

Structural features within the NORAD long noncoding RNA underlie efficient repression of Pumilio activity

Svetlana Farberov^{1, #}, Omer Ziv^{2,4, #,*}, Jian You Lau^{3, #}, Rotem Ben-Tov Perry¹, Yoav Lubelsky¹, Eric Miska^{2,*},
Grzegorz Kudla^{3,*}, Igor Ulitsky^{1,*}

¹ Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel

² Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK

³ MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK

⁴ Current affiliation: Eleven Therapeutics, Cambridge, UK

- these authors contributed equally

* - corresponding authors: omer.ziv@gmail.com, eam29@cam.ac.uk, gkudla@gmail.com,
igor.ulitsky@weizmann.ac.il

Abstract

14 Long non-coding RNAs (lncRNAs) are increasingly appreciated for their important functions in
15 mammalian cells. However, how their functional capacities are encoded in their sequences and
16 manifested in their structures remains largely unknown. Some lncRNAs bind to and modulate the
17 availability of RNA-binding proteins, but the structural principles that underlie this mode of regulation
18 are unknown. The NORAD lncRNA is a known decoy for Pumilio proteins, which modulate the translation
19 and stability of hundreds of mRNAs, and, consequently, a regulator of genomic stability and aging. We
20 probed the RNA structure and long-range RNA-RNA interactions formed by human NORAD inside cells
21 under different stressful conditions. We discovered a highly modular structure consisting of well-defined
22 domains that contribute independently to NORAD function. Following arsenite stress, most structural
23 domains undergo relaxation and form interactions with other RNAs that are targeted to stress granules.
24 We further revealed a unique structural organization that spatially clusters the multiple Pumilio binding
25 sites along NORAD and consequently contributes to the de-repression of Pumilio targets. We then
26 applied these structural principles to design an effective artificial decoy for the let-7 miRNA. Our work
27 demonstrates how the sequence of a lncRNA spatially clusters its function into separated domains and
28 how structural principles can be employed for the rational design of lncRNAs with desired activities.

29 **Introduction**

30 Mammalian genomes are pervasively transcribed, with tens of thousands of unique loci producing long
31 RNA molecules that do not serve as templates for the production of functional proteins. These RNAs,
32 which are collectively called long non-coding RNAs (lncRNAs)¹, closely resemble mRNAs on the
33 molecular level: they are capped, polyadenylated, and usually spliced. Compared to protein-coding
34 genes (PCGs), lncRNAs as a group are somewhat shorter, expressed at lower levels, and are more tissue-
35 specific². Whereas the catalogs of lncRNAs in mammals are well annotated, their modes of action
36 remain largely obscure. The low abundance and large size of the lncRNA molecules make it difficult to
37 apply the same biochemical approaches used for elucidating the molecular mechanisms of other classes
38 of RNAs.

39 While most of the functionally characterized lncRNAs act in the nucleus, many other lncRNAs
40 accumulate in the cytosol ² and plausibly act in post-transcriptional regulation. Specifically, modulation
41 of the activity of RNA binding proteins (RBPs) or small RNAs by lncRNAs via competition for binding is
42 one of the most commonly suggested modes of action for lncRNAs to date. The molecularly
43 indistinguishable characteristics of mRNAs and lncRNAs make the latter effective decoys in theory.
44 However, there are substantial doubts regarding the feasibility of the direct competition model in light
45 of the low expression of lncRNAs compared to that of RBPs, and the consequently relatively few RBP
46 binding sites offered by any lncRNA gene compared to the sites found throughout the transcriptome ³.
47 Understanding the features that turn lncRNAs into effective decoys is crucial for evaluating how
48 common this mode of action is and for designing synthetic RNAs capable of competing with the activity
49 of specific RBPs.

50 The NORAD lncRNA is one of the most abundant and conserved lncRNAs in mammalian cells ⁴⁻⁶. NORAD
51 presence is required to prevent chromosome instability in HCT 116 cells ^{4,6,7} as well as prevent
52 premature aging in mice ⁸. Additional consequences of loss of NORAD were described in endothelial cells
53 ^{9,10} and in cancer cells ¹¹. NORAD accumulates to hundreds or even thousands of copies per cell, mostly
54 in the cytoplasm ^{4,5,7,12}, although nuclear localization and activity were also reported ⁶. NORAD contains
55 ~20 Pumilio Recognition Elements (PREs), which are binding sites for PUM1/2, two members of the
56 Pumilio family of RBPs. PUM1/2 post-transcriptionally repress gene expression, and modulation of
57 NORAD expression levels results in a corresponding transcriptome-wide change in the abundance of
58 Pumilio targets ^{4,5,8,13}. While the total number of sites offered by NORAD is substantially higher than that
59 offered by any other single gene and is comparable to the total number of PUM1/2 protein molecules in
60 a human cell, it is still small compared to the total number of binding sites offered by all other Pumilio
61 targets combined ¹⁴. The formation of phase-separated NORAD-Pumilio (NP) bodies was recently shown
62 to enable a more efficient competition for Pumilio binding by NORAD ¹³.

63 Little is known about the functionality of the non-PRE regions in NORAD. We recently used a massively
64 parallel RNA assay to determine sequences within NORAD, mostly found near its 5' end, which are
65 sufficient for effective NXF1-dependent export of an intronless RNA ¹⁵, and a recent study has shown
66 that this region binds RBM33 which is required for NORAD export to the cytoplasm ¹⁶. Both the PREs and
67 non-PRE regions within NORAD were recently shown to be required for effective NORAD recruitment
68 into stress granules upon metabolic stress ¹². Additionally, a sequence in the 5' region of NORAD was
69 shown to be associated with RBMX protein and to be required for genome integrity ⁶. We found that the
70 sequence of NORAD contains 12 sequence-similar “NORAD Repeat Units” (NRUs) ^{5,17}. The Mendell lab
71 recently showed that mutating all the PREs in NORAD is sufficient for abolishing its ability to prevent
72 chromosome number instability in HCT116 cells and that a sequence containing only NRUs 7 and 8 is
73 sufficient for this activity ⁷ (NRUs 7+8 correspond to ND4 in the notations used by the Mendell lab).
74 However, the function of the vast majority of the NORAD sequence, much of which is highly conserved
75 among mammals, remains unknown, and it is unclear if and how it contributes to antagonizing Pumilio
76 activity.

77 The structures of several lncRNAs were previously interrogated *in vitro* using synthetic refolded RNA ¹⁸⁻
78 ²⁴. More recently, transcriptome-wide methods provided additional structural data from within cells.

79 These efforts resulted in important structural and functional insights for several lncRNAs²⁵⁻²⁷. Yet, while
80 *in vitro* studies cannot reflect the impact of the cellular environment on lncRNA structure,
81 transcriptome-wide studies typically result in low coverage and resolution per transcript. It is
82 increasingly appreciated that inside cells, the structure of RNA is inherently dynamic²⁷⁻³³. This
83 phenomenon is best described for riboswitches, for mRNAs undergoing splicing, and for the genome of
84 several RNA viruses, where structural plasticity increases the functional capacity of the RNA. However,
85 whether mammalian noncoding RNAs adopt alternative conformations during their life cycle and the
86 functional importance of these conformations remains under-explored.

87 Here we combined *in vivo* structural probing with affinity selection of a single lncRNA, resulting in high-
88 depth and high-resolution maps reflecting the folding of NORAD inside human cells. We reveal that
89 NORAD folds into discrete structural domains and undergoes a structural reorganization in response to
90 certain stress stimuli. NORAD structural domains cluster together the Pumilio binding sites along its
91 sequence and facilitate the ability of NORAD to de-repress Pumilio targets.

92 **Results**

93 **NORAD structure in unperturbed and stress conditions**

94 In order to probe the RNA structure of NORAD within living cells, we applied the COMRADES method
95 with probes targeting NORAD in HCT116 cells³¹. Briefly, base-paired RNA was crosslinked inside living
96 cells using Psoralen-TEG-Azide, after which total RNA was extracted, and NORAD was pulled down using
97 a tiling array of antisense biotinylated probes. Following RNA fragmentation, we employed click
98 chemistry to attach biotin to the crosslinked RNA and pulled it down using streptavidin beads. Half of
99 the resulting RNA - the 'interactions' sample - was proximity ligated, followed by a reversal of the
100 crosslink and sequencing. In the other half - the 'control' sample - the crosslink was first reversed, after
101 which the RNA was proximity-ligated and sequenced.

102 In order to characterize the structural organization of NORAD in different cellular conditions, we used
103 untreated cells, cells treated with doxorubicin (Doxo), a DNA-damaging reagent previously shown to
104 influence NORAD abundance and subcellular localization^{4,6,7}, and Arsenite (Ar), a reagent that leads to
105 metabolic stress and a strong shift in the localization of NORAD to stress granules^{12,34-36}. Analysis of the
106 sequencing data showed that NORAD reads were enriched more than 1,000 fold following pulldown
107 with biotinylated probes. Approximately 4% of all reads were chimeric, and ~1% represented the base
108 pairing of NORAD inside human cells. In contrast, only <0.1% of the reads in the control samples in
109 which reverse crosslinking was performed before the proximity ligation were NORAD:NORAD chimeras,
110 demonstrating a good signal-to-noise ratio. Overall, the study identified 366,184 base pairing events,
111 which enabled us to build high-resolution structural maps of NORAD inside cells.

112 We first examined the overall distribution of RNA-RNA interactions within NORAD. Replicates of
113 untreated cells were highly reproducible, similar to those of Doxo-treated cells, and less similar to those
114 in Ar-treated cells (Fig. 1A). Visual examination of the 2D interaction map revealed clusters of
115 intramolecular interactions at the 5' and 3' ends of NORAD, with more focal long-distance interactions
116 within the middle part of NORAD which harbors the Pumilio Recognition Elements (PREs). These clusters

117 of intramolecular interactions were not present in control data obtained from cells where crosslinked
118 reversal preceded the proximity ligation (Extended Data Fig. 1A). Furthermore, some of the interactions
119 coincided with the PRE regions (as discussed in detail below).

120 We next sought to test whether NORAD folds into distinctive structural domains. We applied the
121 TopDom algorithm, originally developed for partitioning genomes into topological domains using
122 chromatin conformation capture datasets³⁷. We identified topological domains within NORAD that were
123 highly concordant between replicates and similar between the untreated and the Doxo-treated cells
124 (Fig. 1B-C). In contrast, Ar treatment led to a substantial reduction of contacts between most NORAD
125 regions, with a notable exception of the 5' region (Fig. 1D). Taken together, NORAD folds into distinctive
126 spatial domains within cells and undergoes global unfolding throughout most of its sequence in
127 response to arsenite stress.

128 **Dynamic changes in NORAD structure upon arsenite treatment**

129 Analysis of chimeric reads revealed a marked reduction of intra-NORAD interactions following arsenite
130 treatment, with a notable exception of the 5' region, where a substantial number of interactions
131 remained in Ar-treated cells (Fig. 2A). In order to formally test the changes in intra-NORAD interactions
132 upon metabolic stress, we used DESeq2³⁸ to compare the number of chimeras in windows of 10 nt
133 along NORAD. This analysis showed a significant reduction in contacts throughout NORAD, except the 5'
134 domain, which was most pronounced within individual NRUs (Fig. 2B). Importantly, no such changes
135 were observed in ribosomal RNAs (Extended Data Fig. 1B). Inspection of the regions with the largest
136 changes showed limited changes in the local structures (Fig. 2C-D), but rather an overall reduction in
137 interaction frequency in Ar-treated cells, suggesting the structure of the central and 3' part of NORAD
138 becomes globally unfolded upon Ar treatment, rather than adopting a particular alternative fold.

139 **Spatial clustering of NORAD PREs**

140 We next combined all the RNA-RNA interactions together and examined the boundaries of the structural
141 domains identified by TopDom and the numbers of inter- and intra-molecular interactions in the context
142 of the 12 NRUs, the 5' region preceding them, and the 3' region (Fig. 3A). In the following analysis, we
143 focused on eight canonical “PRE clusters” found in alignable positions in the 5' part of eight of the NRUs,
144 with each cluster containing one or two PREs. These corresponded to the most prominent peaks in the
145 PUM1 CLIP data from HCT116 cells⁶ (Fig. 3A). These clusters correspond to 11 of the 15 PREs annotated
146 in⁸. Four other PREs annotated in that study are in the 3' parts of NRUs 2, 4, 6, and 8, and have weaker
147 PUM binding in both the CLIP data in that study and in ENCODE data (only the additional PREs in NRUs 4
148 and 6 show evidence of endogenous PUM binding, Fig. 3D), and we refer to these as “supplementary”
149 PRE clusters “2s”, “4s”, and “6s”. Domains typically contained several NRUs, with two domains
150 corresponding to the 5' region upstream of the 12 NRUs and two containing the 3' region downstream
151 of them. Interestingly, regions surrounding the PRE clusters had an overall lower tendency to form
152 interactions with other RNA molecules (Fig. 3B), which was evident for four of the eight PRE clusters in
153 no-treatment and Doxo-treated cells and for all the PREs in arsenite-treated cells (Extended Data Fig.
154 2A). Upon Arsenite treatment, there was a strong reduction in the normalized number of chimeric reads
155 corresponding to intramolecular NORAD interactions and NORAD interactions with other RNA
156 molecules. This reduction was much less pronounced in the two 5' domains that are overall much more

157 G/C-rich than the rest of the NORAD sequence (Fig. 3C). Interestingly, the first 1/8 of the NORAD
158 sequence, which was substantially less affected by Arsenite treatment, is also the part that is least
159 capable of recruiting a reporter RNA to stress granules upon arsenite treatment ¹².

160 When examining the predicted structures with the strongest experimental support (Fig. 4 and Extended
161 Data Fig. 3-4), we noted that PRE clusters appeared to be in close spatial proximity to other PRE clusters,
162 which was also evident when examining the distribution of chimeras formed by each PRE cluster, an
163 analysis which does not rely on any explicit structure prediction (Extended Data Fig. 2B). In order to
164 formally test whether spatial clustering of PREs takes place, we analyzed the number of chimeric reads
165 connecting regions \pm 50 nt around the PRE clusters and compared them to random equidistant positions
166 within NORAD. For 8 of the 10 PRE-containing regions, the number of chimeric reads with at least one
167 other region was significantly ($P < 0.05$, adjusted for the number of PRE cluster pairs) larger than
168 expected by chance in all experimental conditions (Table S2, Fig. 3E and Extended Data Fig. 3B). To
169 validate spatial clustering of regions harboring distal PREs, we used a RNA-proximity ligation assay (RNA-
170 PLA ^{39,40}) with probes targeting different regions within NORAD, using a pair of probes separated by <50
171 nt as a positive control, as suggested ³⁹ (Fig. 3F). We found a significant co-localization of the regions
172 harboring PREs 1 and 10, separated by \sim 2,700 nt in the linear NORAD sequence, and to a lesser extent,
173 between PREs 2 and 8, when compared to a negative control region not predicted to interact, between
174 PRE 10 and 3' end of NORAD (Fig. 3F). Notably, the interaction between the 2s and 5 PREs could was not
175 evident in the RNA-PLA, possible because it occurs more rarely, and so might not be evident in the
176 relatively few cells profiled by RNA-PLA. The overall structure of NORAD thus positions PREs in close
177 spatial proximity to each other in a manner that may facilitate the formation of NORAD-Pumilio bodies
178 ¹³ (see Discussion).

179 **NORAD modular structure contributes to Pumilio antagonism**

180 In order to study the contribution of different sequences within NORAD to its ability to inhibit Pumilio
181 activity, we generated a reporter that contains 8 PRE elements within the 3' UTR of Renilla luciferase
182 (8XPRE). Firefly luciferase, used as a control, was expressed from the same vector under a different
183 promoter. Expression was compared to that of a reporter where all the canonical PRE UGUAUAUA sites
184 were mutated to ACAAUUAUA, expected to abolish Pumilio binding (8XmPRE) (Extended Data Fig. 5A),
185 The mPRE control was designed based on a previously described Pumilio reporter ⁴¹. We have previously
186 used a similar reporter containing 3 PRE elements and showed it to be sensitive to knockdown or
187 repression of PUM1/2 in U2OS cells ⁵, introducing the reporters into cells over-expressing different
188 NORAD variants is an effective and quantitative way to study the efficiency of NORAD sequences in
189 inhibiting Pumilio activity. The 8XPRE reporter was de-repressed by \sim 4-fold after the combined
190 knockdown of PUM1 and PUM2, allowing for a substantial dynamic range for measurements of Pumilio
191 repression activity (Fig. 5A-B).

192 We first compared constructs where we removed the 5' region (bases 1–573, Δ 5' in Fig. 5A), a 3' region
193 (bases 4682–5343, Δ 3' in Fig. 5A), or the middle part of NORAD (bases 604–4774, Δ NRU in Fig. 5A) which
194 contains all the PRE clusters. Expression of the WT full-length NORAD resulted in \sim 2.5-fold de-repression
195 of the 8XPRE reporter compared to 8XmPRE (Fig. 5B). As expected, removal of the middle part of
196 NORAD completely abrogated the de-repression (Fig. 5B). Removal of the 5' region also had a significant

197 effect, whereas removal of the 3' region led to a significantly stronger de-repression than that caused by
198 the full-length NORAD (Fig. 5B). The combined removal of the 5' and 3' modules ($\Delta 5'+3'$) led to an effect
199 similar to the removal of the 5' end (Fig. 5B). Notably, removal of the middle part of NORAD increased
200 expression of NORAD, whereas removal of the other parts did not substantially affect expression (Fig.
201 5C). We also examined the subcellular localization of the different variants by fractionation of HCT116
202 *NORAD*^{-/-} cells expressing different variants followed by qRT-PCR. As expected, we found that NORAD
203 lacking the 5' domain was more nuclear, whereas removal of the middle region containing the NRUs led
204 to increase cytoplasmic expression, presumably due to lack of Pumilio-mediated repression (Extended
205 Data Fig. 5B).

206 We next tested if a shortened version of the middle part, containing only a subset of the NRUs, is
207 sufficient for de-repression (Fig. 5D). Indeed, a combination of the 5' and 3' regions with just one of NRUs
208 6 or 7 had a limited effect on 8XPRE levels (Fig. 5D-E). In contrast, the combination of NRUs 7+8 with
209 only 5' module ('mini-NORAD7/8') was sufficient for potent ~2-fold de-repression of the reporter (Fig.
210 5D-E), despite having only 1,443 nt of the 5.3 kb in the full NORAD sequence. Notably mini-NORAD7/8
211 was expressed ~6-fold higher than the full-length NORAD transcript (Fig. 5D). Similarly, a combination of
212 NRUs 3+4 could potently de-repress the 8XPRE reporter (mini-NORAD3/4, Extended Data Fig. 6A). As
213 expected, mini-NORAD7/8 activity was abolished when the three PREs in repeats 7 and 8 were mutated
214 (Fig. 5F-G). Addition of the 3' module of NORAD to the mini-NORAD7/8 reduced its expression,
215 consistent with the increased expression of the $\Delta 3'$ NORAD, but did not substantially affect its ability to
216 de-repress the Pumilio reporter (Extended Data Fig. 6B).

