats [27]. Our

method enables performing precise depth analysis in a non-

invasive fashion, which may shed light on several open

fundamental questions, such as whether there is regeneration of

neurons [28] and oocytes [29] and the in vivo dynamics of stem

cells.

Materials and Methods

Mouse CCT
Mlh12/2 MEF cells (obtained from Michael Liskay, OHSU)

were grown in medium composed of DMEM low glucose (Gibco)

supplemented with 10% Fetal Bovine Serum, 1% Non-essential

amino acids, and Gentamycin (70 mg/ml). The CCT was created

as previously described [9]. Cell division rate was estimated as one

division per day according to the frequency of routine plate

Estimating Cell Depth from Somatic Mutations
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passages. CCT leaves (M1-M10) were genotyped in our set of MS

loci using an automated procedure as previously described [9],

except that capillary signal analysis was performed automatically

with a new computer algorithm we designed [16]. We recon-

structed the CCT with a set of 95 MS loci (see Tables S2 and S3

for list of loci and cell identifiers, respectively) using our previous

method for lineage reconstruction [9], except that the distance

function was ‘Absolute Distance’. In this function the distance

between two samples is the average distance between their allelic

values in all alleles which were analyzed in both samples. The

multiplier of human and mouse CCTs is the slope of the linear

regression between actual and reconstructed depths of CCT

nodes. When bootstrapping was performed, alleles from each

CCT nodes were sampled with replacement, creating pseudo-

identifiers of the same size as the original identifiers. The CCT was

reconstructed based on the pseudo-identifiers, and multipliers

were calculated.

Computer Simulations
Identifiers of cells at various depths were simulated based on a

symmetric stepwise mutation model, according to which each MS

allele mutates with probability p, and mutations are either +1 or

21 (each with probability p/2). Both wild-type (p = 2.5*1025) or

MMR-deficient (p = 0.01) mutation rates were tested. Depths of

simulated cells were estimated using the algorithm described

below. Estimation score (fold of difference) was defined as follows:

score = |log2 (estimated_depth / real_depth)|. Normally, increas-

ing depth improves (lowers) the score. However, in shallow cells

with slow mutation rates (e.g. cells 10 divisions deep in wild-type

simulations) there are usually no mutations, hence the estimated

depth is zero and the score increases with depth since the

difference between the estimated and real depths increases.

Algorithm for Depth Estimation (for Computer
Simulations)

This algorithm was used for estimating depths of cells in

computer simulations (in the case the mutational behaviour of MS

is simple and completely known). We assume that the mutational

behaviour of each MS allele is defined by a Probability Vector

(PV; pi is the probability of the allele to mutate by i MS repeats in

each cell division; Spi = 1). For every MS allele, given its initial

value (number of repeats) at the root, fill up a table whose rows are

indexed by number of repeats, whose columns are indexed by

depth (starting at 1 and ending at the maximum conceivable depth

of a leaf), and whose (i,j) entry gives the probability that at depth j

its value is exactly i. This table can be prepared (in advance and

stored) using dynamic programming, column after column, using

the PV for the particular MS allele. If there are several alleles with

the same PV, then only one table per PV needs to be prepared.

Then, given a cell identifier, for every depth d, take product of the

entries in the tables, where for each MS allele the entry taken is the

one in column d and the row corresponding to the value of the MS

allele in the cell. This product is our estimate of the likelihood that

the leaf is at depth d. The estimated depth is d with maximum

likelihood.

Ex Vivo – In Vivo Correlation
Only alleles which were successfully amplified and analyzed in

at least 20% of mouse CCT and Mlh12/2 samples were

analyzed. We generated 106 random permutations of the percent

of mutations in the in vivo samples, obtaining a correlation

coefficient for each permutation. No permutation resulted in a

higher correlation coefficient.

Choice of MS for In Vivo Studies
The loci for in vivo studies were chosen according to the

following criteria: (i) loci with a large number of repeats, in attempt

to obtain fast mutating loci. Loci with different mutation rates hold

different information, and the best loci for depth analysis are those

with the highest mutation rates (unpublished analysis); (ii) loci

which are amplified well using our primers yielding high quality

signals; (iii) loci whose signal can easily be analyzed (e.g. their two

alleles are sufficiently far apart).

In Vivo Depth Estimation
A lineage tree was reconstructed for each Mlh12/2 mouse

(using NJ and the ‘Absolute Distance’ function), and for each cell

the reconstructed depth was obtained, which is the sum of edge

lengths in the reconstructed tree. The estimated depth of each cell

was its reconstructed depth multiplied by the multiplier obtained

from the mouse CCT. We calculated the 95% confidence interval

of the regression coefficient, and used its lower and upper bounds

as multipliers for obtaining the 95% confidence interval of the

depth estimate of each cell. Depth recalculations assuming WGA

artefact mutations were calculated as follows: for each WGA

sample m randomly chosen mutated alleles (m = 0.9% or m = 1.2%

of analyzed signals for GenomiPhi or GenomePlex WGA samples,

respectively) were changed to zero, and depths were recalculated.

This was repeated 100 times, and a modified depth (mean depth

over repetitions) was obtained for each sample.

Supporting Information

Text S1 Materials and Methods for obtaining cell identifiers for

ML2, ML4 and ML7 cells

Found at: doi:10.1371/journal.pcbi.1000058.s001 (0.05 MB

DOC)

Table S1 Estimated depths of each analyzed cell

Found at: doi:10.1371/journal.pcbi.1000058.s002 (0.22 MB

DOC)

Table S2 List of microsatellite loci used for analysis of mouse

CCT

Found at: doi:10.1371/journal.pcbi.1000058.s003 (0.17 MB

DOC)

Table S3 Table of identifiers of mouse CCT nodes

Found at: doi:10.1371/journal.pcbi.1000058.s004 (0.05 MB XLS)

Table S4 Cell identifiers for ML2, ML4, ML7 and ML8 samples

Found at: doi:10.1371/journal.pcbi.1000058.s005 (0.61 MB XLS)
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