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Abstract 
It is now evident that noncoding RNAs play key roles in regulatory networks determining cell 
fate and behavior, in a myriad of different conditions, and across all species. Among these 
noncoding RNAs are short RNAs, such as microRNAs, snoRNAs, and piRNAs, and the 
functions of those are relatively well understood. Other noncoding RNAs are longer and their 
modes of action and functions are also increasingly explored and deciphered. Short and long 
noncoding RNAs interact with each other with reciprocal consequences for their fates and 
functions. Here, I review the known types of such interactions, discuss their outcomes, and 
bring representative examples from studies in mammals.  

 

Introduction 
Studies profiling transcription on a genome-wide level over the past 15 years showed that 
regions between protein-coding genes are frequently transcribed into RNA molecules of various 
lengths. In addition, protein-coding genes are alternatively spliced and produce a variety of 
isoforms, some of which are unlikely to encode functional proteins.The majority of stable 
noncoding RNAs that are >200 nt are capped, spliced, and polyadenylated, and are collectively 
called long noncoding RNAs (lncRNAs). A minority of lncRNAs are processed into smaller RNAs 
that carry out relatively well-defined functions in cells, such as microRNAs (miRNAs), piRNAs, 
siRNAs, and snoRNAs. Other types of small noncoding RNAs, such as snRNAs and tRNAs are 
typically transcribed indepedendently. Small RNAs are usually recognized on the basis of 
specific sequences and RNA structures by various proteins and form ribonucleoprotein (RNP) 
complexes. Many of these RNPs are then guided by the small RNA to other RNAs that carry 
short regions of sequence complementarity. For example, miRNAs are loaded into a RISC 
complex where they are bound by Argonaute (Ago) proteins and guide RISC to RNAs 
containing seed matches (defined by complementarity to positions 2–8 of the miRNA), mostly 
found in the 3' UTRs of protein-coding genes [1]. snoRNAs, on the other hand, guide complexes 
that deposit RNA modifications, such as 2'O-methylation and pseudouridylation, to specific RNA 
targets, usually in other noncoding RNAs, such as ribosomal RNAs [2]. 

The functions of the vast majority of lncRNAs remain unknown, but an increasing number is 
implicated in a myriad of biological processes [3–6]. Some lncRNAs are differentially expressed 
or genetically perturbed in a variety of human diseases [7,8], which further increases the interest 
in understanding lncRNA functions and mechanism of action. It is clear that the currently 
annotated lncRNAs are composed of a number of families that utilize drastically different 
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mechanisms, and which currently all bundled together under the “lncRNA” title due to our limited 
understanding which leads to very poor classification abilities. The common modes of action 
that were proposed have been reviewed extensively elsewhere [9,10], and include regulation of 
gene expression in cis and in trans, scaffolding of subcellular domains and complexes, and 
regulation of protein activity and abundance. Here I focus on the interface between lncRNAs 
and small RNAs, and the implications of the interactions between them on their functions. Most 
of the examples I will present come from mammalian cells, but the principles are likely 
applicable to other eukaryotic species as well, as while lncRNAs evolve fast, lncRNA features 
are largely similar in the species that  have been profiled [11]. As known interactions between 
various ncRNAs have been recently quite exhaustively listed elsewhere [12], I will focus here on 
the general principles and possible outcomes of those interactions (Figure 1) and will not 
attempt to cover all reported examples. 

Long noncoding RNAs as precursors for small RNAs 

Short RNAs, including miRNAs and snoRNAs, are in many cases produced from introns or 
exons of longer “hosts”. Some of these hosts are protein-coding genes, but many are lncRNAs. 
If the small RNA is processed from exonic sequence of those hosts, the processing reaction 
typically exposes free RNA ends that lead to rapid exonucleolytic degradation of the host. When 
the small RNA is excised from an intron, the host RNA stability is typically not affected. Recent 
studies have assigned small RNA-independent functions for hosts of snoRNAs [13–16] and 
miRNAs [17–19]. In some cases, like H19, the lncRNA function was described before a miRNA 
was discovered to be encoded by the lncRNA locus [20–22]. H19 is also an intriguing example 
in which regulated processing of the host results in different relative abundances of the host 
RNA and the encoded small RNA in different cells [22]. In other cases, specific cellular decay 
pathways target the hosts and limit their accumulation. For example, nonsense mediated decay 
(NMD) [23] was shown to preferentially degrade snoRNA host genes in the cytoplasm [24]. 

