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Abstract

High-content image-based cell phenotyping provides fundamental
insights into a broad variety of life science disciplines. Striving for
accurate conclusions and meaningful impact demands high repro-
ducibility standards, with particular relevance for high-quality
open-access data sharing and meta-analysis. However, the sources
and degree of biological and technical variability, and thus the
reproducibility and usefulness of meta-analysis of results from
live-cell microscopy, have not been systematically investigated.
Here, using high-content data describing features of cell migration
and morphology, we determine the sources of variability across
different scales, including between laboratories, persons, experi-
ments, technical repeats, cells, and time points. Significant techni-
cal variability occurred between laboratories and, to lesser extent,
between persons, providing low value to direct meta-analysis on
the data from different laboratories. However, batch effect
removal markedly improved the possibility to combine image-
based datasets of perturbation experiments. Thus, reproducible
quantitative high-content cell image analysis of perturbation
effects and meta-analysis depend on standardized procedures
combined with batch correction.
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Introduction

High-content cell imaging enables great advances in many life sci-

ences fields, such as cell biology, biomedicine, and drug develop-

ment. Modern microscope setups can generate vast amounts of

high-resolution data, rich across multiple dimensions, including

high spatial and temporal resolution, to differentiate cell structures

in a multiplex manner and to spatially resolve and quantify gene or

protein expression, as well as the effects of drug perturbation

(Boutros et al, 2015; Bray et al, 2016). Accompanying these techno-

logical advances, initiatives have emerged to host and make image-

based datasets publicly available to the research community, includ-

ing but not limited to the Image Data Resource (IDR; Williams

et al, 2017), BioImage Archive (Hartley et al, 2022), OpenCell (Cho

et al, 2022), OpenOrganelle (Xu et al, 2021), Allen Cell Explorer

(Viana et al, 2023), the JUMP Cell Painting consortium (Chandrase-

karan et al, 2021), and the Human Protein Atlas (Uhlen et al, 2015).

These platforms have improved the standards for data reporting,

with more transparent datasets made available in a sustainable

manner (Williams et al, 2017; Swedlow et al, 2021). However, to

further consolidate reproducible microscopy research, retrieving

and cross-correlating image data accessible from different laborato-

ries is required to reuse the data for secondary purposes and to per-

form meta-analysis studies. An obstacle to this is that we so far lack

guidelines and rules for implementation and reuse of high-content

imaging data from different sources and, arguably, variability in

procedures. Consequently, the data variability between laboratories

typically lack standardization and are not suitable for high-quality

meta-analysis studies (Zaritsky, 2018).

Other types of complex data in the life sciences have for long been

shared and extensively reused. As examples, multiple studies have
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addressed the reproducibility of data produced by different laborato-

ries, for instance of mass spectrometry and RNA-seq based data

(Addona et al, 2009; ’t Hoen et al, 2013; Collins et al, 2017; Giraldez

et al, 2018).

We recently made efforts to standardize cell migration research

(Masuzzo et al, 2015a, 2015b; Gonzalez-Beltran et al, 2020). Here,

we present a study by five laboratories, in which we quantified the

sources of variability at different scales in high-content imaging data

of migrating cancer cells in 2D (three independent laboratories) and

3D (two independent laboratories) environments. Cell migration

includes critical dynamic features that change over time, and thus

entails a higher complexity as compared to imaging data of fixed

features. Importantly, the highest technical variability occurred

between laboratories, and to lower extent between persons,

preventing direct high-quality meta-analysis of the primary data.

However, in perturbation experiments, the variability could be over-

come by a batch effect removal approach to achieve reliable meta-

analyses of image-based datasets from different sources.