217 **A structured region between the PREs in repeats 7 and 8**

218 We were next interested in the contribution of the extensively paired regions revealed by COMRADES.
219 The region showing the most extensive intra-molecular pairing within NORAD falls between the PRE
220 clusters in NRUs 7 and 8 (Fig. 1 and Fig. 2), and the predicted fold of the part of NORAD included in mini-
221 NORAD7/8, based on thermodynamics and COMRADES data, suggests that the paired region brings PRE
222 clusters from NRUs 7 and 8 to be in close spatial proximity to each other (Fig. 6A). This paired region is
223 much more conserved in evolution than the 'disordered' region between the two paired strands, and
224 the predicted structure is supported by low reactivity in DMS-MaPseq data in HEK 293 cell lines (Fig. 6A-
225 B, data from ⁴²). We note that this region is only disordered relatively to the adjacent long paired region.

226 We first used DMS-MaP-seq to probe the structure of this region in the endogenous *NORAD* in WT
227 HCT116 cells and in exogenous *NORAD* variants in HCT116 *NORAD*^{-/-} cells, where we could distinguish
228 between the endogenous and the exogenous transcripts. As expected, we found higher accessibility of A
229 and C bases in unpaired regions of the predicted structure (Fig. 6C and Extended Data Fig. 5C and Table
230 S3). Replicates of mini-NORAD7/8 transfection experiments were highly similar (Spearman's R=0.96, Fig.
231 6D). Folding was similar between the endogenous NORAD and the OE full-length NORAD or mini-
232 NORAD7/8 (Spearman's R=0.49 and R=0.64, respectively, Fig. 6D).

233 We next examined the functional contribution of the inter-PRE region in the context of mini-NORAD7/8.
234 Removal of the whole region ('paired+disordered') substantially diminished Pumilio de-repression (Fig.
235 6E), as did independent removal of just the paired region. In contrast, the removal of the 'disordered'
236 part had a limited and insignificant effect (Fig. 6E), and as expected had a limited effect on the folding of

237 the region (Spearman's R=0.96 between mini-NORAD7/8 and mini-NORAD7/8Δdisordered, Fig. 6D). Similar
238 results were obtained in the context of the mini-NORAD3/4, where removal of the paired region
239 reduced the ability to de-repress the luciferase reporter (Extended Data Fig. 6A). We next wondered
240 whether the structure of this region is sufficient for its function. We used RNAinverse ⁴³ to design two
241 RNA sequences with the same predicted fold as the structured region but a different sequence and
242 replaced the structure within the context of mini-NORAD7/8. Interestingly, this recoded sequence had a
243 significantly impaired ability to de-repress the reporter (Fig. 6E left), despite similar folding for
244 alternative sequence 1 (R=0.58), and to a lesser extent alternative sequence2 (R=0.32), suggesting that
245 both the structure and the sequence in this region contribute to NORAD function. The changes also
246 affected NORAD expression, and removal of the paired region in particular significantly impaired mini-
247 NORAD expression, as evident when comparing also to the Neomycin resistance gene expressed from
248 the same plasmid (Fig. 6F). We experimented with changing the amount of transfected plasmid, yet the
249 'Δpaired' variants were consistently expressed at lower levels, and so we could not attain comparable
250 expression levels between the different constructs (Extended Data Fig. 6C). Therefore, we conclude that
251 the paired region may assist to stabilize NORAD while bound to Pumilio or may act through another
252 mechanism. Interestingly, when the 7/8 hairpin region was deleted in the context of the full NORAD, it
253 did not affect its ability to de-repress the Pumilio reporter (Extended Data Fig. 6D), which was likely
254 facilitated by the maintained interactions between the other PRE elements (Fig. 3).

255 **NORAD elements can be co-opted to inhibit other repressors**

256 In order to test if the design principles of NORAD RNA can be utilized to inhibit other RNA binding
257 proteins, we generated a synthetic RNA, mini-NORAD-let7, based on the Δdisordered version of mini-
258 NORAD7/8, in which the three PREs were replaced with three CUACCUCA miRNA response elements
259 (MREs) for let-7 a microRNA that is abundant in U2OS cells ⁴⁴ (Fig. 6G) and known to be functional in
260 these cells ⁴⁵. We profiled the strength of the let-7 repression using a previously described reporter
261 based on the HMGA2 3'UTR harboring seven let-7 binding sites and a mutated 3'UTR as a control ^{46,47}.
262 Transfection of mini-NORAD-let7 into cells led to a significant de-repression of the reporter (Fig. 6H).
263 The de-repression was twice stronger when using a vector with the structured element than for one
264 without (Fig. 6H), despite the fact that they were expressed at the same levels (Fig. 6I). This de-
265 repression was comparable to that obtained using a "sponge" vector for GFP (Fig. 6H), which carries six
266 extensively complementary let-7 binding sites (alternating AACUAUACAAGGACUACCUCA and
267 AACUAUACAAUGACUACCUCA, Addgene #29766). Replacing the paired region with one of the the
268 alternative sequences described above, predicted to have a similar fold as the inter-PRE region,
269 significantly reduced de-repression (Fig. 6H-I), consistently with the results in mini-NORAD7/8. These
270 experiments show that the structured elements that support NORAD-mediated repression of Pumilio
271 activity can be utilized to design efficient repressors for other RBPs.

272

273 **Intermolecular interactions between NORAD and other RNAs**

274 We next focused on RNA-RNA interactions between NORAD and other RNAs. We identified chimeric
275 reads linking NORAD with other RNAs and used DESeq2³⁸ to evaluate the significance of the enrichment
276 in COMRADES samples compared to the controls in which the psoralen crosslinking was reversed before
277 the proximity ligation (Table S4). Among non-coding RNAs, only U1 snRNA had a significant and
278 reproducible enrichment of interactions with NORAD, most of which were localized in three regions and
279 largely unaffected by the Ar treatment (Extended Data Fig. 7). Interactions with mRNAs appeared in
280 other regions and were spread throughout the NORAD locus with a notable peak between NRUs 2 and 3
281 and in the ‘disordered’ region between NRUs 7 and 8, and their pattern was also largely unaffected by
282 Ar treatment (Extended Data Fig. 7).

283 When grouping the chimeric reads by the interacting protein-coding gene, there were 32, 18, and 9
284 RNAs with a number of chimeras higher in the crosslinked cells compared to their controls in untreated,
285 Ar-treated, and Doxo-treated cells, respectively (fold-enrichment >1.25 and P<0.05, Table S4). Five RNAs
286 were shared between untreated and Ar-treated cells. These transcripts were neither significantly
287 enriched for PREs in their 3'UTRs nor significantly affected by NORAD depletion in HCT116 cells,
288 suggesting that NORAD does not show preferential basepairing with other Pumilio targets (Fig. 7A-B).
289 However, transcripts enriched in each of the conditions were significantly more likely to be enriched in
290 stress granules compared to other genes, with the most significant enrichment observed for transcripts
291 interacting with NORAD in Ar-treated cells (Fig. 7C). Notably, there was no substantial difference in the
292 regions of NORAD enriched with chimeric reads with the 2,462 genes enriched in stress granules (Fold-
293 change >2, P<0.05) vs. regions chimeric with segments other genes (Extended Data Fig. 7), suggesting
294 that there is no particular region in NORAD that preferentially interacts with stress-granule-localized
295 RNAs.

296 As the stress-granule transcriptome was reported to preferentially include genes with specific
297 characteristics, we analyzed the length and the G/C content of the mRNAs enriched in NORAD
298 interactions and found that they had longer coding sequences (CDS), in particular when considering the
299 enrichments in the Ar conditions, and higher G/C content throughout the RNA (Fig. 7D-E). A longer CDS
300 (but not UTRs) has been previously associated with stress-granule enrichment³⁴. We then wondered if
301 the differences in G/C content might reflect a general tendency for COMRADES to recover interactions
302 of G/C-rich RNAs. To test this, we considered all the chimeric NORAD-NORAD and NORAD-mRNA reads,
303 divided them into the fragments that mapped to NORAD and those that mapped to the mRNA, and
304 computed the respective G/C content of each fragment (Fig. 7F). The G/C content of the mRNA
305 fragments was similar between NORAD-mRNA hybrids and mRNA-mRNA hybrids in an un-enriched
306 HCT116 COMRADES dataset, and matched the average mRNA G/C content, arguing against a strong bias
307 in COMRADES data. Interestingly, within NORAD, in the NT samples, chimeric reads mapping to different
308 NORAD parts were significantly less G/C rich than those mapping to NORAD and mRNAs and below the
309 average G/C content of the NORAD sequence. In Ar-treated cells, NORAD-NORAD chimeras were more
310 G/C-rich, fitting the increase in interactions in the G/C-rich 5' module and the decline in interactions in
311 the more A/U-rich central part (Fig. 4).

312 Intramolecular RNA-RNA interactions of NORAD, enriched in the proximity to the A/U-rich PREs and the
313 A/U-rich SAM68 binding sites we described previously¹⁷, are thus preferentially formed between more
314 A/U-rich regions of NORAD, whereas the intermolecular interactions, presumably mostly occurring at
315 the “outer surface” of the folded NORAD in the cell, are more G/C-rich, less sensitive to Ar stress, and
316 preferentially connect NORAD with long, G/C-rich RNAs that travel to the stress granules upon Ar
317 treatment.

318 Discussion

319 Our structural analysis indicates that the structure of NORAD is modular, with separate 5' and 3'
320 modules and a middle region containing the NRUs, each folded into separate modules (structural
321 domains) (Fig. 7G). Furthermore, long-range interactions within the central region help position the PREs
322 in the NRUs in a closer spatial proximity to each other than expected by chance, with a particularly
323 strong interaction formed by an extensively paired region between the PREs in NRUs 7 and 8. We used
324 these findings to design a ‘mini-NORAD’ gene that can potently de-repress a Pumilio reporter and is thus
325 instrumental for future studies of the ability of NORAD to repress Pumilio activity.

326 We suggest that the different modules within NORAD contribute to different aspects of its function. The
327 two 5' modules are substantially more G/C-rich and rapidly evolving than the rest of the NORAD
328 sequence (Fig. 3) and do not contain prominent PREs. The 5' modules contain the region that binds
329 RBM33 and facilitates NORAD export from the nucleus¹⁶, the sequences that were previously shown to
330 be sufficient for an NXF1-dependent export of a single-exon RNA from the nucleus¹⁵, as well as a region
331 showing extensive interactions with the RBMX protein⁶. This region was also shown to be the least
332 effective in recruiting a reporter RNA to stress granules upon Arsenite treatment¹², and we see its
333 structure is least affected by Arsenite treatment (Fig. 1). We find that this region is important for the
334 ability of NORAD to inhibit Pumilio repression, and suggest that it likely does so through ensuring
335 efficient export of NORAD to the cytoplasm and/or its stability there, while potentially being responsible
336 for additional functions in the nucleus through its interaction with RBMX.

337 The functions of the 3' part of NORAD remain enigmatic. In our experimental setup, we find that it limits
338 the ability of NORAD to inhibit Pumilio function, potentially by limiting its expression. One potential
339 reason could be that without this region, the PREs in NORAD become physically closer to its poly(A) tail,
340 a feature associated with more efficient repression by Pumilio proteins⁴⁸. It is possible that one function
341 of the 3' module is thus to provide a “buffer” between the PREs in the NRUs and the poly(A) tail and
342 thus limit the ability of the NORAD PREs to induce its degradation. It is also possible that this region,
343 which contains many bases conserved in evolution, also serves additional, Pumilio-unrelated, functions.

344 It was recently shown that NORAD nucleates the formation of phase-separated PUM condensates,
345 termed NORAD-PUM (NP) bodies¹³. Our results complement this model, as they suggest the structure of
346 NORAD helps position some of the PREs in close spatial proximity to each other in a manner that likely
347 increases NP body formation efficiency. For instance, it was demonstrated that four but not two PREs
348 are sufficient for NP formation, but only in a specific context, as mRNA 3' UTRs with multiple PREs did
349 not efficiently promote NP body formation¹³. mini-NORAD7/8 contains three spatially co-located PREs
350 and additional U/A-rich sequences that can potentially also bind Pumilio proteins or proteins that can
351 interact with the Pumilio proteins, such as SAM68¹⁷. Single NRUs 7 or 8, with just one or two PREs, do

352 not appear to be sufficient for potent Pumilio de-repression that requires both PRE clusters, as well as
353 the paired structured regions connecting them. The structured regions connecting NORAD PREs thus
354 likely mediate its efficient ability to form NP bodies that are absent in Pumilio-bound multi-PRE 3' UTRs.
355 Further, NP-bodies were shown to increase in size upon DNA damage induction, and interestingly, we
356 find that the number of significant PRE-PRE interactions becomes higher upon Doxorubicin treatment
357 (Fig. 3).

358 We report that Ar treatment, which leads to a prominent shift of NORAD localization to stress granules
359 ^{12,34,36}, also results in a structural rearrangement within NORAD, which includes a major reduction in
360 intra-molecular contacts within most of NORAD sequence, with a notable exception of the 5' module,
361 and, to a lesser extent, a reduction in inter-molecular contacts with other RNAs. We cannot exclude the
362 possibility that the stress granule environment is less accessible for the psoralen probing reagent we
363 use, which may underlie some of these changes. Interestingly, Ar treatment overall did not affect the
364 clustering of the PREs within NORAD, which remained significant (Fig. 3B), and correspondingly, NORAD
365 over-expression prior to Ar treatment de-repressed the Pumilio reporter as efficiently as in untreated
366 cells (Extended Data Fig. 6E). The changes in NORAD structure upon Ar treatment thus do not appear to
367 impact the ability of NORAD to inhibit Pumilio but may have other unrelated, stress-granule-related
368 functions. Notably, we did not observe any large-scale changes in the numbers or morphology of stress
369 granules in NORAD-depleted Ar-treated cells.

370 One limitation of our study is that whereas we characterized NORAD structure in cells where it is
371 expressed endogenously at physiological levels, for the luciferase reporter assays, we use an over-
372 expression setting in WT cells, in which NORAD levels are higher than in the physiological setting. The
373 advantage of this approach is that in U2OS cells, it allows us a large dynamic range of up to ~4-fold de-
374 repression of our sensitive 8XPRE reporter, which is better than what was observed in WT or NORAD^{-/-}
375 HCT116 cells upon NORAD expression (¹⁷ and Extended Data Fig. 6F). Our experimental model thus
376 allows us to effectively measure differences between the different NORAD variants. Notably, several
377 features that we observed in this setting closely match those observed in a stable expression system,
378 such as the requirement of the canonical PREs for NORAD function and the observation that NRUs 7 and
379 8 are sufficient for suppressing the chromosomal instability resulting from NORAD loss ⁷.

380 A recent study has characterized the folding of the NORAD in vitro by the nextPARS approach, which
381 allows measurements of reactivities of individual bases that can be used to inform structure predictions
382 ⁴⁹. This structure is concordant with our finding that NRUs mostly fold independently, with occasional
383 inter-NRU interactions, in particular between NRUs 1–10. When we originally characterized the 12 NRUs
384 and the similarities between them, we noted that several conserved elements, including a small and a
385 larger hairpin, are peculiarly found in some NRUs and not others ⁵. The nextPARS probing data analysis
386 has suggested that, in fact some of the NRUs that do not contain these elements do fold into similar
387 structures some of the time ⁴⁹. Specific proteins that recognize and bind these elements have remained
388 elusive so far. Based on our findings here, a sensible hypothesis is that these small structured elements
389 mainly function in the context of the broader ‘task’ of the overall NORAD structure to spatially position
390 the PREs at favorable distances and orientations relative to one another. This can explain the tolerance

391 of NRUs in evolution, where individual NRUs lost some of the elements that were presumably present in
392 the ancestral NRU prior to its duplication.

393

394 **Acknowledgements**

395 We thank Noam Stern-Ginossar and Schraga Schwarz and members of the Ulitsky lab for comments on
396 the manuscript. This research was supported by the ERC Consolidator Grant InCIMPACT to IU; G.K. and
397 J.Y.L were supported by UK Medical Research Council (MRC) University Unit programme
398 MC_UU_00035/8 and Wellcome Trust fellowship 207507. The funders had no role in study design, data
399 collection and analysis, decision to publish or preparation of the manuscript. We thank the Joshua
400 Mendell lab for the NORAD^{-/-} HCT116 cell line.

401 **Author contributions**

402 S.F., O.Z., E.M., G.K., and I.U. conceived the study. O.Z. and E.M. developed the COMRADES method and
403 applied it to NORAD. J.Y.L and G.K. analyzed COMRADES data. R.B-T.P performed Puro-PLA experiments.
404 Y.L. performed subcellular fractionations. S.F. performed all other experiments and analyzed their
405 results. E.M., G.K., and I.U. supervised the study. I.U. wrote the manuscript with contributions from all
406 authors. The names of S.F. and O.Z. are listed lexicographically.

407

408 **Competing interests**

409 The authors declare no competing interests.

410 **Figure Legends**

411 **Figure 1. Structural organization of NORAD.** (A) Pearson correlations between replicate COMRADES
412 experiments in HCT116 cells without treatment (NT_1-3) and treated with doxorubicin (Doxo_1-2) or
413 arsenite (Ar_1-3). Correlations were calculated using counts of NORAD:NORAD chimeras in 100x100-nt
414 windows. (B-D) Domain organization of NORAD without treatment (B), and with Doxo (C) or Ar
415 treatment (D). Interaction maps are shown for experiments NT_1 (B), Doxo_1 (C), and Ar_1 (D). The
416 blocks under the heatmaps show the division of NORAD into domains. Domains were called with the
417 program TopDom³⁷ using interaction counts summed across all replicate experiments and a 30-nt
418 window size. The domain analysis was also performed for individual replicates and the results are shown
419 in **Table S1**. The twelve NRUs are shown on the top and right sides of each heatmap. Canonical PREs
420 found in corresponding positions in the NRUs are marked by vertical lines, with the main PRE clusters in
421 green and four additional PREs in cyan.

422 **Figure 2. Comparison of NORAD:NORAD interactions between NT, Ar, and Doxo treated cells HCT116**
423 **cells.** (A) Counts of reads summed across all replicates of the indicated COMRADES experiments. The top
424 set of bars shows total counts of non-identical reads; the other sets of bars show counts of non-identical
425 chimeric reads. 5'NORAD-5'NORAD (<=1000nt), chimeras in which both arms are contained within the

426 first 1000 nt of NORAD; NORAD-NORAD (>1000nt), chimeras in which both arms are downstream of the
427 first 1000 nt; NORAD-Other, chimeras between NORAD and another RNA; Other-Other, chimeras
428 between two non-NORAD RNAs, including 18S and 28S rRNAs. **(B)** Differential contact density map with
429 interactions enriched in untreated cells (blue) and interactions enriched in arsenite-treated cells (red).
430 The statistical significance of enrichment in either condition was calculated using DESeq2 in 10-nt
431 windows, corrected for multiple testing. **(C-D)** Example structural changes within NORAD following
432 arsenite treatment. The structures were calculated using the COMRADES pipeline
433 (<https://github.com/gkudla/comrades>) based on combined experimental data from each treatment.
434 Colours of bases represent counts of chimeric reads supporting each base pair. Insets indicate
435 interaction densities within the corresponding region.