Piwi-interacting RNAs (piRNAs), small RNAs expressed primarily in the germline, are also 
produced in many cases from lncRNA precursors [25,26]. In some cases these lncRNAs are 
expressed in tissues where the Piwi pathway is not active without being processed into piRNAs. 
It is thus likely that lncRNAs that are processed into small RNAs sometimes function 
independently as lncRNAs, with the processing event mediating their stability, and potentially 
offering an opportunity for post-transcriptional regulation of lncRNA accumulation. 

Small RNAs related to termini of long noncoding RNAs 

The vast majority of lncRNAs are capped at their 5' end and polyadenylated at their 3' end, by 
the same complexes and proteins that process mRNAs. However, there are notable exceptions 
where the termini of lncRNAs are specified and/or stabilized by pathways that typically produce 
small RNAs. For example, the 3' ends of the MALAT1 lncRNA and of the long isoform of the 
NEAT1 lncRNA are formed by cleavage by RNAse P, that is typically processing the 5' ends of 
tRNAs [27]. This cleavage also specifies the 5' end of tRNA-like small RNAs (called mascRNA 
in the case of MALAT1), whose functions remain unknown. The 3' end of MALAT1 and NEAT1 

https://paperpile.com/c/yDUKQe/en11+MM4H
https://paperpile.com/c/yDUKQe/eLYk
https://paperpile.com/c/yDUKQe/xoiw
https://paperpile.com/c/yDUKQe/pl8B+pIfA+sH14+4TOv
https://paperpile.com/c/yDUKQe/yr9D+pUz1+gi3h
https://paperpile.com/c/yDUKQe/dfy9+W29u+wfp2
https://paperpile.com/c/yDUKQe/wfp2
https://paperpile.com/c/yDUKQe/NHWR
https://paperpile.com/c/yDUKQe/R0L3
https://paperpile.com/c/yDUKQe/OhEv+H7Lf
https://paperpile.com/c/yDUKQe/zbVu


is then stabilized by triple–helical structures that include a short genomically encoded poly(A) 
tail [28,29]. 

As mentioned above, snoRNAs are occasionally encoded in introns of lncRNAs. In most cases, 
the intron host of the snoRNA is rapidly degraded from both ends, and the snoRNA is stabilized 
by proteins that form the snoRNP complex. In some cases, however, a single intron can encode 
two snoRNAs, and following degradation, lncRNAs with snoRNAs in both ends are formed, 
denoted sno-lncRNAs [30]. These lncRNAs are stable, accumulate in the nucleus and can 
regulate alternative splicing globally by binding splicing regulators [30]. Interestingly, most of 
these cases occur in the region shown to be critical for the Prader-Willi Syndrome (PWS), and 
may be related to the pathogenesis of this disease. Another sno-lncRNA, called SLERT was 
recently shown to act in regulation of RNA Polymerase I activity though binding DDX21. In the 
PWS region, there are also transcripts that are 5′ snoRNA capped and 3′ polyadenylated 
(SPAs). These are formed when an snRNP that protects the 5’ end of the transcript allowing 
polymerase to continue until a polyadenylation site. These stable transcripts were also shown to 
bind several splicing regulators and regulate alternative splicing [31]. 

Regulation of lncRNAs expression by small RNAs 

As lncRNAs are largely indistinguishable from mRNAs on the molecular level, including a cap, a 
polyA tail, and introns, it is expected that they would be also regulated by small RNAs in the 
same way as mRNAs. This indeed appears to be the case, and in some systems, it was shown 
that such regulation has interesting consequences for the lncRNA.  

In C. elegans, ALG-1 argonature protein loaded with the let-7 miRNA binds the pri-let-7 
precursor and promotes its processing, resulting in a positive feedback loop [32]. Conceptually 
similarly, in mammals, miR-709 localizes to the nucleus through an unknown mechanism and 
binds through an extensively complementary sequence to the polycistronic pri-miRNA of 
miR-15/16 miRNAs, inhibiting its processing [33]. 

Extensive complementarity between a miRNA and a lncRNA can also result in lncRNA 
cleavage, as first exemplified by the cleavage of the CDR1as circular RNA by miR-671 [34]. 
There are also numerous examples of lncRNAs that are targeted by miRNAs through 
conventional seed sites (recently listed in [12]), though the functional importance of these 
interactions remains mostly unclear. Mechanistically, regulation of lncRNA by miRNAs 
presumably occurs through the same pathway that acts on mRNA targets – recruitment of the 
cytoplasmic deadenylation complexes, followed by decapping and RNA degradation [35]. Two 
aspects of lncRNA biology may limit the relevance of regulation by miRNAs: lncRNAs are 
typically more nuclear than mRNAs [36,37], which makes them less accessible to cytoplasmic 
RISC complexes, and they are somewhat less stable (the observed difference in stability 
between lncRNAs and mRNAs is variable, largely due to differences in set of considered 
lncRNAs [38–40]). Less stable RNAs are less susceptible to regulation by miRNAs [41], and so 
miRNAs may have limited impact on expression levels of lncRNAs as a group.  