Results

2D live cell imaging design and performance

To quantify the sources of variability, a live cell imaging design of

cell migration on a 2D surface was replicated in a multilevel, nested

structure. Migration behavior of HT1080 fibrosarcoma cells, stably

expressing LifeAct-mCherry and H2B-EGFP, on a collagen-coated

glass surface was recorded using automated fluorescent light micro-

scopes equipped with an environmental chamber. A detailed com-

mon protocol (Appendix Protocol S1, and Movies EV1 and EV2) was

designed and distributed to all participating laboratories as well as

the cell line and all key reagents, aiming at minimizing the biologi-

cal and technical variance. The design involved three independent

laboratories, three persons at each laboratory, three independent

experiments by each person, two conditions (control and ROCK

inhibitor) in each experiment, and three technical replicates in each

condition (Fig 1A). In each technical replicate, around 50 cells were

imaged in 5-min intervals for 6 h (Fig 1B). Experiments were carried

out independently by the three participating laboratories, and devia-

tions from the original protocol were kept for the record, including

independent microscopy platforms, objective specifications, control

hardware for climatization of the cell cultures during microscopy,

reagent differences, as well as how strictly the protocol was

followed (Dataset EV1). All microscope-derived images were trans-

ferred to the Strömblad laboratory for processing, quantification,

data processing, and statistical analysis. This uniform data analysis

secures identical post-experiment data processing and allows to

uncover sources of variability in the experimental procedures.

Data description

For all image time sequences, cellular and nuclear variables were

automatically extracted using CellProfiler by the same cell segmen-

tation and tracking strategy, followed by Matlab processing to define

protrusion, retraction, and short-lived cell regions (Kowalewski

et al, 2015) based on the CellProfiler-derived cell masks (see Mate-

rials and Methods section for details). The raw images, CellProfiler

pipeline, and Matlab scripts have been shared in the SciLifeLab Data

Depository. The CellProfiler pipelines for each laboratory and the

Matlab scripts are also available in GitHub (https://github.com/

hujianjiang/Variability) and the raw images are also available in the

BioImage Archive (https://www.ebi.ac.uk/bioimage-archive) under

accession number S-BIAD657. As a result, a total of 18 variables

describing either morphological or dynamic features of the cell or

the nucleus were obtained and further analyzed. Results accounted

for the evolution of each variable over time, for each laboratory,

person, experiment, and technical replicate (Fig 1C and Appendix

Fig S1A–Q), were displayed to identify differences in the magnitude

or trends of the described variables at these different levels.

Z-score standardization was applied to all features, and subse-

quent principal component analysis (PCA) was performed in order

to maximize and visualize the variability. The first two principal

components represent > 60% of the variability in the observations

(Appendix Fig S2A and B). By combining all observations, we found

that the data concentrate around the mean value and dissipate pro-

gressively from there, without apparent differentiated clustering of

observations in the PCA space (Fig 2A; Gordonov et al, 2016).

Observations with different cell shape or the same cell at different

time points locate at different places of the PCA space (Fig 2B and

C). Differences in data localization, variability, and clustering were

detectable by 2D principal component analysis representing varia-

tions among technical repeats, experiments, persons, or laboratories

(Fig 2D and Appendix Fig S3A–C).

Variability sources

We have used a Linear Mixed Effects (LME) model to quantify the

variability within each hierarchical level of the experiment structure

and to compare the variability across these levels. Linear Mixed

Effects is a linear regression-based statistical method to analyze data

by simultaneously modeling both fixed effects (in this case hierarchi-

cal levels) and random effects (in this case variation within each

level) (Goldstein, 1986; Bates et al, 2015; Hox et al, 2017).

▸Figure 1. Study design and initial results.

A Schematic of the study design. The study involved three independent laboratories, three persons in each laboratory, three independent experiments by each person,
two conditions (control or ROCK inhibitor) in each experiment, and three replicates in each condition. For each replicate, around 50 cells were imaged for 6 h in 5-
min time intervals. Eighteen variables were quantified from each image series.

B Example of acquired time lapse images. Left: stitched large image; right: cropped images of one cell at different time points. Scale bar: 100 lm.
C Quantification results of Instantaneous Cell Speed (ICS) over time for each laboratory (L1-3), person (P1–3), experiment (E1–3), and technical replicate (C1–3) in the

control condition. The different colors of the lines represent the data from three different experiments. Different style of the lines with the same color represent
the mean value of the data from three different technical replicates within one experiment. The error bar indicates the first and third quartiles of the data from all
the three experiments at each time point.