436 **Figure 3. Distribution of intra- and inter-molecular RNA interactions along the NORAD sequence. (A)**
437 NORAD locus, domains identified when considering all the chimeric reads, and NRUs from ⁵ are
438 demarcated. Canonical PREs found in corresponding positions in the NRUs are marked by vertical lines,
439 with the main PRE clusters in green and four additional PREs (designated as "s" for "supplemental") in
440 cyan. **(B)** A normalized number of intra-NORAD and NORAD-other chimeric reads is shown separately for
441 each biological replicate with the indicated color code. **(C)** G/C content and PhyloP scores from the 100-
442 way whole-genome alignment from the UCSC browser were computed for windows of 20 bases. **(D)** CLIP
443 data coverage at the bottom for PUM1 and RBMX is from ⁶, and the region with RBM33 CLIP reads is
444 from ¹⁶. **(E)** NORAD arc diagram connecting pairwise combinations of PRE clusters. Colors are based on -
445 log₁₀ of Bonferroni adjusted p-values computed using one-sided t-test. Colored arcs signify a significantly
446 higher number of chimeric reads in PRE-PRE cluster pairs than permuted positions in NORAD. (Arc
447 diagram made using the "R4RNA" R package ⁵⁰. **(F)** RNA-proximity ligation assay. Left: representative
448 images of U2OS cells hybridized with pairs of probes targeting the indicated regions (probe coordinates
449 are listed at the bottom left corner). Imaging was done using 100X oil-immersion objectives (Scale bar
450 20 μ m). Right: Quantification of the mean number of dots per cell in different fields. Results are
451 presented as means \pm SEM. The number of cells in each case is shown. P-values computed using two-
452 sided Student's t-test.

453 **Figure 4. Predicted structures of NORAD domains in untreated cells (NT).** Predicted structures of
454 separately folded NORAD regions 1-760 (A), 761-2050 (B), 2051-2630 (C), 2631-3400 (D), 3401-4150 (E),
455 and 4151-5339 (F). Bases are colored based on log₂ of the number of reads normalized to chimeric reads
456 per million mapped reads. The eight clusters of PREs are shaded and numbered as in Figure 2.

457 **Figure 5. Modular contribution of NORAD sequences to de-repression of a Pumilio sensor. (A)**
458 Schematic representation of the different NORAD region combinations used for pcDNA3.1-based over-
459 expression in U2OS cells in conjunction with luciferase assays based on 8XPRE and 8XmPRE reporters.
460 **(B)** Normalized luciferase levels in cells co-transfected with 25nM of specific PUM1, PUM2 siRNAs with
461 PRE-reporter (first column) or over-expressing the sequences presented in A. The data are shown as the
462 percentage change from control, where control is designated 100% (scrambled RNA or empty plasmid -
463 red line). n=5–12 independent experiments. P-values for siPUM1+2 and NORAD are for comparison to
464 control cells, two-sided t-test. Other P-values are for the indicated comparisons, two-sided t-test. **(C)**
465 Expression of NORAD variants and of neomycin (Neo) resistance gene expressed from the same plasmid

466 as measured by qRT-PCR. Data are presented relative to the transfection of the plasmid encoding the
467 full-length NORAD and normalized to GAPDH expression levels. n=4–9 independent experiments. **(D–E)**
468 As in B–C for a distinct set of experiments where full-length NORAD or the indicated mini-NORAD
469 versions (D) or mutants (E) were transfected. n=4–6 independent experiments. **(F–G)** As in B–C for a
470 distinct set of experiments where the indicated mini-NORAD versions (F) or mutants (G) were
471 transfected. n=5–8 independent experiments. Results are presented as means \pm SEM.

472 **Figure 6. A structured region between PRE clusters 7 and 8 is important for Pumilio de-repression. (A)**
473 Schematic representation of the predicted fold between PRE clusters 7 and 8, color-coded as in **Fig. 3**.
474 **(B)** Structured regions predicted by EvoFold ⁵¹, DMS-MaPseq reactivity scores ⁴² taken from the RASP
475 database ⁵² and PhyloP scores ⁵³ computed based on 241-way multiple sequence alignment, taken from
476 the UCSC genome browser hg38 assembly. **(C)** Mutation frequencies at positions with A or C reference
477 bases and sufficient coverage for the bases predicted to be paired or unpaired in the COMRADES-based
478 secondary structure, in the sequence in A, when probed in the indicated sequences either in WT HCT116
479 cells (Control and Endogenous) or NORAD^{–/–} cells (mini-NORAD7/8, Δdisordered, Full NORAD). P-values
480 computed using two-sided Wilcoxon rank-sum test. **(D)** Correlation coefficients between the mutation
481 profiles for A/C positions in the region in A for the indicated sequences. **(E)** Normalized luciferase levels
482 in U2OS cells over-expressing mini-NORAD7/8 variants, where the regions indicated in A are deleted or
483 where two alternative sequences with the same predicted fold (alt. sequence 1 and 2) were used. The
484 data are shown as the percentage change from control, where control is designated 100% (empty
485 plasmid - red line). Results are presented as means \pm SEM based on at least three independent
486 experiments. Asterisks indicate significant differences from overexpression of mini-NORAD7/8 plasmid;
487 P-values computed using two-sided t-test comparing to 'mini-NORAD7/8'. n=3–11 independent
488 experiments. **(F)** Expression of NORAD variants and of neomycin (Neo) resistance gene expressed from
489 the same plasmid as measured by qRT-PCR. Data are presented relative to the transfection of the
490 plasmid encoding the full-length NORAD and normalized to GAPDH expression levels. n=5–12
491 independent experiments, error bars are \pm SEM. **(G)** Schematic view of the mini-NORAD-let7 region
492 where the PRE elements were replaced with let-7 MREs. **(H)** as in E, using HMGA2-based let-7 luciferase
493 reporter vectors in U2OS cells over-expressing the indicated variants of mini-NORAD7/8-let7, a control
494 pcDNA vector, and a let-7 sponge with 6 bulged let-7 sites. n=4–12 independent experiments. P-values
495 computed using two-sided t-test comparing to 'mini-NORAD-let7'. **(I)** As in F, for the indicated
496 sequences, n=3–4 independent experiments, error bars are \pm SEM.

497 **Figure 7. RNA-RNA interactions between NORAD and mRNAs. (A)** The average number of PREs (defined
498 as UGUANAUUA) in the 3' UTRs of mRNAs enriched in chimeric reads with NORAD in the indicated
499 condition and all other mRNAs. T-test P-values comparing the enriched and the other genes are shown
500 above each condition. **(B)** Changes in gene expression at 96 hr after CRISPRi-mediated KD of NORAD in
501 HCT116 cells (data from ⁶) for genes enriched in interactions (n=18) with NORAD in NT conditions and all
502 other genes with sufficient data (n=1,380). **(C)** As in B for enrichment in the stress granule
503 transcriptome, using data from ³⁴. n=18;1,507;18;2,380;9;2021. **(D)** As in B for the length of the indicated
504 mRNA part, for genes enriched in the NT (left) or Ar (right) condition. n=18;1,507;18;2,380;9;2021. **(E)**
505 As in D for the G/C content of the indicated mRNA part (n=19 and n=16 and the enriched mRNAs and
506 n=1,394 and 3,188 for the others). **(F)** G/C content of the part of the read mapped to NORAD or to the

507 mRNAs. Each data point corresponds to a UMI in the sequencing data, and three biological replicates are
508 shown separately in each comparison. Horizontal lines indicate the average G/C content in mRNAs
509 (weighted averages of the 5'UTRs, CDS, and 3'UTRs) and the average G/C content of the NORAD
510 sequence. Comparisons done using Wilcoxon rank-sum test. In **B-F** boxplots, the central box shows the
511 interquartile range, and the whiskers extend from the box to the furthest data point within 1.5× the
512 interquartile range and Wilcoxon rank-sum two-sided test P-values comparing the enriched and the
513 other genes are shown above. **G.** Outline of the three major parts of NORAD sequence as revealed by
514 COMRADES analysis. The upper part shows interactions between NORAD regions in untreated cells and
515 it is taken from the heatmap in Fig. 1B. The vertical green and cyan lines show the locations of the PRE
516 clusters. Dashed lines indicate the approximate borders of the 5' and 3' modules.

517

518 **References**

- 519 1. Ulitsky, I. & Bartel, D. P. lincRNAs: genomics, evolution, and mechanisms. *Cell* **154**, 26–46 (2013).
- 520 2. Derrien, T. *et al.* The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene
521 structure, evolution, and expression. *Genome Res.* **22**, 1775–1789 (2012).
- 522 3. Jens, M. & Rajewsky, N. Competition between target sites of regulators shapes post-transcriptional
523 gene regulation. *Nat. Rev. Genet.* **16**, 113–126 (2015).
- 524 4. Lee, S. *et al.* Noncoding RNA NORAD Regulates Genomic Stability by Sequestering PUMILIO
525 Proteins. *Cell* **164**, 69–80 (2016).
- 526 5. Tichon, A. *et al.* A conserved abundant cytoplasmic long noncoding RNA modulates repression by
527 Pumilio proteins in human cells. *Nat. Commun.* **7**, 12209 (2016).
- 528 6. Munschauer, M. *et al.* The NORAD lncRNA assembles a topoisomerase complex critical for genome
529 stability. *Nature* **561**, 132–136 (2018).
- 530 7. Elguindy, M. M. *et al.* PUMILIO, but not RBMX, binding is required for regulation of genomic
531 stability by noncoding RNA NORAD. *Elife* **8**, (2019).
- 532 8. Kopp, F. *et al.* PUMILIO hyperactivity drives premature aging of Norad-deficient mice. *Elife* **8**,
533 (2019).
- 534 9. Zhao, X., Wei, X., Wang, X. & Qi, G. Long non-coding RNA NORAD regulates angiogenesis of human

535 umbilical vein endothelial cells via miR- 590- 3p under hypoxic conditions. *Mol. Med. Rep.* **21**, 2560–
536 2570 (2020).

537 10. Bian, W. *et al.* Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial
538 cell injury and atherosclerosis. *Aging* **12**, 6385–6400 (2020).

539 11. Soghli, N., Yousefi, T., Abolghasemi, M. & Qujeq, D. NORAD, a critical long non-coding RNA in
540 human cancers. *Life Sci.* **264**, 118665 (2021).

541 12. Matheny, T., Van Treeck, B., Huynh, T. N. & Parker, R. RNA partitioning into stress granules is based
542 on the summation of multiple interactions. *RNA* (2020) doi:10.1261/rna.078204.120.

543 13. Elguindy, M. M. & Mendell, J. T. NORAD-induced Pumilio phase separation is required for genome
544 stability. *Nature* (2021) doi:10.1038/s41586-021-03633-w.

545 14. Bohn, J. A. *et al.* Identification of diverse target RNAs that are functionally regulated by human
546 Pumilio proteins. *Nucleic Acids Res.* **46**, 362–386 (2018).

547 15. Zuckerman, B., Ron, M., Mikl, M., Segal, E. & Ulitsky, I. Gene Architecture and Sequence
548 Composition Underpin Selective Dependency of Nuclear Export of Long RNAs on NXF1 and the TREX
549 Complex. *Mol. Cell* (2020) doi:10.1016/j.molcel.2020.05.013.

550 16. Thomas, A. *et al.* RBM33 directs the nuclear export of transcripts containing GC-rich elements.
551 *Genes Dev.* **36**, 550–565 (2022).

552 17. Tichon, A., Perry, R. B.-T., Stojic, L. & Ulitsky, I. SAM68 is required for regulation of Pumilio by the
553 NORAD long noncoding RNA. *Genes Dev.* **32**, 70–78 (2018).

554 18. Liu, F., Somarowthu, S. & Pyle, A. M. Visualizing the secondary and tertiary architectural domains of
555 lncRNA RepA. *Nat. Chem. Biol.* **13**, 282–289 (2017).

556 19. Novikova, I. V., Hennelly, S. P. & Sanbonmatsu, K. Y. Structural architecture of the human long non-
557 coding RNA, steroid receptor RNA activator. *Nucleic Acids Res.* **40**, 5034–5051 (2012).

558 20. Somarowthu, S. *et al.* HOTAIR forms an intricate and modular secondary structure. *Mol. Cell* **58**,

559 353–361 (2015).

560 21. Hawkes, E. J. *et al.* COOLAIR Antisense RNAs Form Evolutionarily Conserved Elaborate Secondary
561 Structures. *Cell Rep.* **16**, 3087–3096 (2016).

562 22. Lin, Y., Schmidt, B. F., Bruchez, M. P. & McManus, C. J. Structural analyses of NEAT1 lncRNAs
563 suggest long-range RNA interactions that may contribute to paraspeckle architecture. *Nucleic Acids
564 Res.* **46**, 3742–3752 (2018).

565 23. Xue, Z. *et al.* A G-Rich Motif in the lncRNA Braveheart Interacts with a Zinc-Finger Transcription
566 Factor to Specify the Cardiovascular Lineage. *Mol. Cell* **64**, 37–50 (2016).

567 24. Chillón, I. & Pyle, A. M. Inverted repeat Alu elements in the human lncRNA-p21 adopt a conserved
568 secondary structure that regulates RNA function. *Nucleic Acids Res.* **44**, 9462–9471 (2016).

569 25. Fang, R., Moss, W. N., Rutenberg-Schoenberg, M. & Simon, M. D. Probing Xist RNA Structure in
570 Cells Using Targeted Structure-Seq. *PLoS Genet.* **11**, e1005668 (2015).

571 26. Smola, M. J. *et al.* SHAPE reveals transcript-wide interactions, complex structural domains, and
572 protein interactions across the Xist lncRNA in living cells. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 10322–
573 10327 (2016).

574 27. Lu, Z. *et al.* RNA Duplex Map in Living Cells Reveals Higher-Order Transcriptome Structure. *Cell* **165**,
575 1267–1279 (2016).

576 28. Li, H. & Aviran, S. Statistical modeling of RNA structure profiling experiments enables parsimonious
577 reconstruction of structure landscapes. *Nat. Commun.* **9**, 606 (2018).

578 29. Morandi, E. *et al.* Genome-scale deconvolution of RNA structure ensembles. *Nat. Methods* **18**, 249–
579 252 (2021).

580 30. Tomezsko, P. J. *et al.* Determination of RNA structural diversity and its role in HIV-1 RNA splicing.
581 *Nature* **582**, 438–442 (2020).

582 31. Ziv, O. *et al.* COMRADES determines *in vivo* RNA structures and interactions. *Nat. Methods* **15**, 785–

583 788 (2018).

584 32. Zhang, Y. *et al.* In vivo structure and dynamics of the SARS-CoV-2 RNA genome. *Nat. Commun.* **12**,
585 5695 (2021).

586 33. Ziv, O. *et al.* The Short- and Long-Range RNA-RNA Interactome of SARS-CoV-2. *Mol. Cell* **80**, 1067–
587 1077.e5 (2020).

588 34. Khong, A. *et al.* The Stress Granule Transcriptome Reveals Principles of mRNA Accumulation in
589 Stress Granules. *Mol. Cell* **68**, 808–820.e5 (2017).

590 35. Khong, A. & Parker, R. mRNP architecture in translating and stress conditions reveals an ordered
591 pathway of mRNP compaction. *J. Cell Biol.* **217**, 4124–4140 (2018).

592 36. Moon, S. L., Morisaki, T., Stasevich, T. J. & Parker, R. Coupling of translation quality control and
593 mRNA targeting to stress granules. *J. Cell Biol.* **219**, (2020).

594 37. Shin, H. *et al.* TopDom: an efficient and deterministic method for identifying topological domains in
595 genomes. *Nucleic Acids Res.* **44**, e70 (2016).

596 38. Love, M., Anders, S. & Huber, W. Differential analysis of count data--the DESeq2 package. *Genome
597 Biol.* **15**, 550 (2014).

598 39. Basavappa, M. G., Henao-Mejia, J. & Cherry, S. Protocol to assess RNA-RNA interactions in situ
599 using an RNA-proximity ligation assay. *STAR Protoc* **3**, 101892 (2022).

600 40. Basavappa, M. G. *et al.* The lncRNA ALPHA specifically targets chikungunya virus to control
601 infection. *Mol. Cell* **82**, 3729–3744.e10 (2022).

602 41. Van Etten, J., Schagat, T. L. & Goldstrohm, A. C. A guide to design and optimization of reporter
603 assays for 3' untranslated region mediated regulation of mammalian messenger RNAs. *Methods* **63**,
604 110–118 (2013).

605 42. Zubradt, M. *et al.* DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. *Nat.
606 Methods* **14**, 75–82 (2017).

607 43. Lorenz, R. *et al.* ViennaRNA Package 2.0. *Algorithms Mol. Biol.* **6**, 26 (2011).

608 44. Mayr, C. & Bartel, D. P. Widespread shortening of 3'UTRs by alternative cleavage and

609 polyadenylation activates oncogenes in cancer cells. *Cell* **138**, 673–684 (2009).

610 45. Chen, Y. *et al.* LIN28/let-7/PD-L1 Pathway as a Target for Cancer Immunotherapy. *Cancer Immunol*

611 *Res* **7**, 487–497 (2019).

612 46. Chekulaeva, M. *et al.* miRNA repression involves GW182-mediated recruitment of CCR4–NOT

613 through conserved W-containing motifs. *Nat. Struct. Mol. Biol.* **18**, 1218–1226 (2011).

614 47. Mayr, C., Hemann, M. T. & Bartel, D. P. Disrupting the pairing between let-7 and Hmga2 enhances

615 oncogenic transformation. *Science* **315**, 1576–1579 (2007).

616 48. Wolfe, M. B. *et al.* Principles of mRNA control by human PUM proteins elucidated from multimodal

617 experiments and integrative data analysis. *RNA* **26**, 1680–1703 (2020).

618 49. Chorostecki, U., Saus, E. & Gabaldón, T. Structural characterization of NORAD reveals a stabilizing

619 role of spacers and two new repeat units. *Comput. Struct. Biotechnol. J.* **19**, 3245–3254 (2021).

620

621 **Methods**

622 **Cell culture**

623 HCT116 cells (ATCC) and NORAD^{–/–} HCT116 cells (kind gift from Joshua Mendell) were cultured in McCoy's
624 5a medium supplemented with 10% fetal bovine serum (FBS) and 100 U of penicillin/0.1 mg mL^{–1}
625 streptomycin. U2OS cells (ATCC) (osteosarcoma; obtained from American Type Culture Collection) were
626 routinely cultured in DMEM containing 10% fetal bovine serum (FBS) and 100 U of penicillin/0.1 mg mL^{–1}
627 streptomycin. All cells were maintained at 37°C in a humidified incubator with 5% CO₂ and were
628 routinely examined to rule out mycoplasma contamination.