Small RNAs other than miRNAs can also regulate lncRNAs accumulation. Many lncRNAs are 
expressed specifically in the testis, in particular in late-stage spermatocytes [26,42,43], where 
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the piRNA machinery is also active. The expression of hundreds of these lncRNAs is increased 
by more than twofold in the testis of Piwil1−/− mice which do not express piRNAs [26]. Only a 
minor fraction of the up-regulated lncRNAs are piRNA precursors, and their sequences match 
piRNAs antisense sequences, suggesting that piRNAs direct repress some lncRNAs. Similarly, 
piRNAs were shown to regulate lncRNA expression in flies [44]. 

Regulation of small RNA activity by long noncoding RNAs  

While regulation of long RNAs by small RNAs has so far received relatively limited attention in 
the scientific literature, the reverse activity – regulation of small RNA activity by lncRNAs, has 
been subject of extensive study, and non-negligible controversy, in the last few years. The main 
reason for this extensive interest is the relative ease with which one can predict possible 
interactions between lncRNAs and miRNAs, and the considerable understanding of the 
functions and targets of individual miRNAs. Therefore, when one is faced with the formidable 
problem of hypothesizing a mode of action or the regulatory targets of a lncRNA, it is often 
appealing to propose that the lncRNA regulates a particular pathway through binding and 
affecting the activity of a miRNA. Regulation of miRNA stability by lncRNAs is also an appealing 
mode of action, since turnover of miRNAs remains quite poorly understood. On the one hand, 
miRNAs are typically very stable [45], presumably protected from general RNA decay pathways 
by the Argonaute proteins. On the other hand, developmental transitions and response to stimuli 
sometimes result in abrupt down-regulation of some miRNAs [46–48], suggesting active and 
specific turnover, and making target-dependant decay an attractive possibility. 

The interest in lncRNAs as potential “competing endogenous RNAs” (ceRNAs) increased in 
2010 following a report from the Pandolfi lab that PTENP1, a transcribed pseudogene of the 
PTEN tumor suppressor, can compete with PTEN mRNA for binding of miRNAs [49]. This report 
also began the skepticism about this phenomenon, as PTENP1 is expressed at much lower 
levels than PTEN [50], and has to complete for miRNA binding not just with PTEN, but also with 
tens of thousands of other binding sites each miRNA has throughout the transcriptome. Since 
individual miRNA binding sites confer limited repression, it has been proposed that multiple 
shared sites result in more efficient crosstalk [51,52], but this does not resolve the stoichiometric 
concerns about the “ceRNA hypothesis”. Several recent studies used theoretical and 
experimental tools to try and address the question of what magnitude of changes in abundance 
of a single RNA species are required for affecting expression of other genes through 
competition for binding of short RNAs. Jens and Rajewsky [53] estimated ~22,700 binding sites 
compete for miR-20a binding in unperturbed monocytes. Under these conditions, thousands of 
new binding sites need to be introduced for meanifully altering the occupancy of miR-20a on 
any of its targets. Indeed, artificial “miRNA sponges” introducing such numbers of sites were 
shown to lead to increases in levels of individual targets without markedly affecting miRNA 
expression levels [54]. In stark contrast, changes in expression of endogenous genes, in 
particular the typically lowly expressed lncRNAs, almost never reach levels that are predicted to 
have regulatory impact via simple competition for binding.  

Consistent with these predictions, an experimental study in mouse liver and hepatocytes [55] 
found that target overexpression that effectively doubles by the number of available binding 
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sites in the transcriptome is needed for detectable changes in gene expression by competition. 
Specifically, for miR-122, which is expressed at 1.2×105 copies per cell in the liver, addition of at 
least ~200,000 of copies of the AldoA target, which contains three potent binding sites for 
miR-122, was required for detectable up-regulation of miR-122 targets without affecting 
miR-122 levels. Similar results were obtained when miR-122 was reduced by ~3-fold using 
antagomiRs, suggesting that miRNA levels are less important for the threshold of expression 
above which competition becomes observable [55]. In an in vivo setting, 20-fold increase in 
AldoA levels, adding thousands of new binding sites did not have any detectable effect on 
miR-122 target expression levels [55]. These findings were recently corroborated in a follow-up 
study using mouse embryonic stem cells (mESCs) as an additional system and testing other 
microRNAs with different abundance ranges  [56], supporting the concept that the threshold 
above which a ceRNA can start influence abundance of other miRNA targets is determined not 
by miRNA abundance, but rather by the total number of miRNA binding sites, including 
low-affinity ones, throughout the transcriptome. 