2 of 15 Molecular Systems Biology 19: e11490 | 2023 � 2023 The Authors

Molecular Systems Biology Jianjiang Hu et al

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on February 20, 2024 from

 IP 132.76.61.53.

https://github.com/hujianjiang/Variability
https://github.com/hujianjiang/Variability
https://www.ebi.ac.uk/bioimage-archive


Our LME modeling included a fixed intercept parameter and no

independent variables. It also contained a hierarchical structure of

nested levels of random intercepts. The random intercepts were

assumed to follow a normal distribution. The estimation of all the

parameters in the model was based on the maximization of the

likelihood function. We applied the model to the 18 considered vari-

ables and to the first and second principal components. From the

model, we obtained the variance components at each of the levels

(temporal, cell, technical replicate, experiment, person, and labora-

tory) for each variable (Appendix Fig S4A and B) and categorized the

Figure 1.
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Figure 2.

4 of 15 Molecular Systems Biology 19: e11490 | 2023 � 2023 The Authors

Molecular Systems Biology Jianjiang Hu et al

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on February 20, 2024 from

 IP 132.76.61.53.



sources of variability as biological or technical variability. Biological

variability originated from the cell identity (cells in a population dis-

play variability for a given variable) and temporal variation (the same

cell displays variability for a given variable when studied at different

time points). Technical variability originated from the technical repli-

cate, experiment, person, and laboratory. There was substantial bio-

logical variability within the cell population and for each cell over

time (Appendix Fig S4A–C), in part likely due to the existence of dis-

tinct cell migration modes within a cell population (Shafqat-Abbasi

et al, 2016). By aggregating the variabilities, we identified technical

sources to contribute 32% (median value) of the total variance across

all variables (Appendix Fig S4D). While proper study design in terms

of the sample size (number of cells, etc.) should take the inherent

biological variability into account to facilitate the detection of statisti-

cally discernable differences, the reproducibility of the data is defined

by their technical variability. Importantly, among the technical vari-

ability, lab-to-lab variability was found to be the major source,

followed by person, experiment and replicate, but with different rela-

tive contributions among different variables (Fig 3A–C).

We then determined the source of technical variability in more

detail at each level. We computed the cumulative variability deriv-

ing from technical sources when adding additional levels to a hypo-

thetical experimental design with increasing complexity (Materials

and Methods and Appendix Table S1). For this, based on all the pos-

sible subdatasets that fulfilled the specified criteria ensuring dataset

integrity, we observed a relatively smooth increase in variability

due to technical sources that progressed with increased number of

technical replicates, experiments, and persons. However, impor-

tantly, the cumulative variability was almost doubled when data

from two laboratories were combined. Adding a third laboratory to

the dataset did not substantially increase the cumulative variability

(Fig 3D and E, and Appendix Fig S5).

Batch effect removal

Inspired by the extensive research in RNA-seq and image-based

drug screen experimental designs to measure and correct for batch

effects (’t Hoen et al, 2013; Giraldez et al, 2018; Chandrasekaran

et al, 2021), we applied a similar approach to our study to curate

the variability. For this, the LME model was computed using the

complete dataset (both control and ROCK inhibition conditions),

keeping the same random effects as previously used and including

the control or ROCK inhibition as fixed effect.

We conducted this approach to the Instantaneous Cell Speed

(ICS, Fig 4A) and to the first and second Principal Components of

all variables (Fig 5A). For each observation, we computed and dis-

criminated the effects derived either from random effects (derived

from the laboratory, person, experiment, or technical replicate) or

from the fixed effect (ROCK inhibition; Shafqat-Abbasi et al, 2016).