629 **COMRADES**

630 The COMRADES method was performed as previously described³¹. Independent biological replicates
631 were performed using ~150 million cells each. Ar-treated HCT116 cells were supplemented with 0.5 mM
632 sodium arsenite and maintained for 1 hour under growth conditions. Doxo-treated HCT116 cells were
633 supplemented with 1 µM Doxorubicin and were maintained for 24 hours under growth conditions. Cells
634 were washed 3 times with HANKS buffer and were incubated with 0.7 mg/ml Psoralen-triethylene glycol
635 azide (psoralen-TEG azide, Berry & Associates) diluted in PBS and supplemented with OptiMEM I (Gibco)

636 without phenol red for 20 minutes. Subsequently, cells were irradiated with 50 KJ/m² 365 nm UVA on
637 ice using a CL-1000 crosslinker (UVP). Cells were lysed using RNeasy lysis buffer (QIAGEN) supplemented
638 with DTT, and proteins were degraded using proteinase K (NEB). Total cellular RNA was purified using
639 the RNeasy maxi kit (QIAGEN) and quantified using the Qubit RNA BR assay kit.

640 **NORAD enrichment**

641 RNA was mixed with a tiling array of 50 antisense biotinylated DNA probes, 20 nt each (IDT), targeting
642 human NORAD. RNA was maintained at 37°C overnight under constant rotation in 500 mM NaCl, 0.7%
643 SDS, 33 mM Tris-Cl pH 7, 0.7 mM EDTA, 10% Formamide. Dynabeads MyOne Streptavidin C1 (Invitrogen)
644 were added, and RNA was maintained for an additional hour rotating at 37°C. Beads were washed 4
645 times with 2x SSC buffer supplemented with 0.5% SDS and 1 time with 2x SSC buffer without SDS. RNA
646 was released from the beads by degrading the DNA probes using 0.1 units/ml Turbo DNase (Invitrogen)
647 at 37°C for 30 minutes. RNA was cleaned using RNA Clean & Concentrator (Zymo Research) following the
648 manufacturer protocol for capturing RNA bigger than 200 nucleotides.

649 **Crosslinked RNA enrichment**

650 NORAD-enriched RNA was fragmented by 20 minutes incubation at 37°C with 0.1 units/ml RNase III
651 (Ambion). Reactions were terminated by cleaning RNA with SPRI beads (Amersham) supplemented with
652 Isopropanol. Biotin was attached to cross-linked RNA duplexes by incubating at 37°C for 1.5 h with
653 150mM Click-IT Biotin DIBO Alkyne (Life technologies) under constant agitation. Following SPRI beads
654 cleanup, biotinylated RNA duplexes were enriched using Dynabeads MyOne Streptavidin C1 (Invitrogen)
655 under the following conditions: 100 mM Tris-Cl pH 7.5, 10 mM EDTA, 1 MNaCl, 0.1% Tween-20, 0.5
656 unit/ml Superase-In (Invitrogen). Beads were washed 5 times with 100 mM Tris-HCl pH 7.5, 10 mM
657 EDTA, 3.5 M NaCl, 0.1% Tween-20, and RNA was eluted by adding 95% Formamide, 10 mM EDTA
658 solution preheated and incubating at 65°C for 5 minutes. RNA was purified using RNA Clean &
659 Concentrator (Zymo Research). Each RNA sample was split in two: one half was proximity ligated,
660 following UVC irradiation to reverse the crosslink (i.e., interactions sample). The other half was UVC
661 irradiated to reverse the crosslink, and only then was proximity ligated (i.e., control sample). Prior to
662 proximity ligation, RNA was denatured by heating to 90°C and transferring to ice water. Proximity
663 ligation was performed using 1 unit/ml RNA ligase 1 (NEB), 1x RNA ligase buffer, 50mM ATP, 1 unit/ml
664 Superase-in (Invitrogen), at a final volume of 200ul. Reactions were incubated overnight at 16°C and
665 were terminated using RNA Clean & Concentrator (Zymo Research). Crosslink reversal was done by
666 irradiating the RNA with 2.5 KJ/m² 254 nm UVC using a CL-1000 crosslinker (UVP) on ice. Sequencing
667 library preparation was done as described in ³³. Paired-end 100nt libraries were sequenced using HiSeq
668 1500 sequencer (Illumina).

669 **COMRADES data analysis**

670 After obtaining sequencing data in FASTQ format, we removed sequencing adapters (cutadapt -a
671 AGATCGGAAGAGCACGCTCTGAACCTCCAGTC -A AGATCGGAAGAGCGTCGTAGGGAAAGAGTGT --
672 minimum-length 10), merged paired-end reads using pear with default settings, collapsed identical
673 reads (bash uniq -c), extracted the 6-nt Unique Molecular Identifier (UMI) from 3'ends of reads, and

674 saved the reads in a deduplicated fasta file, where the number of duplicates and number of UMIs
675 observed for every sequence was encoded in the read ID. To call chimeric reads, we used *hyb*⁵⁴ with
676 *bowtie2* mapping to a human transcriptome database⁵⁵ that consisted of spliced mRNAs, tRNAs and
677 other noncoding RNAs, supplemented with the human NORAD sequence (nucleotides 1-5339 from
678 transcript NR_027451.1). We also performed the mapping against a database that consisted of the
679 NORAD sequence alone, which recovered approximately 10% more NORAD:NORAD chimeras, without
680 noticeably altering the pattern of interactions.

681 We obtained 2M-11M unique mapped reads per replicate experiment, of which 3–4% were chimeric
682 reads; in the untreated and Doxo experiments, 0.8–1.3% of all mapped reads were NORAD:NORAD
683 chimeras, while in Ar experiments, 0.2–0.3% of reads were NORAD:NORAD chimeras. In the control
684 experiments, in which the order of UVC irradiation and proximity ligation was reversed, the fraction of
685 NORAD:NORAD chimeras ranged from 0.02% to 0.12%. Between 3 and 19% of all mapped reads,
686 chimeric or non-chimeric, were mapped to NORAD in the NT, Ar, and Doxo datasets. By contrast, 0.002%
687 of reads were mapped to NORAD in a control COMRADES experiment that did not include NORAD
688 pulldown.

689 Pearson correlations between replicate experiments were calculated using numbers of NORAD:NORAD
690 chimeras in 100 nt x 100 nt windows, and were plotted in R using the "corrplot" package. The same data
691 was used for the hierarchical clustering of the experiments. 2-dimensional maps of chimera coverage
692 were generated using Java Treeview. To calculate topological domains alongside NORAD, we used the
693 coverage of chimeras in 10 nt x 10 nt windows as an input matrix for TopDom³⁷, and ran TopDom with
694 window.size=30, which resulted in an effective window size of 300 nt. The other TopDom settings were
695 kept as default.

696 Regions with significantly distinct NORAD:NORAD interactions between the 3 NT datasets and 3 Ar
697 datasets were calculated using DESeq2 based on the numbers of chimeric reads in 10x10 windows³⁸.
698 The direction of change was distinguished using log fold change values, and $-\log_{10}$ p-values (capped at
699 2/-2) were used to plot the interaction heatmap in R, where color intensity reflects statistical
700 significance. Example interactions were isolated and plotted in R with normalization of chimeric counts
701 per million mapped reads, alongside their predicted structures.

702 Arc plots (**Fig. 3**) were plotted in R with the "R4RNA" package based on the R-chie web server⁵⁰. The
703 color of arcs represents the p-values, which were calculated by counting the interactions between two
704 connected PRE sites with a 50nt radius (e.g. between PRE1:710–817 and PRE2:1087–1195), and
705 comparing it to 50nt circular permutations along the genome (e.g. 760–867 and 1137–1195, and so on)
706 using independent t-tests. The resulting p-values were then subjected to Bonferroni correction before
707 plotting.

708 NORAD secondary structures were predicted using the comradesFold pipeline (Ziv et al. 2018), and the
709 structures were plotted in VARNA. comradesFold generates a set of folding constraints from *hyb* files,
710 which is then shuffled randomly 1,000 times, and used for structure prediction using hybrid-ss-min. The
711 whole NORAD secondary structure was generated as 6 parts: 1–760, 761–2050, 2051–2630, 2631–3400,

712 3401–4150, and 4151–5339, each combining domains determined by the TopDom algorithm, with slight
713 adjustments to preserve high confidence structures. Color-coding of base-pairing is based on hyb data-
714 based supporting reads, and was normalized to log₂ chimeric counts per million mapped reads.

715 Numbers of interactions between PRE clusters to other RNA fragments, and non-PRE fragments to other
716 RNA fragments (Figure S3A) were calculated using 50 nt radius for PRE clusters, and 116 randomly
717 generated 110nt-long non-PRE fragments. The average interaction counts for the 116 non-PRE to other
718 RNA fragments were used to provide sufficient data. The counts were also normalized as chimeric reads
719 per million mapped reads.

720 COMRADES data has been deposited in the GEO database under the GSE188445 accession.

721 **Real-time PCR analysis of gene expression**

722 Total RNA was isolated from U2OS or HCT116 cells using TRI reagent (MRC), followed by reverse
723 transcription using the qScript Flex cDNA synthesis kit with an equal mix of oligo dT and random primers
724 (QuantaBio 95049), according to the manufacturer's protocol. Real-time PCRs were performed using the
725 AB quantitative real-time PCR system ViiA 7 (Applied Biosystems). Fast SYBR Green master mix (Life,
726 4385614) was used for qPCR with gene-specific primers (**Table S5**). All gene expression levels are
727 presented relative to their relevant control (ΔCt) and normalized to *GAPDH* ($\Delta\Delta Ct$).

728 **Plasmids and siRNAs**

729 Plasmid transfections were performed in U2OS cells using GenJet In Vitro DNA Transfection Reagent
730 (SignaGen Laboratories). To overexpress NORAD, the pcDNA3.1 vector previously described (Tichon et
731 al. 2016) and available on AddGene (AddGene #120383) was used. Derivatives and mutations of *NORAD*
732 were prepared by Restriction Free cloning⁵⁶. Primer sequences are given in **Table S6**. As controls for the
733 overexpression experiments, we used empty pcDNA3.1 (+) vector (Invitrogen). In transfections, 200 ng
734 was used per 30,000 cells in 24-well plates for 48 hr before cells were harvested. For luciferase
735 experiments, we generated vectors with 8 WT PREs and mutated PRE reporters as controls. To construct
736 these reporters, eight wild-types PRE repeats (GAAAATTGTTATAAAATCAA) or eight mutated PREs
737 (GAAAATCAATTAAATCAA) were inserted using Xhol and NotI sites in 3' UTR of Renilla gene in the
738 psiCheck-2 dual luciferase reporter vector (Promega). For let7 reporter, HMGA2 3'UTR harboring seven
739 let-7 binding sites or a mutated 3'UTR^{46,47} were inserted using NruI and NotI sites in 3' UTR of Renilla
740 gene in the psiCheck-2 dual luciferase reporter vector (Promega). The reporter in the amount of 25 ng
741 and plasmids with different NORAD variants in the amount of 200 ng were introduced per 30,000 cells in
742 24-well plates. For co-transfection of siRNAs together with reporters, we used LipoJet In Vitro DNA and
743 siRNA Transfection Kit (SignaGen Laboratories), according to the manufacturer's protocol. Cells were
744 transfected with 25 nM SMARTpool siRNA (Dharmacon) targeting PUM1 and PUM2 sequences (**Table**
745 **S7**) or scrambled siRNA with 25 ng of reporter for 48 hr before harvesting. For the Ar treatment
746 experiment, U2OS cells expressing reporter and NORAD plasmids were treated with 0.5 mM sodium
747 arsenite for an hour before harvesting.

748 **Luciferase assays**

749 Reporter gene activity was measured in U2OS cells as previously described ⁴¹. Briefly, 30,000 cells were
750 plated in a 24-well plate. After 24 hr, cells were co-transfected with psiCheck2 plasmids and indicated
751 NORAD plasmids (as described above). Luciferase activity was recorded 48 hr post-transfection using the
752 Dual-Glo Luciferase Assay System (Promega) in the Microplate Luminometer (Veritas). A relative
753 response ratio, from RnLuc signal/ FFLuc signal, was calculated for each sample. The percent of change
754 presented is relative to the control plasmid.

755 **RNA proximity ligation assay (RNA-PLA)**

756 HCT116 WT cells were plated on sterile 8- well chamber slides for 24 hr. Coverslips were fixed for 10 min
757 with 4% PFA at 20°C–25°C and washed 3 times with 1X PBS. Fixed cells are permeabilized and incubated
758 for 12–18 h with 200nM PLA probes to allow for binding to putative interacting RNAs at 37°C. After 3
759 washes with 1X PBS the coverslips were incubated with ligation mix for 30 min at 37°C [T4 DNA Ligation
760 Buffer (10x, NEB), PLA Connector oligo (100 µM), PLA linker oligo (100 µM) and T4 DNA Ligase (NEB)].
761 Rolling circle amplification mix [Phi29 Buffer (10x, NEB), 10 mM dNTPs, BSA (20 mg/mL, NEB), Anti-
762 Amplicon-Cy5 Probe (10 µM) and Phi29 (NEB)] was added for 2 hr at 37°C. Monoclonal Anti-β-Tubulin
763 antibody was produced in mouse, clone TUB 2.1 and used for immunofluorescence with 1:1000 dilution
764 to visualize the cytoplasm alongside DAPI staining (Thermo Fisher Scientific) for the nuclei. Imaging was
765 performed on a Nikon-Ti-E inverted fluorescence microscope with a 100× oil-immersion objective and a
766 Photometrics Pixis 1024 CCD camera using MetaMorph software. Puncta from 5-14 fields were counted
767 using IMARIS (v7.7.2) software.

768 **Subcellular fractionations**

769 HCT116 NORAD KO cells ⁴ were transfected with *NORAD* constructs using PEI reagent. Cells were
770 collected 48 hr post transfection in PBS, and an aliquot collected as a whole cell extract sample. The
771 remainder of the cells were washed twice in cold PBS and fractionated according to the method
772 described in Lee et. al ⁴. Briefly, cell pellet was resuspended in buffer RLN1 (50 mM Tris-HCl pH 8.0, 140
773 mM NaCl, 1.5 mM MgCl₂, 0.5% NP-40, 10U/ml RNase inhibitor) and incubated 5 min on ice. The nuclei
774 were isolated by centrifugation and the supernatant kept as the cytoplasmic fraction. Nuclear pellet was
775 washed in 500µl of buffer RLN1 and resuspended in 175µl of buffer RLN2 (50 mM Tris-HCl pH 8.0, 500
776 mM NaCl, 1.5 mM MgCl₂, 0.5% NP-40, 10U/ml RNase inhibitor). The cytoplasmic fraction was cleared
777 by centrifugation and RNA was extracted using BioTri reagent (Biolab 959758027100).

778 **DMS-MaP-seq**

779 HCT116 NORAD WT and *NORAD*^{−/−} cells were seeded in a 6-well plate (200,000 cells per well). After 24
780 hr, *NORAD*^{−/−} cells were transfected with NORAD constructs using PEI reagent. Cells were washed 48 hr
781 post-transfection and incubated with warm DMEM containing 2% DMS for 5 min at 37°C. In parallel, as a
782 control, 2% of DDW was added to another well of cells. Media with DMS was decanted, and cells were
783 washed with 30% of beta-mercaptoethanol solution in PBS. The adherent cells were dislodged using a
784 cell-scraper, and collected by centrifugation at 1000 × g at 4 °C for 5 min. Cells were resuspended in TRI
785 reagent and RNA was isolated according to the manufacturer protocol. Total RNA was DNase-treated for
786 30 min at 37 °C in 1× TURBO DNase buffer with 1 µl TURBO DNase enzyme (Thermo Fisher Scientific).

787 Reverse transcription was performed in a 10 μ l volume with 1 pmol of gene specific primer (**Table S8**).
788 To begin, a mixture of 3-6 μ g of RNA with primer was incubated at 95°C for 30 sec to denature the
789 template, and then it was returned to ice to anneal the primer to the template. To initiate the reaction,
790 20 U Marathon RT (Kerafast, EYU007) with RT buffer (100 mM Tris-HCl pH 8.3, 400 mM KCl, 2 mM
791 MnCl₂, 10 mM DTT, 40% glycerol) and 5 mM dNTPs were added to annealed substrate, and allowed the
792 reaction to proceed for 1 h at 42°C ^{57,58}.

793 Two ~ 300 nt amplicons tiled around NRU 7 to 8 were designed to obtain sequencing coverage of the
794 structured region of NORAD (**Table S8**). Amplicons had an overlapping of 65 nucleotides. Amplicons
795 were generated using Q5 High-Fidelity DNA Polymerase (NEB) with NORAD specific forward and reverse
796 primers, and 2 μ l of cDNA per reaction carried out in a 25 μ l total volume per amplicon.

797 The amplicons were cleaned up using Nucleospin Gel and PCR Cleanup Kit (Macherey-Nagel,
798 740609.50). The purity and size of the DNA bands were visualized by running a 1% agarose gel. Illumina
799 adaptors were added to amplicons by 4 cycles of Q5 PCR. Libraries were cleaned, their concentration
800 and average size were determined by Qubit dsDNA HS Assay Kit (ABP Biosciences) and BioAnalyzer High
801 Sensitivity DNA Analysis (Agilent). Sequencing was done using NovaSeq 600 with 300 nt paired-end
802 reads.

803 Reads were mapped to the NORAD and alternative sequences using STAR ⁵⁹ and mutations in individual
804 positions in the sequence were quantified using JACUSA2 ⁶⁰.

805 **Statistical analyses**

806 Data are presented as an average \pm SEM; experiments were repeated at least three times. Statistical
807 analyses were performed using Student t-test or one-way ANOVA, followed by Bonferroni multiple
808 comparison tests, when appropriate. In all analyses, a value of P < 0.05 was considered significant.

809 **Data availability**

810 COMRADES data has been deposited in the GEO database under the GSE188445 accession.

811 **Methods-only references**

812 50. Lai, D., Proctor, J. R., Zhu, J. Y. A. & Meyer, I. M. R-CHIE: a web server and R package for visualizing
813 RNA secondary structures. *Nucleic Acids Res.* **40**, e95 (2012).

814 51. Pedersen, J. S. *et al.* Identification and classification of conserved RNA secondary structures in the
815 human genome. *PLoS Comput. Biol.* **2**, e33 (2006).

816 52. Li, P., Zhou, X., Xu, K. & Zhang, Q. C. RASP: an atlas of transcriptome-wide RNA secondary structure
817 probing data. *Nucleic Acids Res.* **49**, D183–D191 (2021).