Perhaps the most striking candidate for an endogenous “miRNA sponge” is the CDR1as circular 
lncRNA that contains >60 binding sites for the miR-7 miRNA, and is expected to be resilient to 
repression by miR-7 due to its circular structure [57,58]. CDR1as indeed acts as a miR-7 
sponge in artificial settings [57,58], but loss of CRD1as in mice is surprisingly associated with 
decrease, rather than increase, in miR-7 levels in the brain, and with increased levels of miR-7 
targets [59], suggesting that even the abundant CDR1as with its dozens of high affinity sites for 
a single miRNA, likely does not act as a miRNA sponge in the endogenous setting. 

Despite the doubt cast on the prevalence of ceRNA activity, there is a rapidly growing number of 
studies reporting ceRNA effect of individual lncRNAs. Most of these studies are performed in 
cancer cell lines. For example, as of March 2018, there are at least 17 studies reporting ceRNA 
activity of PVT1 [60–76], a moderately abundant lncRNA, that is almost exclusively nuclear 
[77,78], and therefore not expected to effectively bind miRNAs. Strikingly, these studies 
collectively implicate 10 different miRNAs as being “sponged” by PVT1. The experimental 
evidence in such studies is typically limited to over-expression of the competitor (which typically 
pushes its levels way above the physiologically relevant levels), or knockdown followed by 
qRT-PCR of selected targets, which is typically difficult to interpret, as changes in expression 
can result from other, miRNA-unrelated effects [53]. The suggested “gold-standard” for proving 
ceRNA activity has been editing of endogenous miRNA target sites (e.g., using CRISPR/Cas9) 
[53,56] and comprehensive evaluation of the effect on other targets (e.g., by RNA-seq followed 
by Sylamer analysis [79] showing specific de-repression of the miRNA targets), but to the best 
of my knowledge, such experiments have not yet been performed for any ceRNA candidate. 

LncRNAs that degrade miRNAs through extensively complementary binding sites 

One way through which a relatively non-abundant lncRNA can nevertheless regulate the activity 
of typically more abundant miRNAs is through “special” binding sites, that would trigger miRNA 
degradation upon binding [80]. Indeed, the first example of lncRNAs acting on a microRNA was 
the IPS1 lncRNA in plants that binds the phosphate starvation-induced miR-399 through an 
extensively complementary, yet uncleavable binding site [81]. This activity leads to up-regulation 
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of PHO2, which is an endogenous target of miR-399. The same mechanism could be used to 
design inhibitors for other plant miRNAs [81]. 

Although animal miRNAs typically do not act through target cleavage and rarely have extensive 
complementarity with their targets, there is accumulating evidence that such target sites can 
efficiently affect miRNA accumulation in animal cells. In 2010, Phil Zamore and colleagues have 
shown through experiments in flies that binding of miRNAs loaded in Ago1 to targets with 
extensive sequence complementarity triggers tailing of the miRNA with non-templated 
nucleotides (mostly adenines and uridines), miRNA trimming, and eventual miRNA degradation 
[82], a phenomenon referred to as target RNA-directed miRNA degradation, or TDMD. Similar 
results were shown in HeLa cells in vitro [82]. Artificial constructs containing highly 
complementary microRNA binding sites were shown to direct efficient microRNA destruction in 
liver cells and mouse neurons, which was also correlated with tailing and trimming of the 
microRNA [83,84]. 

Recent studies have described endogenous targets that cause strong TDMD through 
extensively complementary sites. The lab of Alena Shkumatava found that a conserved RNA 
region, part of what the libra lncRNA in fish and of the 3' UTR of Nrep protein-coding gene in 
mammals [85], binds and degrades the miR-29b microRNA. This has functional consequences 
in vivo, as animal behavior is altered in zebrafish and mouse mutants where this binding site is 
lost [86]. A preprint from Bartel lab [87] describes similar activity by the highly conserved Cyrano 
(OIP5-AS1) lncRNA, which harbors an extensively complementary binding site for the miR-7 
microRNA [85] (an additional recent study suggested that Cyrano inhibits miR-7 also in mESCs 
[88], but changes in miR-7 abundance were not demonstrated in those cells).  