The results clearly show that this approach allows for an unambigu-

ous discrimination between the control and treatment conditions,

therefore showing that the experimental variability in cell migration

experiments can be addressed in order to better discriminate the

effect of a given perturbation (Figs 4A and B, and 5A and B, Appen-

dix Fig S6A–D). The batch-effect-removed data showed a robust

increase in ICS as a result of the perturbation in the data from all

three laboratories. In comparison, only laboratory #1 produced a

similar-sized increase as without batch effect removal, while the

other laboratories displayed small differences. Thus, the direct com-

parison of data from cell migration experiments among our labora-

tories, each highly experienced in cell migration designs and

experiments, could lead to discordant conclusions on the perturba-

tion effect. The variance of the data generated in the same labora-

tory by different persons could also be reduced with the batch effect

removal strategy (Appendix Figs S7A–C, S8A–C and S9A–C). This

◀ Figure 2. Principal component analysis of the initial results.

A Principal component analysis results of all variables extracted from the entire data. Gray dots show the position of the first and second principal components for all
of the observations from the control condition (untreated cells). Each observation is the status of one cell at one time point. Inset marks the density of the
observation dots.

B Visualization of cell shapes at different locations of the PCA space. Gray dots show the position of the first and second principal components for each observation.
Representative cell shapes at specific locations in the PCA plot are shown in magenta.

C The locations of the same cell at different time points within the PCA plot. Gray dots show the position of the first and second principal components for all of the
observations from the control condition (untreated cells). Orange and blue dots show the locations of two different cells (dash circled in b) in the PCA space at
different time points.

D Principal component analysis results shown for each person (P) in each laboratory (L). Black dots show the position of the first and second principal components for
all of the observations from the control condition (untreated cells). Each observation is the status of one cell at one time point. Colored lines show the 2D density
plots of the technical replicates, where lines with different colors in the same plot represent different experiments. The principal component space is identical in all
the plots.

▸Figure 3. Lab-to-lab variance contributes the most to the technical variance.

A, B Variance components of each variable from all technical levels based on the Linear Mixed Effect (LME) model analysis. (A) absolute value; (B) relative value.
C Boxplot of the absolute variance components of all the variables from technical replicate, experiment, person, and laboratory levels based on the LME model

analysis. Each dot represents one variable within the corresponding variance level. All of the 18 variables are plotted at each level.
D, E Cumulative variability of Instantaneous Cell Speed (ICS) (D) and first principal component (E) at the levels of technical replicate, experiment, person, and laboratory.

Boxplots show variances with two or three replicates, experiments, persons, or laboratories, calculated at each level. Red dots show the mean value of the
cumulative variance that are linked with red lines. As a control, cyan dots and lines show the cumulative variance of the same data after randomization.

Data information: For the boxplots in (C–E), in each box, the central mark indicates the median, and the bottom and top edges of the box indicate the first quartile and
third quartile, respectively. The whiskers extend to the most extreme data points not considered outliers. The data between the first quartile �1.5*interquartile range
and third quartile +1.5*interquartile range are considered not outliers.
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highlights the importance for image-based quantitative studies of

statistical methods for batch effect removal, which have recently

been implemented in image-based screening (Chandrasekaran

et al, 2021).

Validation of batch effect removal in 3D cell migration

We also applied the batch effect removal approach to a 3D cell

migration dataset generated from two independent laboratories with

Figure 3.
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a similar strategy as for the 2D cell migration experiment (Appendix

Fig S10A–C and Fig 6A). The difference of migration distance of the

cells in response to low- (2.5 mg/ml) or high-density (6 mg/ml)

concentration of polymerized 3D fibrillar collagen was already

reliably discriminated comparing the raw data (Appendix Fig S11A),

as previously described (Wolf et al, 2013). However, significant lab-

to-lab variance of results within each test group was still observed

(Fig 6B left). Also in this case, the batch effect removal processing

Figure 4.
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◀ Figure 4. Batch effect removal dramatically reduces the variance of Instantaneous Cell Speed (ICS).

A ICS distribution before (top) and after (bottom) batch effect removal on control (C – black) and perturbed (ROCK inhibition; T – red). Boxplots display ICS observations
for each replicate, sorted by increasing value of the mean. Control and perturbation conditions are shown in black and red respectively. Laboratories in which each
replicate was performed are color coded below the boxplots. Each replicate includes results from ~50 cells, and each cell has results from 72 time points.