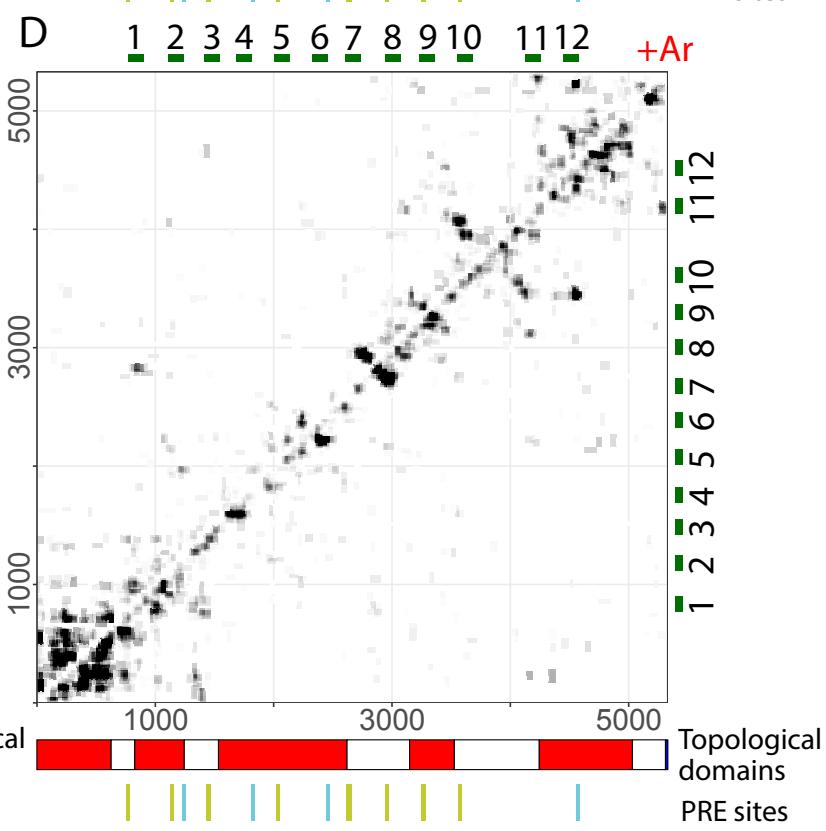
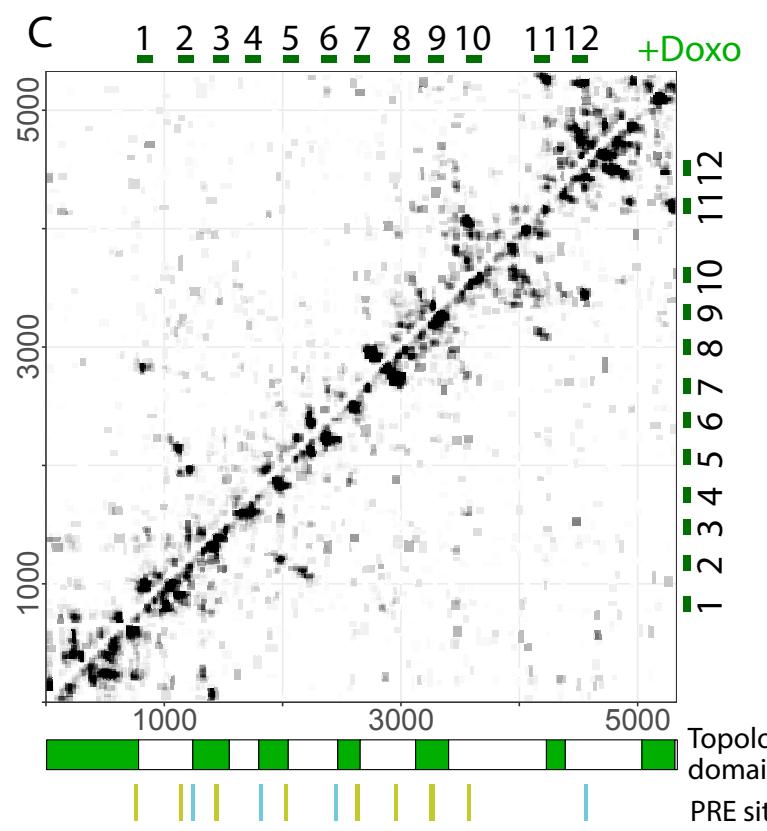
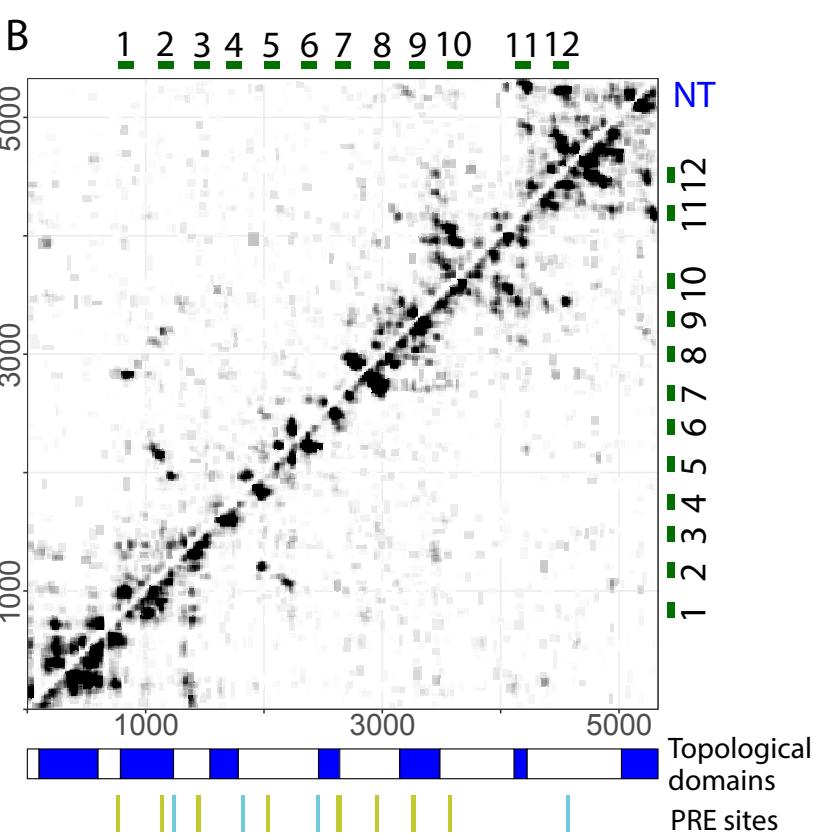
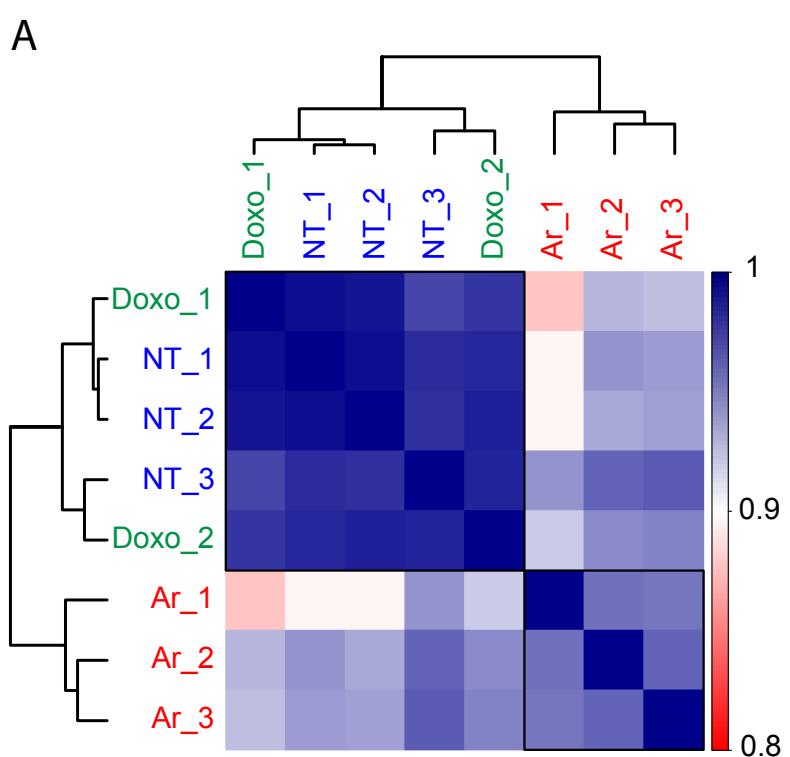
818 53. Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral substitution
819 rates on mammalian phylogenies. *Genome Res.* **20**, 110–121 (2010).

820 54. Travis, A. J., Moody, J., Helwak, A., Tollervey, D. & Kudla, G. Hyb: a bioinformatics pipeline for the
821 analysis of CLASH (crosslinking, ligation and sequencing of hybrids) data. *Methods* **65**, 263–273
822 (2014).

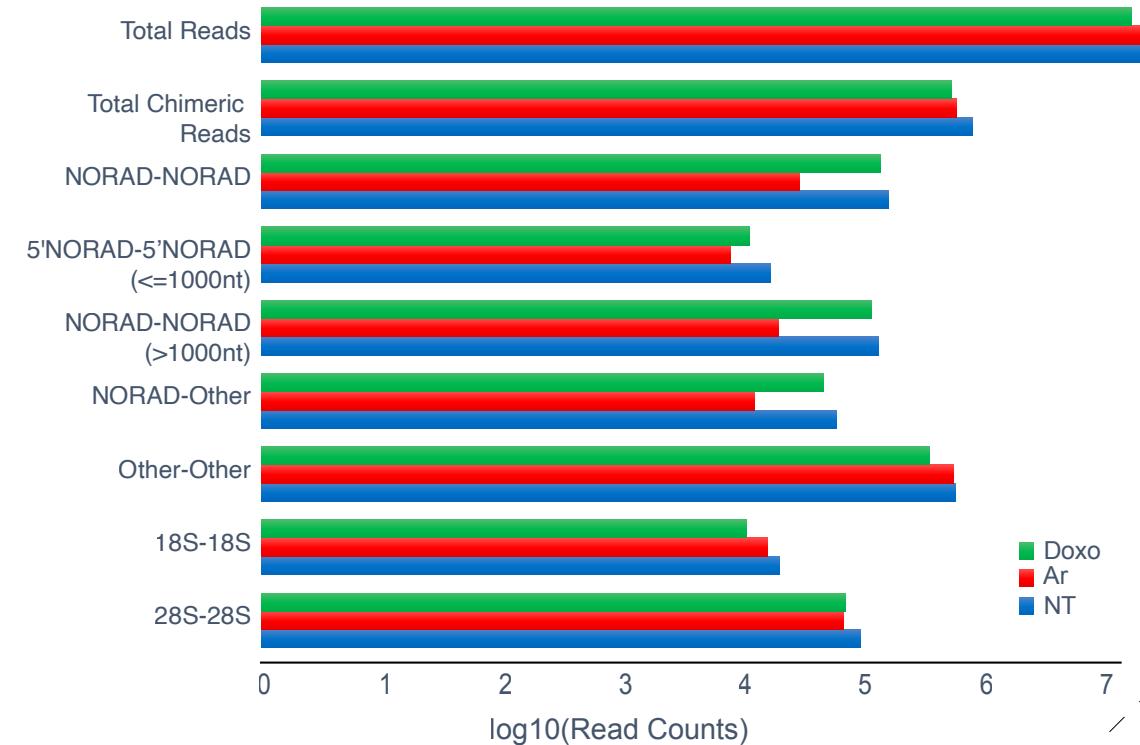
823 55. Helwak, A., Kudla, G., Dudnakova, T. & Tollervey, D. Mapping the Human miRNA Interactome by
824 CLASH Reveals Frequent Noncanonical Binding. *Cell* vol. 153 654–665 Preprint at
825 <https://doi.org/10.1016/j.cell.2013.03.043> (2013).

826 56. Unger, T., Jacobovitch, Y., Dantes, A., Bernheim, R. & Peleg, Y. Applications of the Restriction Free
827 (RF) cloning procedure for molecular manipulations and protein expression. *J. Struct. Biol.* **172**, 34–
828 44 (2010).

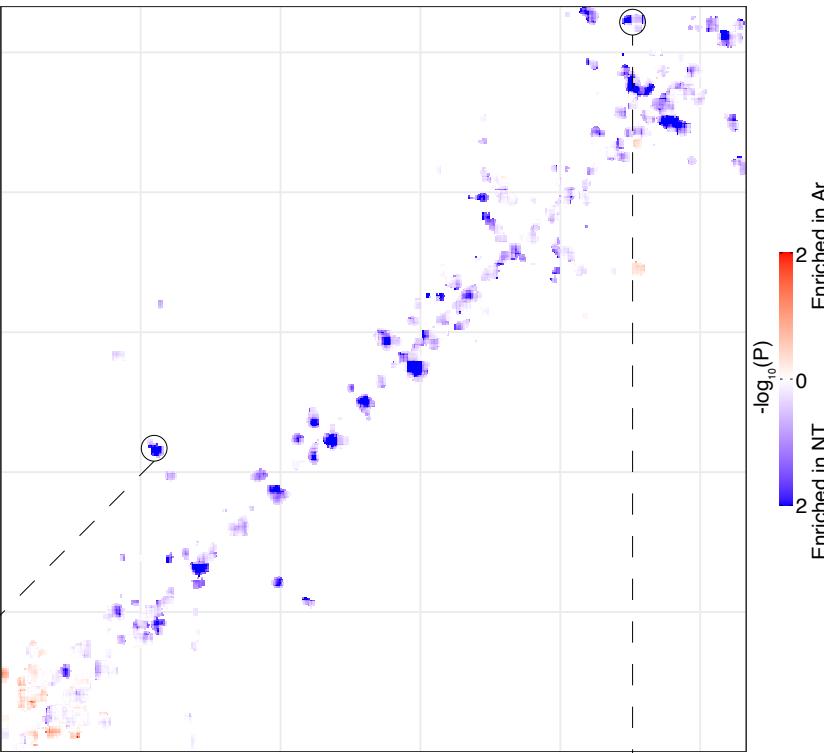
829 57. Guo, L.-T. *et al.* Sequencing and Structure Probing of Long RNAs Using MarathonRT: A Next-
830 Generation Reverse Transcriptase. *J. Mol. Biol.* **432**, 3338–3352 (2020).

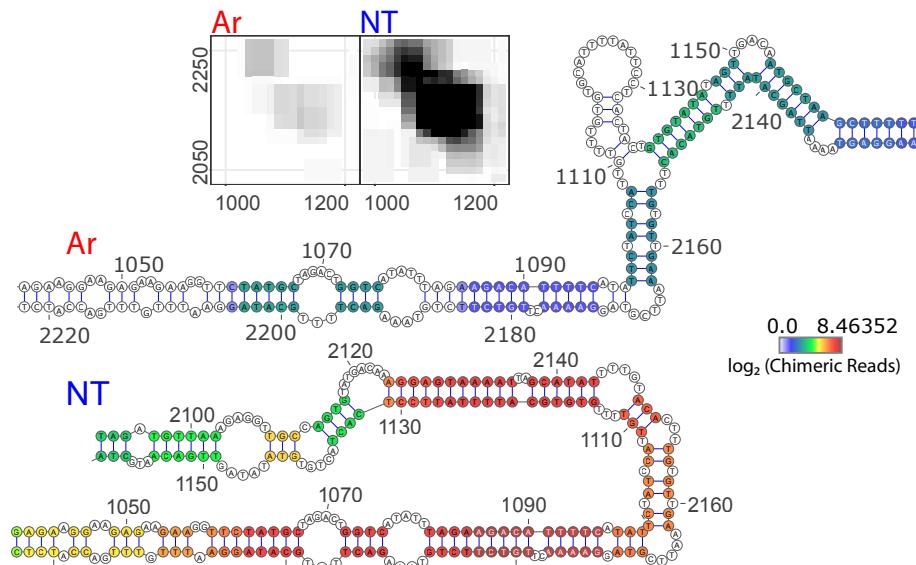




831 58. Mitchell, D., Cotter, J., Saleem, I. & Mustoe, A. M. Mutation signature filtering enables high-fidelity
832 RNA structure probing at all four nucleobases with DMS. *Nucleic Acids Res.* **51**, 8744–8757 (2023).

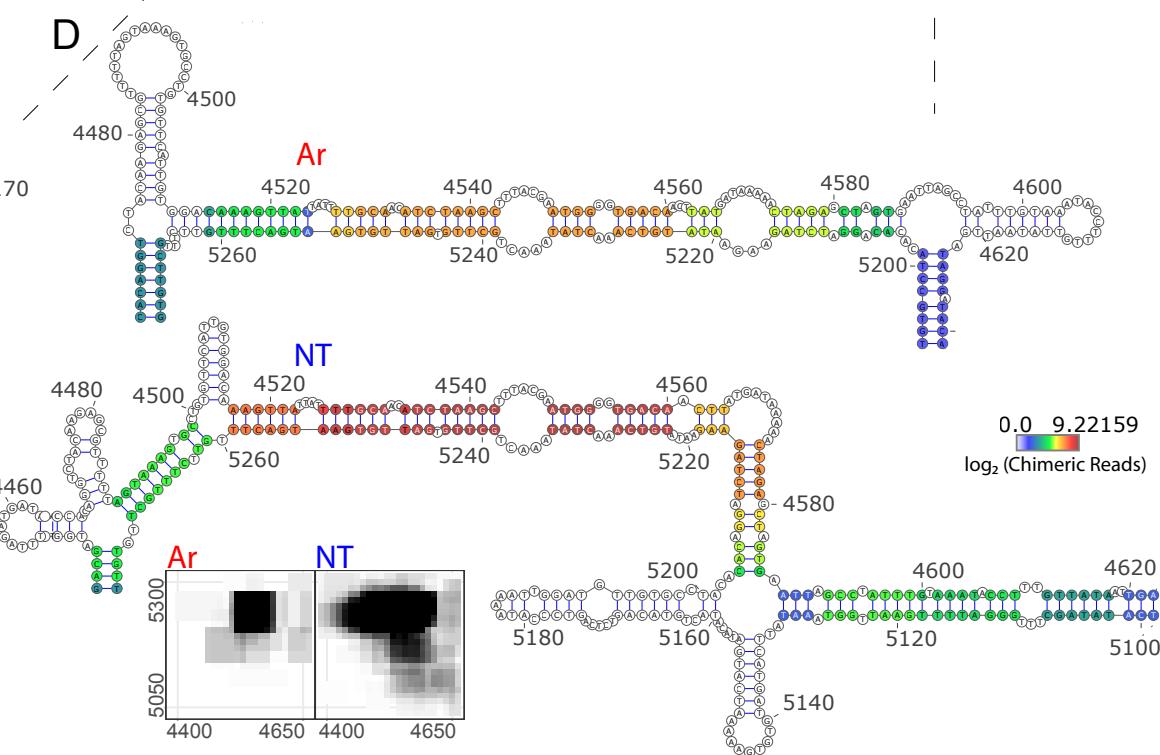
833 59. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21 (2013).