There appear to be numerous parallels between the TDMD caused by Nrep and Cyrano. Both 
RNAs are quite abundant and predominantly cytoplasmic [86–88] and both contain unusually 
complementary sites - the highly conserved region in Cyrano contains an 8mer pairing to the 5' 
of miR-7 and another 13 bases pairing to its 3’, thus pairing with all bases of miR-7 except 9 and 
10 (Figure 2) [85,87]. Nrep/libra conserved region pairs with 11 bases at the 5' end of miR-29 
and nine bases at the 3' end, thus binding all bases of miR-29b except 12–14 (Figure 2). These 
binding sites lead to very efficient microRNA degradation. Scrambling of the miR-29b binding 
site in Nrep leads to a sharp increase in miR-29b levels in the  cerebellar granule cell layer in 
mice, and ~5-fold increase of miR-29b in in vitro differentiated neuronal progenitors [86]. Loss of 
Cyrano or small changes in the seed of the miR-7 binding site leads to a >40-fold increase in 
mature miR-7 levels in the mouse cerebellum and appreciable increases in other tissues where 
miR-7 is expressed, as well as in cultured neurons from Cyrano-deficient animals [87]. In both 
cases, pri- or pre-miRNA levels are not affected. The activity of Cyrano appears much more 
efficient than other described examples of TDMD when copy numbers are considered, with a 
single molecule of Cyrano accounts for loss of ~17 molecules of miR-7, presumably because of 
other elements in this lncRNA, or because of the specific neuronal context in which it is active 
[87]. In any case, consistently with previous results [83], a target with an extensively 
complementary binding site can cause degradation of multiple miRNA molecules. Cyrano 
activity is associated with tailing and trimming of miR-7, though tailing does not appear to 
contribute to trimming or miR-7 degradation [87]. Nrep is required for miR-29b trimming (no 
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substantial tailing was observed), and it is not clear if this trimming is needed for miR-29b 
degradation [86]. 

Interestingly, the main consequence of Cyrano loss is reduction in the levels of Cdr1as, a 
circular RNA, which as mentioned above harbors a large number of miR-7 sites. We observed a 
similar reduction with transient knockdown of Cyrano using siRNAs in SH-Y5Y cells (Hezroni 
and Ulitsky, unpublished results). The mechanism through which this reduction in Cdr1as occurs 
is still largely unclear, but it appears to involve miR-671 that cleaves Cdr1as [87]. 

TDMD is also used by some viral ncRNAs, including the Herpesvirus saimiri HSUR1 ncRNA and 
the murine cytomegalovirus (MCMV) m169 mRNA both containing binding sites for miR-27 that 
trigger miRNA degradation [89–91]. These degradation processes also trigger trimming and 
tailing of miR-27. Similarly, the human CMV UL144-145 transcript causes degradation of miR-17 
amd miR-20a though an extensively complementary binding site (Figure) [92]. 

The prevalence of TDMD by endogenous mammalian lncRNAs remains unclear, but its likely 
rare, as efficient TDMD requires both seed and extensive 3' complementarity [83,87] which is 
exceedingly rare. The endogenous transcripts shown to cause TDMD indeed both have highly 
highly conserved binding sites, with perfect conservation of at least 8 bases complementary to 
the 3' end of the microRNA and extensive sequence conservation outside of the miRNA binding 
site. Further, TDMD appears to be much more efficient in primary neurons than in other cell 
types [83,87]. Therefore, the vast majority of typical miRNA binding sites in lncRNAs are not 
expected to trigger TDMD. 

Conclusions and Future prospects 
As miRNAs and related small RNAs are already known to act in virtually every biological 
process in mammalian cells, and the spread of lncRNA influence of  is also increasing, it is likely 
that we will also see a dramatic increase in the known interactions between members of these 
two RNA classes. As lncRNAs are in general very similar in their structure and modifications to 
mRNAs, the modes and outcomes of their interactions with small RNAs also resemble those 
already seen with mRNAs, and indeed, none of the examples presented here, be it TDMD or 
cleavage by piRNAs appear to be unique to lncRNAs. As mentioned above, lncRNAs and 
mRNAs differ in their average abundance, stability, and localization, and these properties may 
affect the prevalence of their interactions with small RNAs, but it is important to keep in mind 
that there are thousands of lncRNAs that closely resemble mRNAs in each of those properties. 
Thus, the small-long RNA network, that is just now beginning to be uncovered, is expected to 
remain vibrant and fertile ground for future discoveries, and potentially even therapeutic 
interventions in a wide array of contexts. 
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Figures 

 

Figure 1. Modes of possible interactions between small and long RNAs. 

  



 

 

Figure 2. Base pairing patterns between targets (top) and miRNA (bottom) that result in TDMD. 
The seed pairing is highlighted in bold.  
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