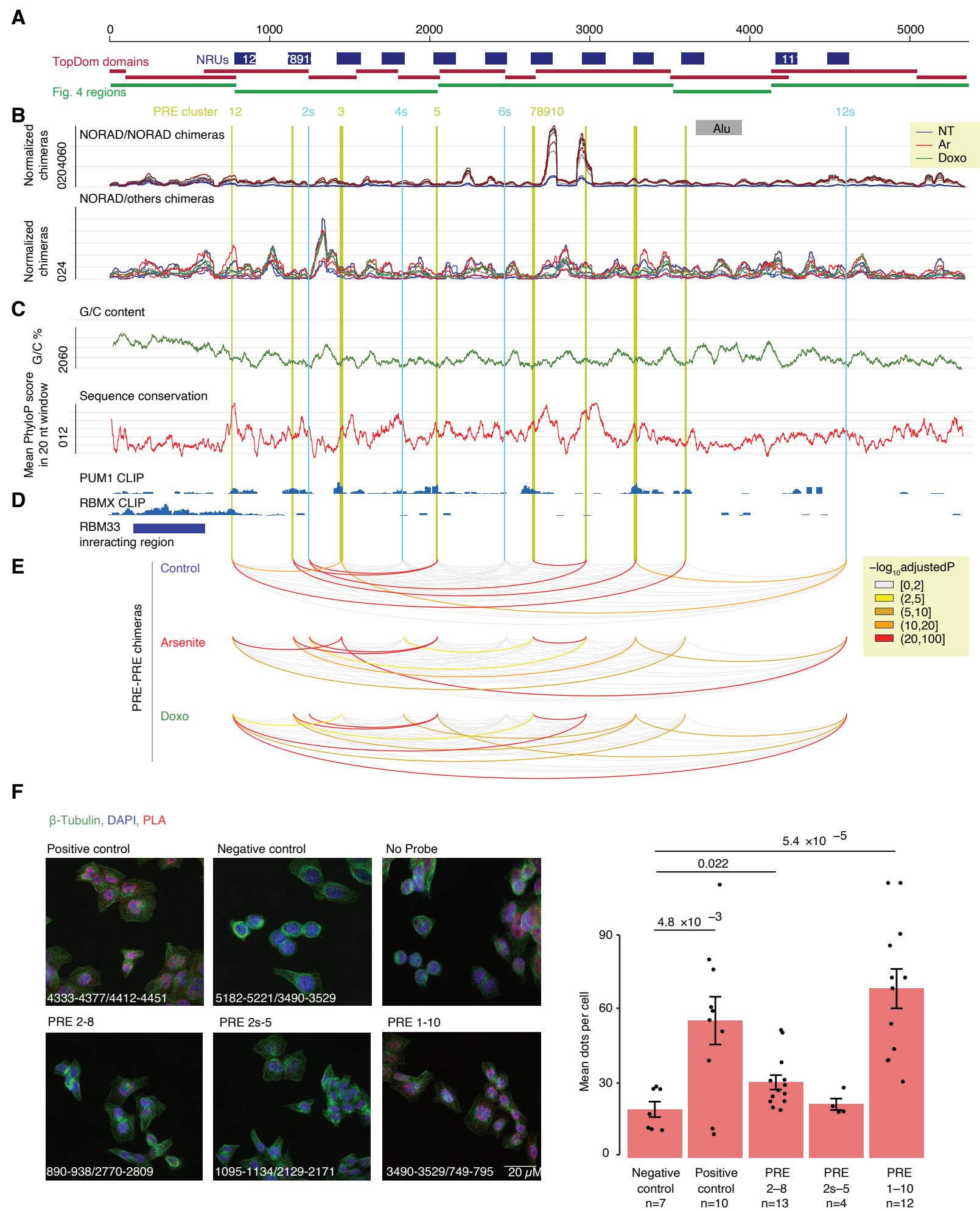

834 60. Piechotta, M., Naarmann-de Vries, I. S., Wang, Q., Altmüller, J. & Dieterich, C. RNA modification
835 mapping with JACUSA2. *Genome Biol.* **23**, 115 (2022).

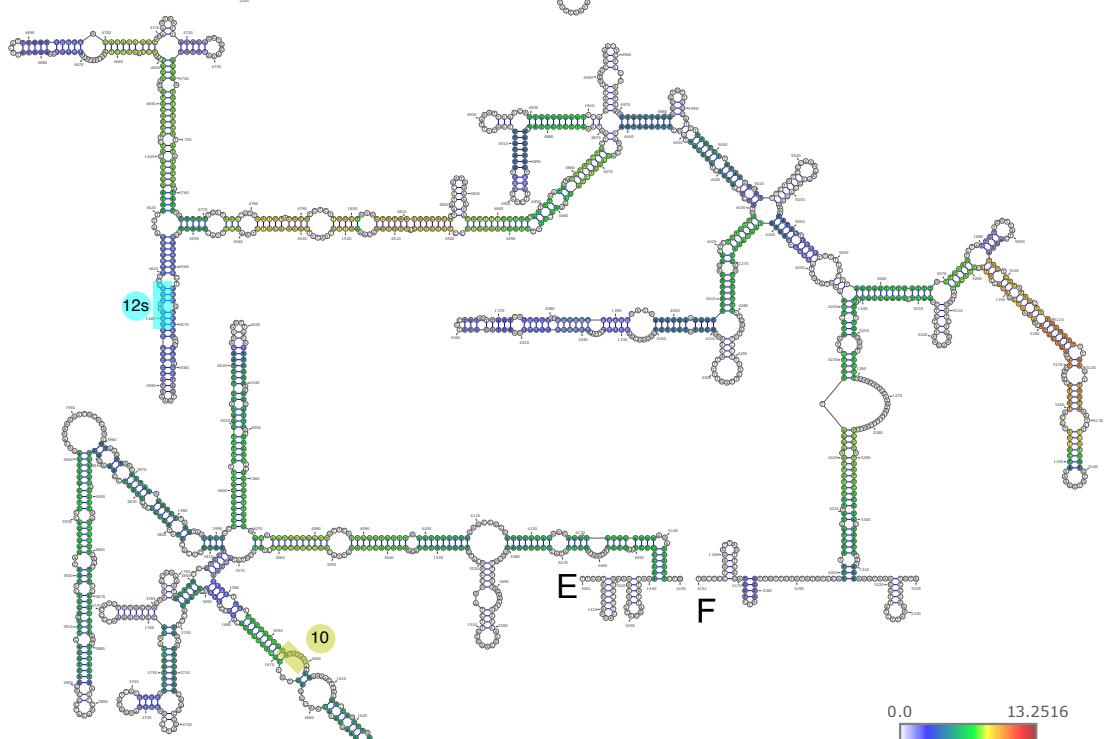
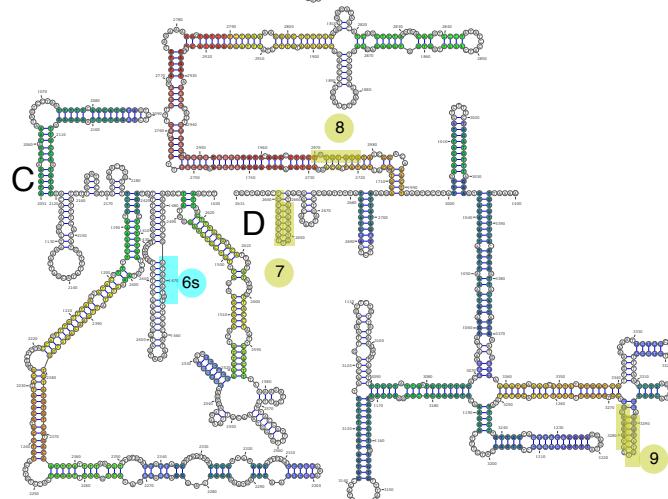
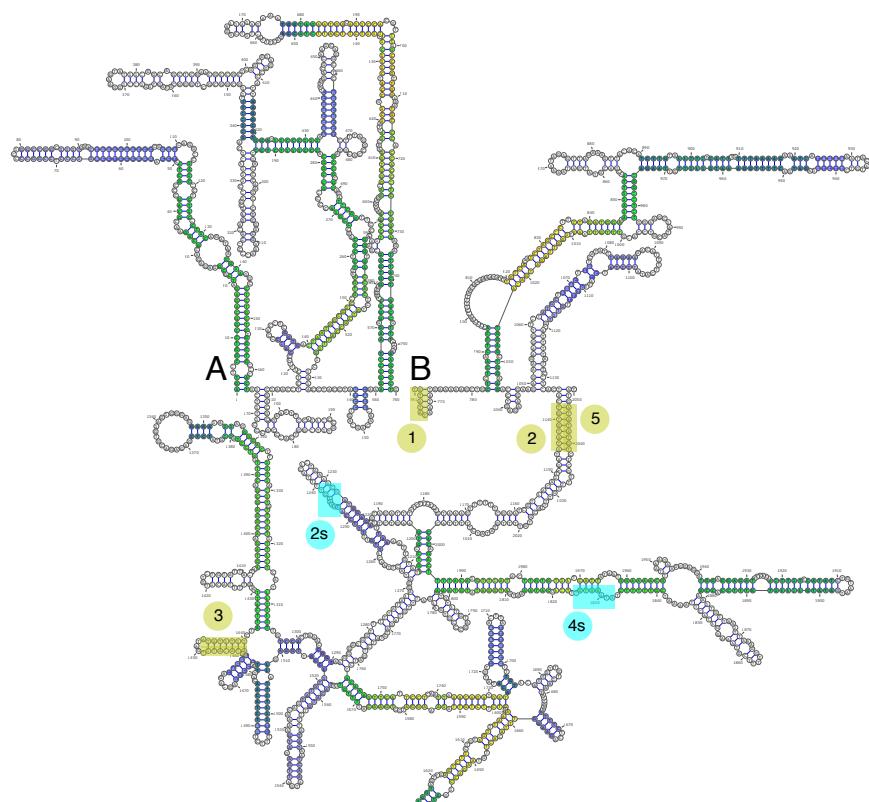
836

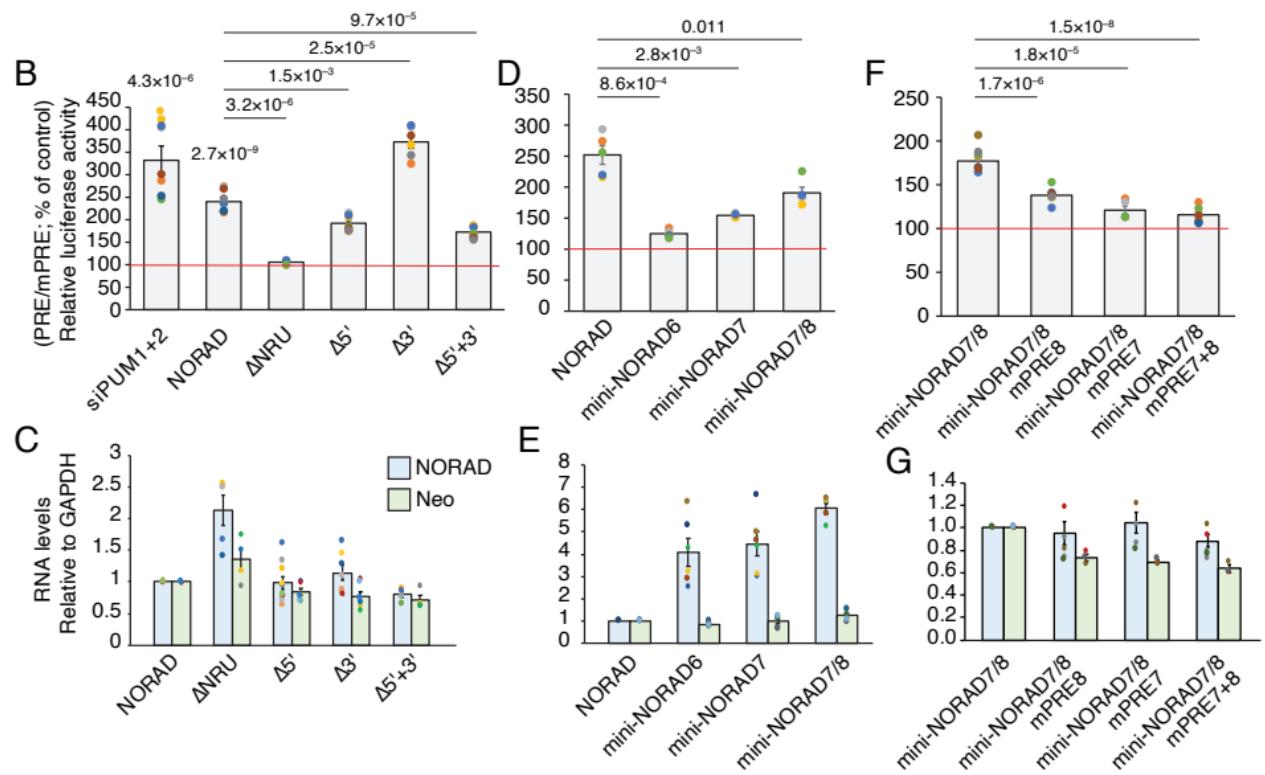
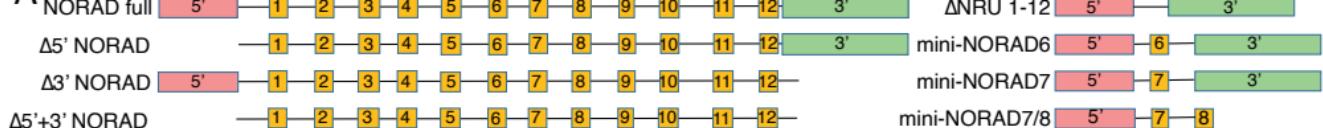

837

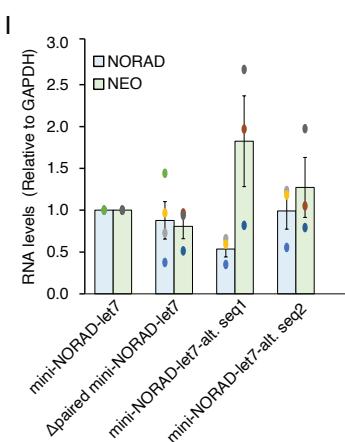
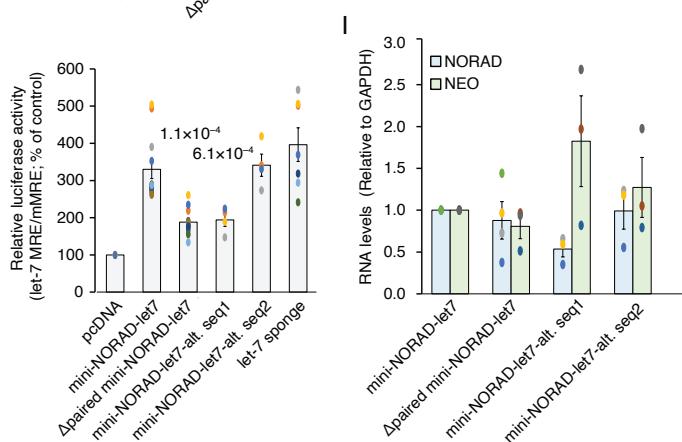
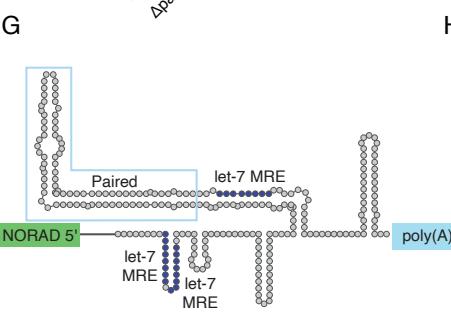
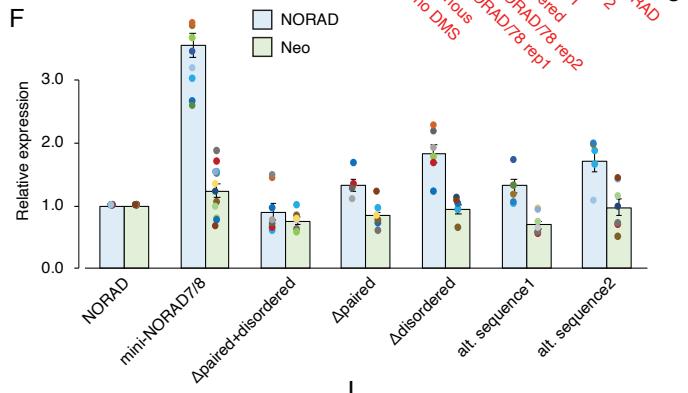
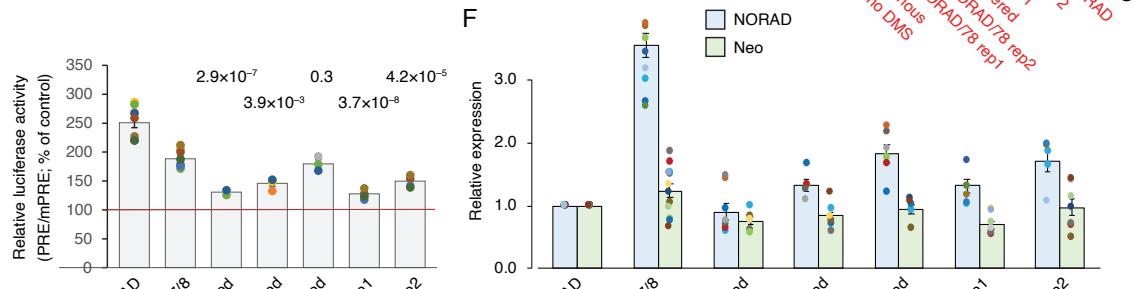
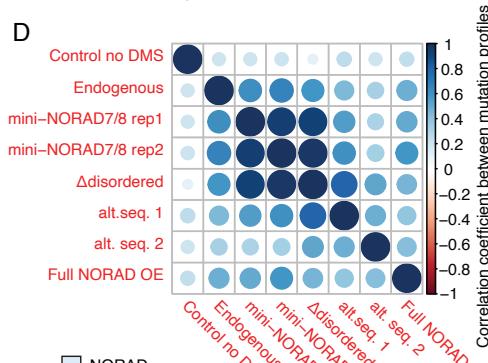
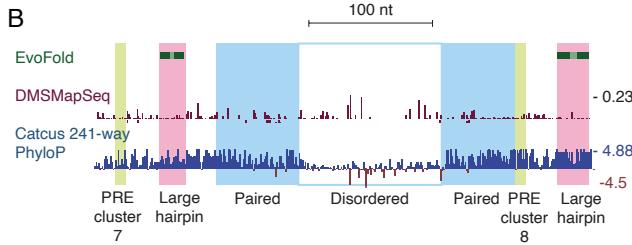
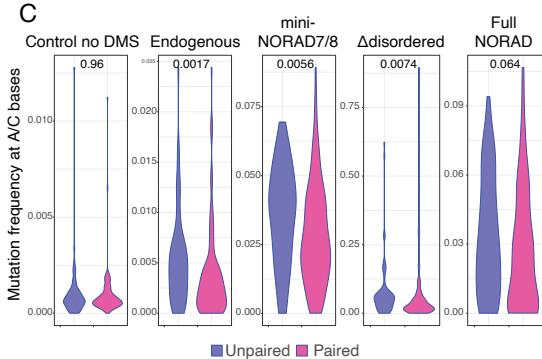
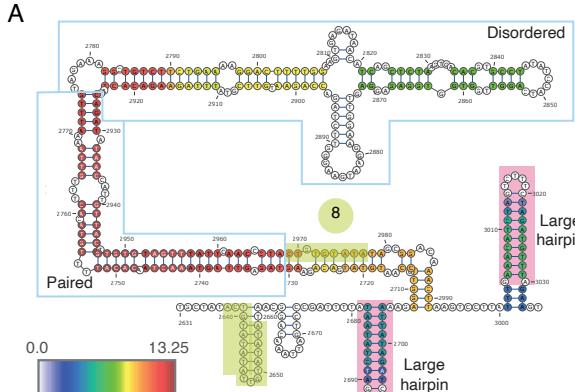

A

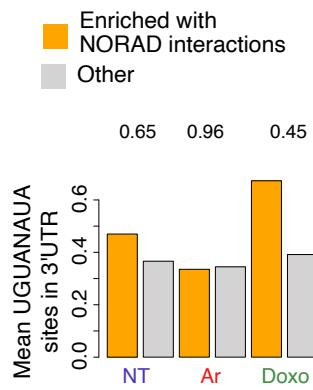

B

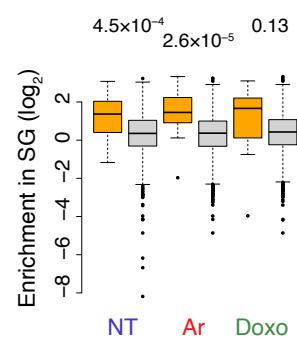


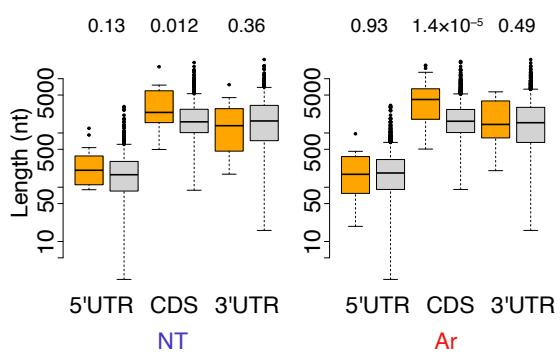



C

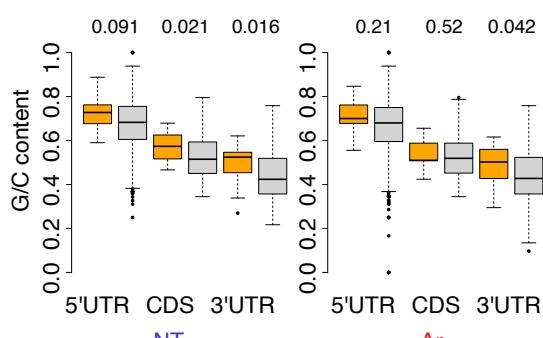



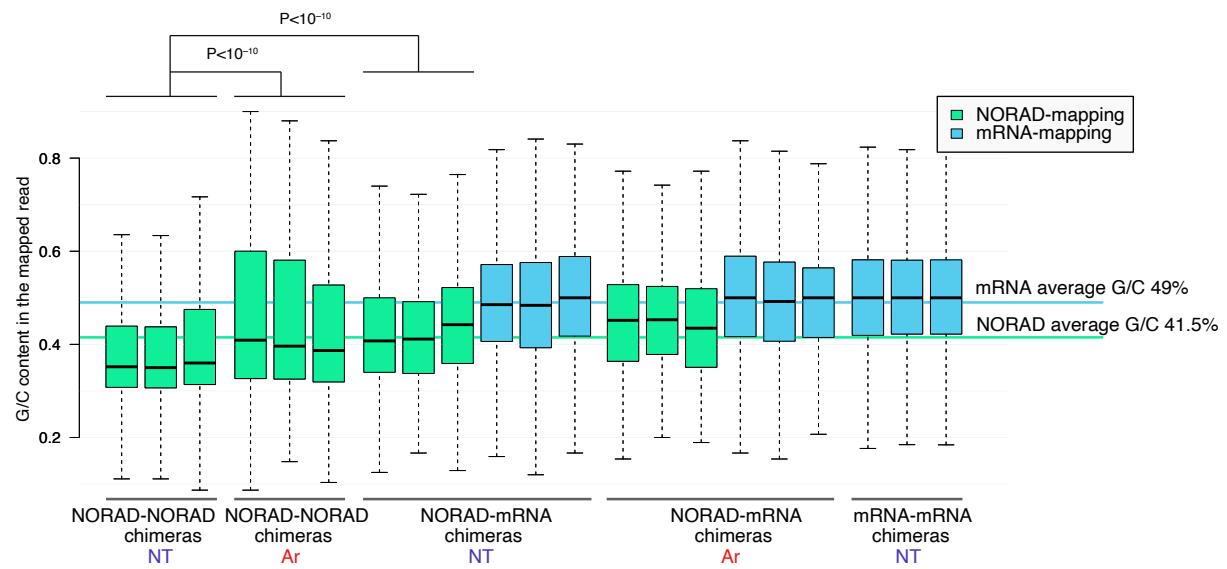









D

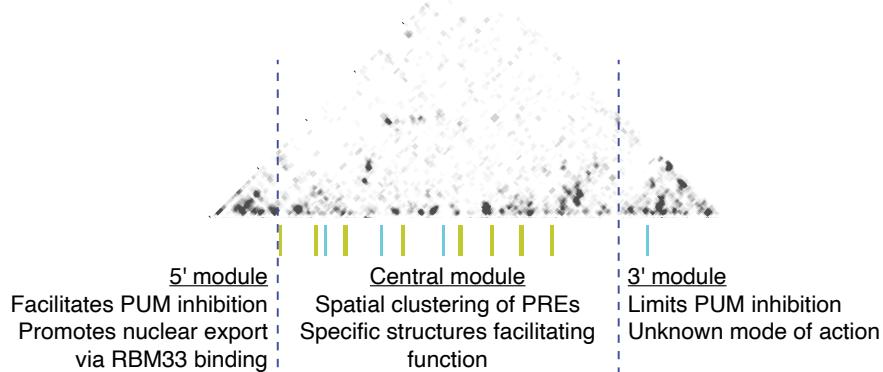


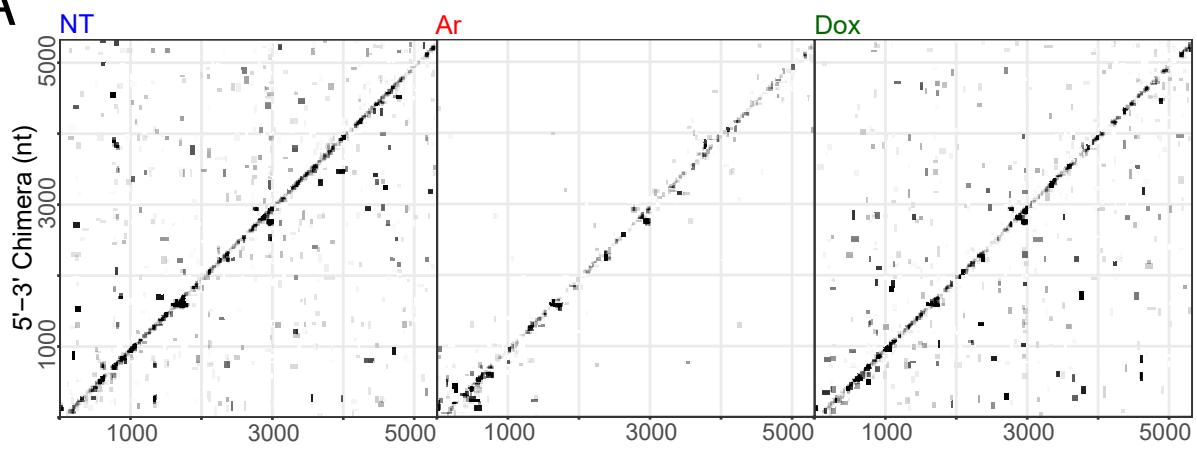
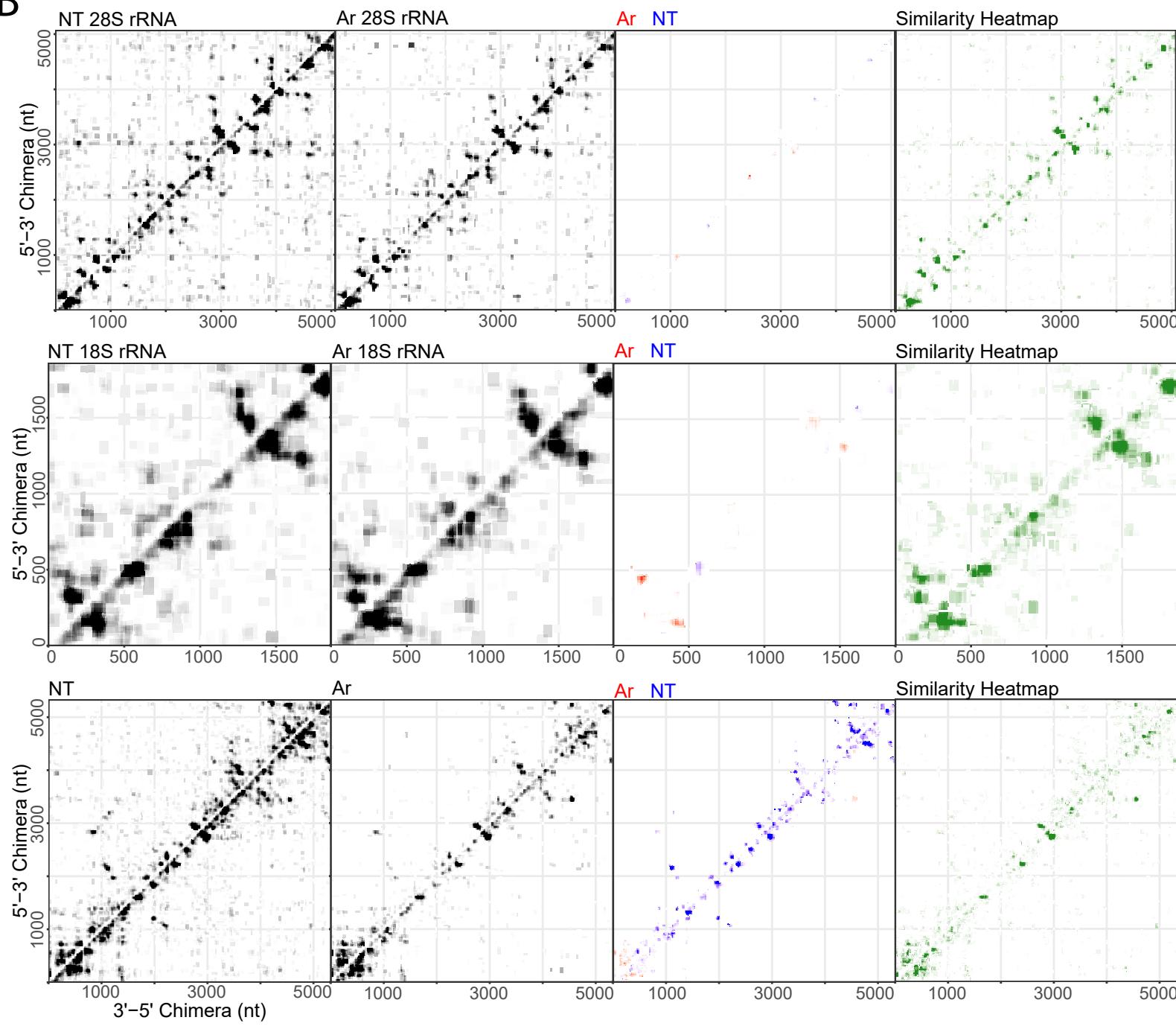

A

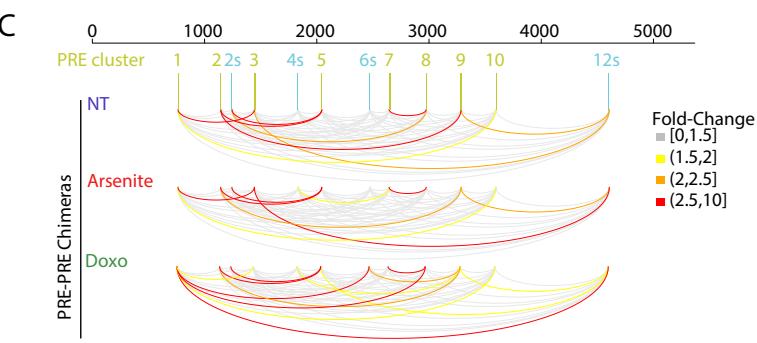
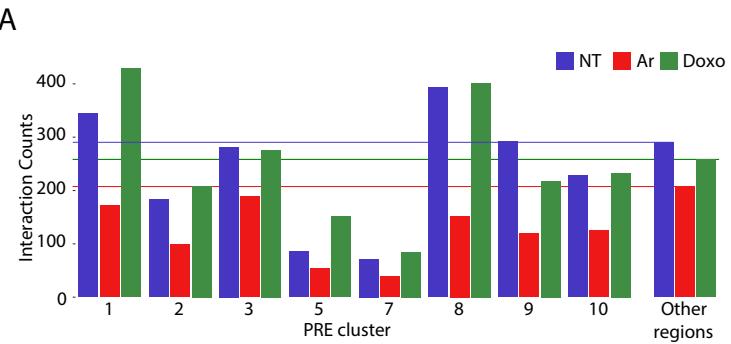

B

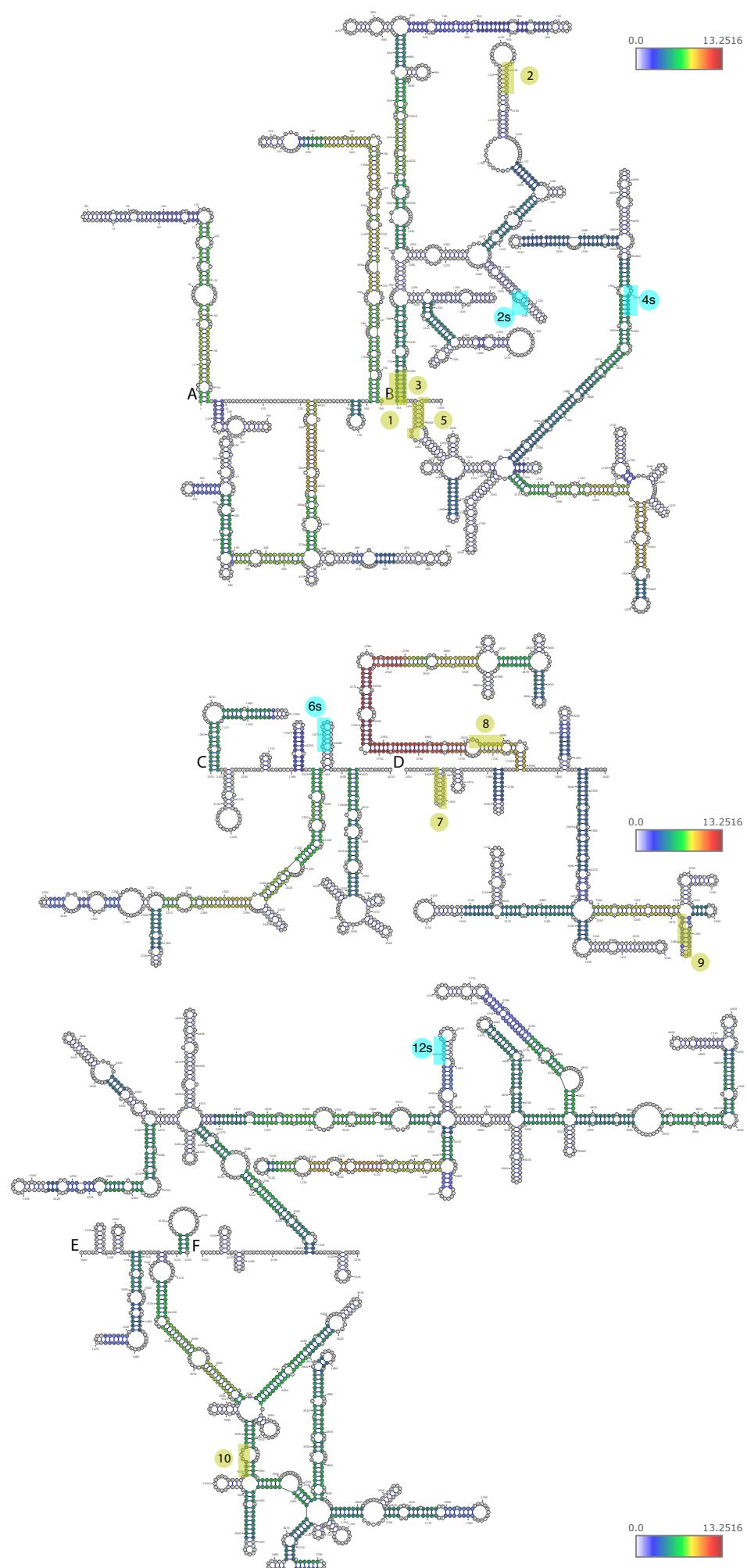

C

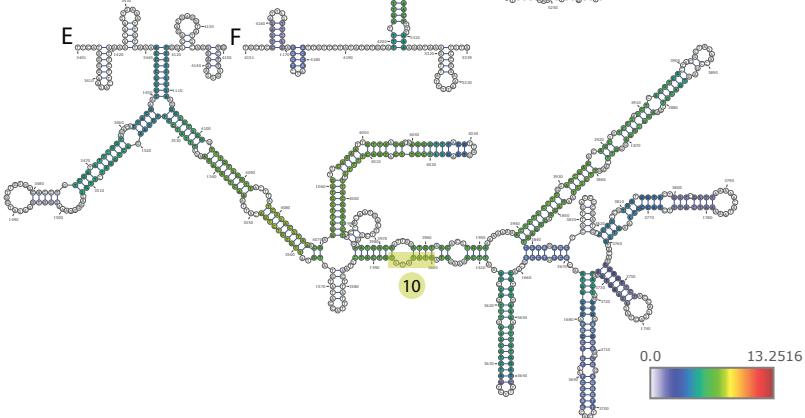
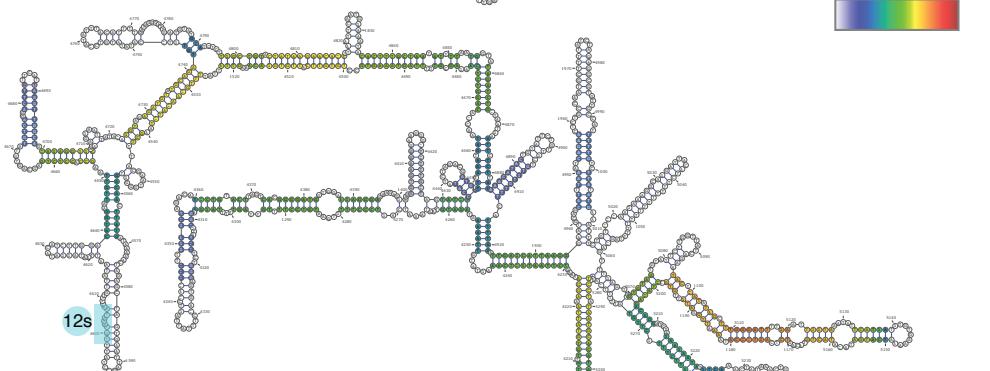
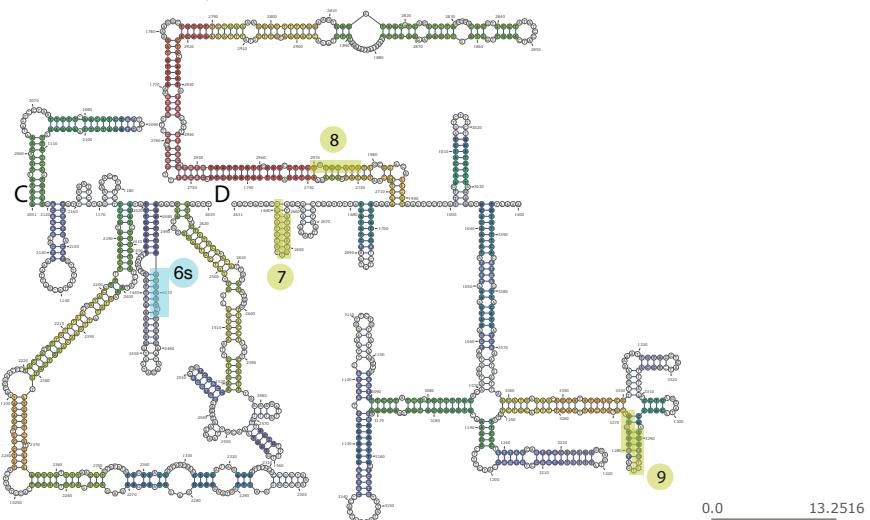
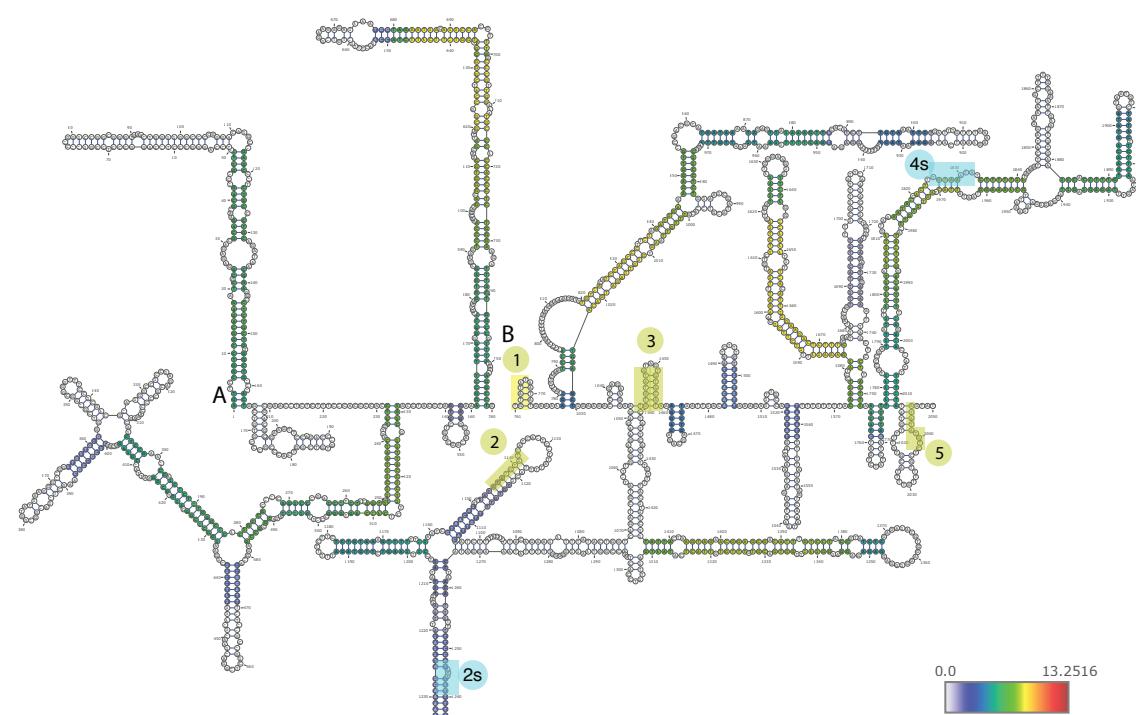

D

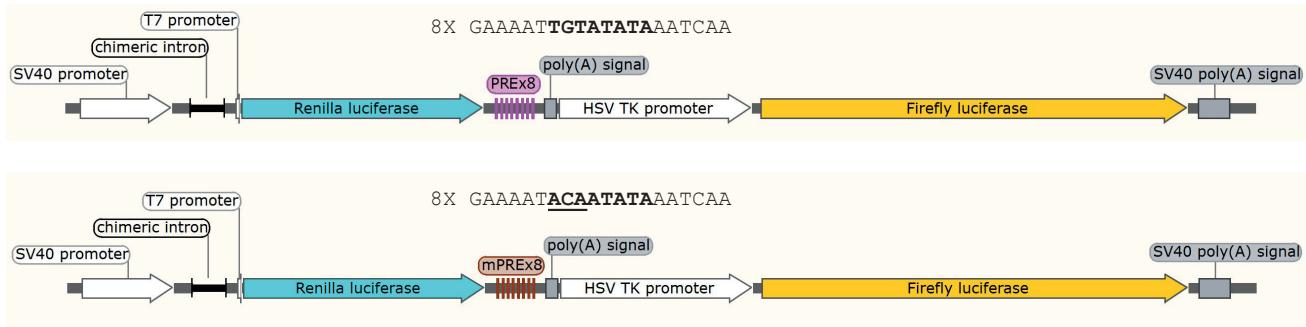

E

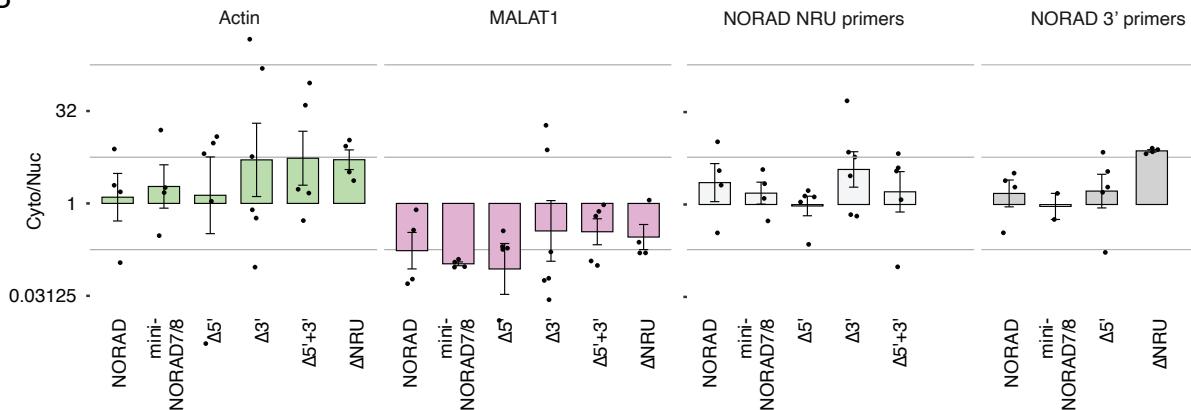



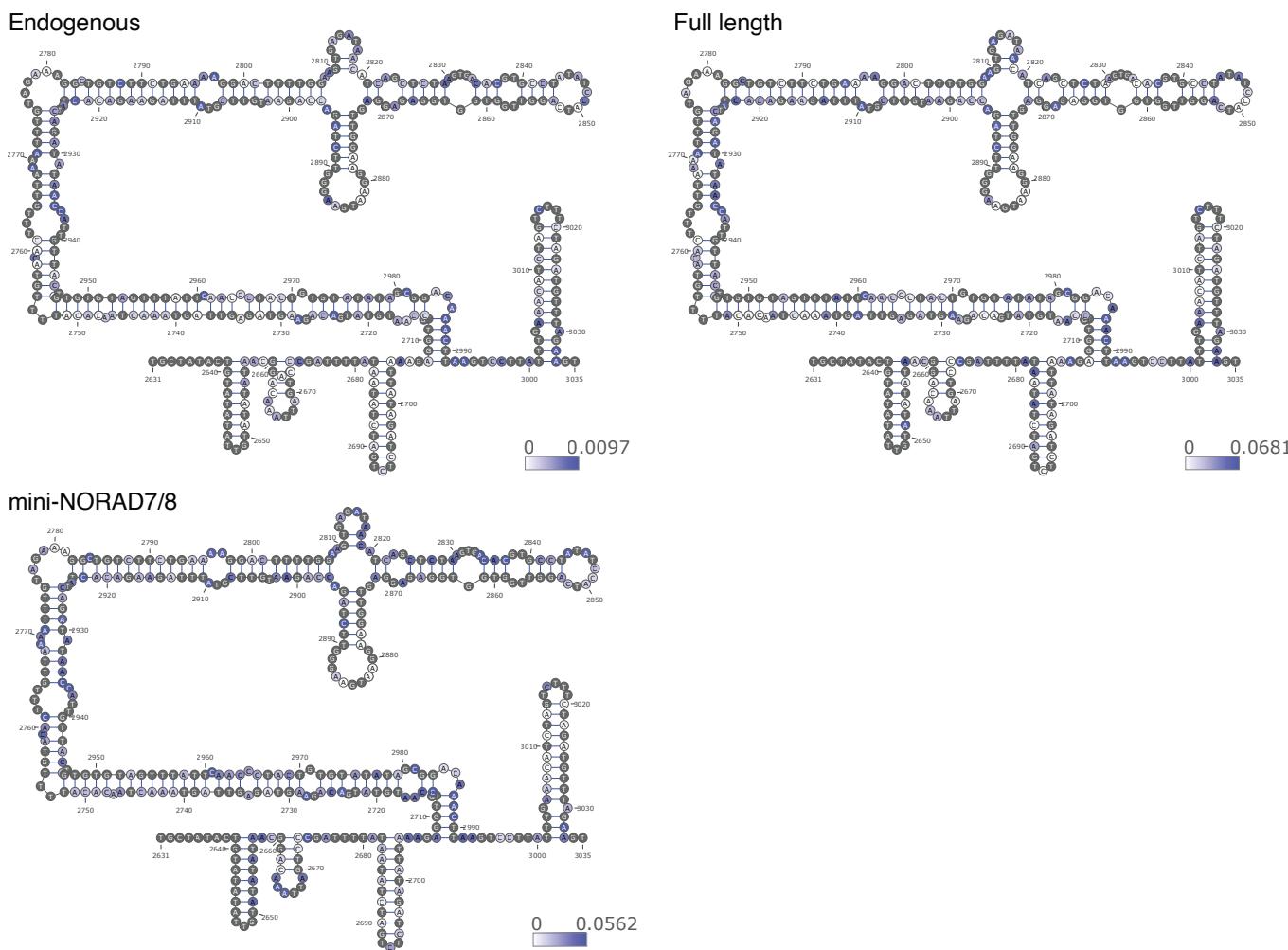


F

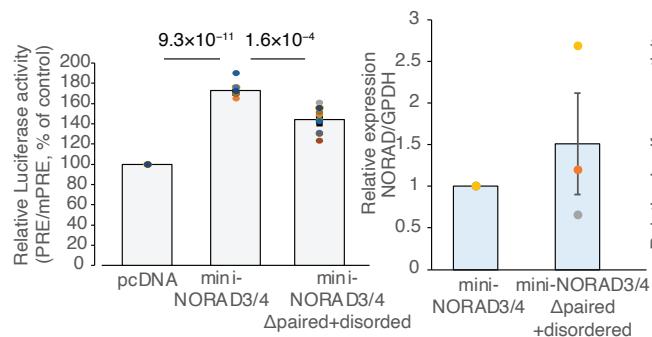


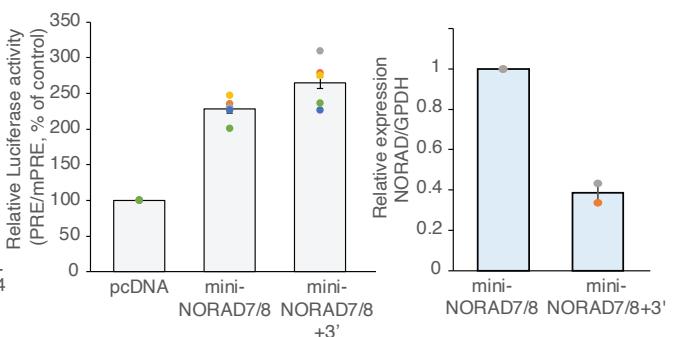




G

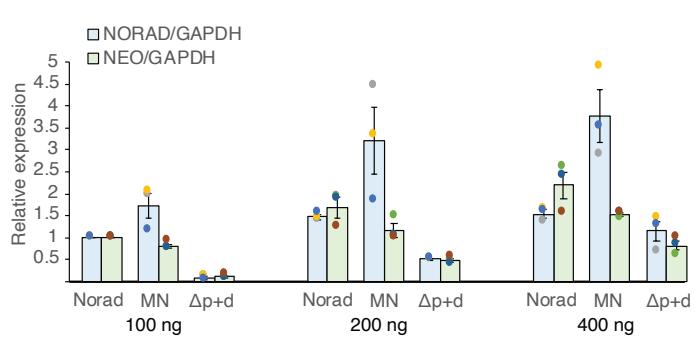
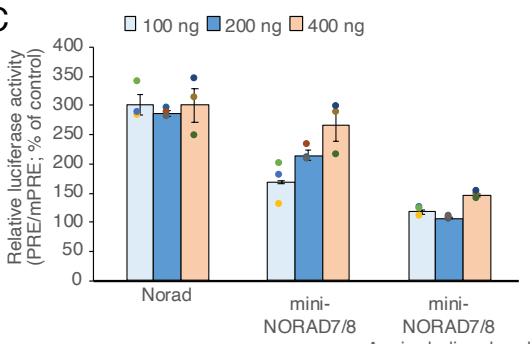

A**B**

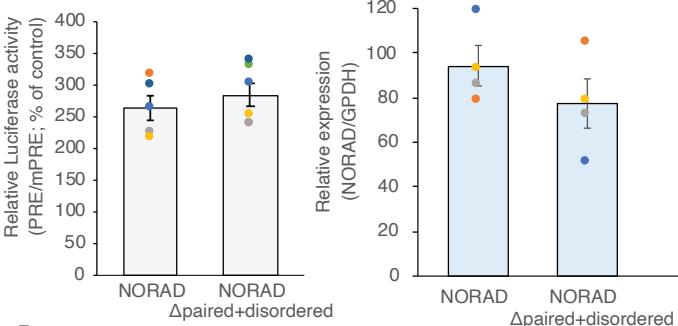


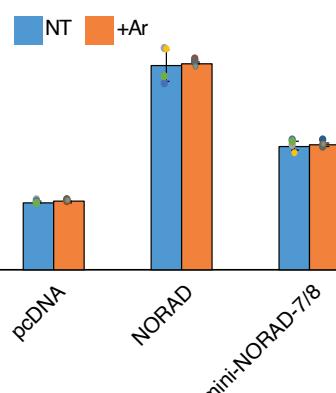

A

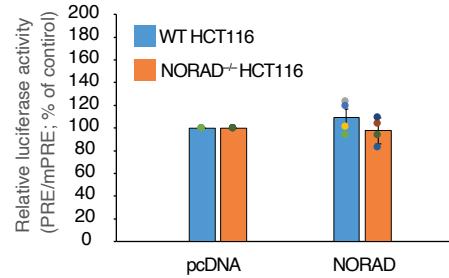

B

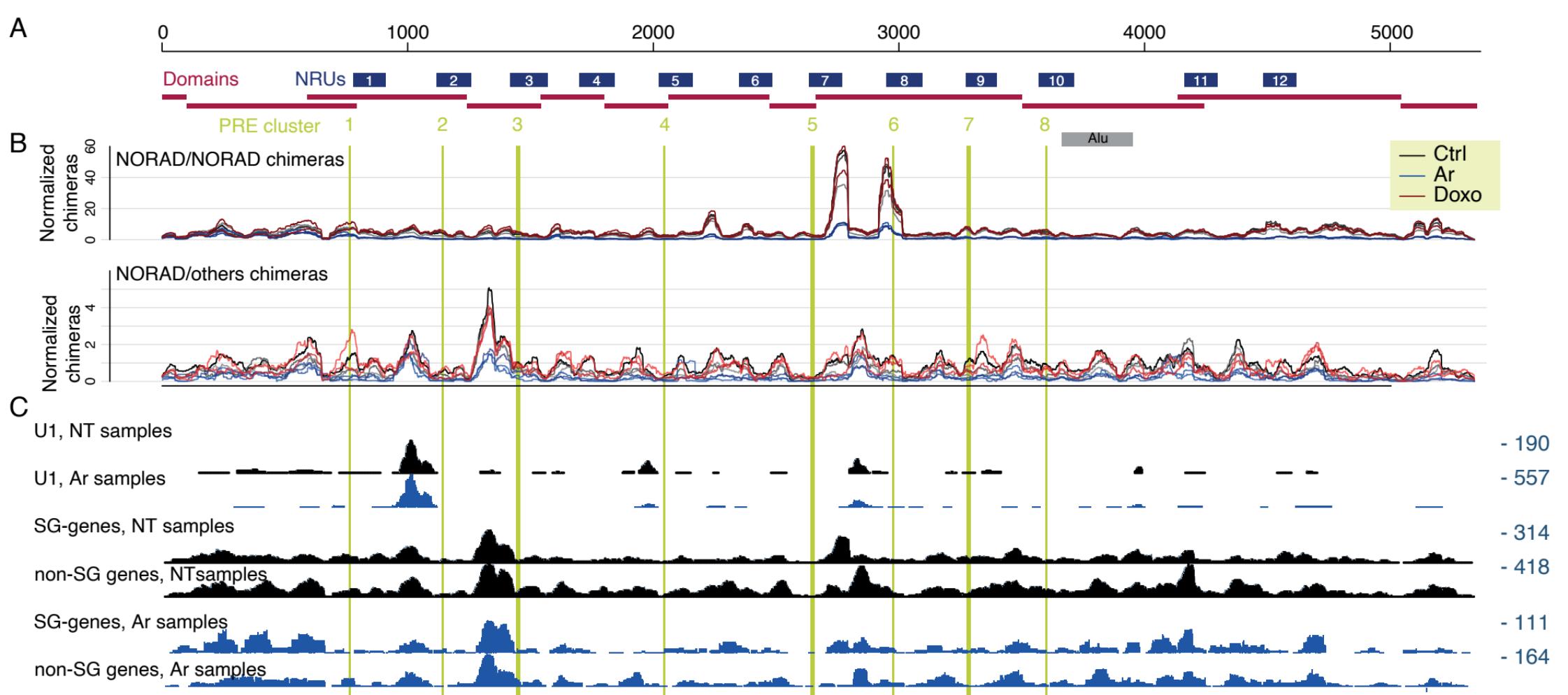

C



A


B


C


D



E

F