B ICS values and variance before (left) and after (right) batch effect removal. Boxplots are based on mean ICS of each technical replicate from control and perturbed
conditions in different laboratories. Laboratories are color coded, while the aggregate results from all labs are shown in black (control) and red (perturbed). The
numbers below the corresponding boxplot show mean � standard deviation of the aggregated control/treated results from all labs. The experiments were repeated
in three labs, three persons in each lab, three experiments by each person, and three technical replicates in each experiment.

Data information: For the boxplots in (A and B), in each box, the central mark indicates the median, and the bottom and top edges of the box indicate the first quartile
and third quartile, respectively. The whiskers extend to the most extreme data points not considered outliers. The data between the first quartile �1.5*interquartile
range and third quartile +1.5*interquartile range are considered not outliers.

Figure 5. Batch effect removal dramatically reduces the variance of principal component data of 2D cell migration data.

A Heatmap of the distance matrix before and after batch effect removal at technical replicate level. The heatmaps show average values of the distance matrix between
1st and 2nd Principal Components per lab, person, experiment, condition, and technical replicate before (left) and after (right) batch effect removal. Each row/column
corresponds to one technical replicate. Sorting based on hierarchical clustering.

B Batch effect removal in principal component data of 2D cell migration data at the technical replicate level. Technical replicate of first and second Principal
Component average values before (left) and after (right) batch effect removal are shown in the same PCA space. Each dot represents one technical replicate. Results
from different laboratories/conditions are color coded as indicated.
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Figure 6. Batch effect removal dramatically reduces the variance of the 3D cell migration data.

A Sample images of the produced 3D cell migration datasets by Lab 4 and Lab 5. HT1080 cells were seeded in the collagen condition 2.5 vs. 6.0 mg/ml. Bar: 100 lm.
B Batch effect removal in 3D cell migration (3D spheroid invasion) data. Boxplots are based on the mean 3D cell migration distance of the technical replicates of the

HT1080 cells embedded in different concentrations of collagen before (left) and after (right) batch effect removal. Different ECM concentrations are shown in black
(2.5 mg/ml) or red (6 mg/ml) and data from different laboratories are indicated with green (Laboratory #4) and magenta (Laboratory #5). The aggregated 2.5 or 6 mg/
ml results from both laboratories are shown with the corresponding boxplots. In each laboratory, the experiments were repeated three times with three technical
replicates in each experiment. Each technical replicate contains at least three different spheroids. For the boxplots, in each box, the central mark indicates the
median, and the bottom and top edges of the box indicate the first quartile and third quartile, respectively. The whiskers extend to the most extreme data points not
considered outliers. Data between the first quartile �1.5*interquartile range and third quartile +1.5*interquartile range are considered not outliers.
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significantly reduced the variance and provided a more robust

detection of increased migration distance in lower-density 3D colla-

gen (Fig 6B right and Appendix Fig S11B).

Discussion

The emerging increase in high-content imaging data sharing pro-

vides opportunities for data reuse and meta-analysis. For exam-

ple, the BioImage Archive stores and distributes biological images

from any imaging modality (Hartley et al, 2022) and the IDR

combines data from multiple resources and integrates them into a

single resource for reanalysis in a scalable form (Williams

et al, 2017). However, the usefulness of these opportunities

remains largely untested, and the sources of variance within this

type of data need to be characterized. In this study, we found

that variation between laboratories is the major source of techni-

cal variance in high-content imaging data of cell morphology and

migration features. This outcome suggests that, although the

experimental design was idealized including sharing of a detailed

protocol, cells and reagents, standardizing details such as cell

passaging prior to the experiment, cell density prior to seeding

for migration, the type of fetal bovine serum, and cumulative pas-

sage number of cells, the lab-to-lab variance currently limits the

value of meta-analysis of the basic high-content cell image data.

This lab-to-lab variance may at least in part be explained by

observed local variations in equipment and practices, including

use of different microscopes and their differences in what imaging

plates could be harbored, and lab-to-lab differences of cell density

apparent in the images, despite that the same standard method

was used for cell quantification.

Importantly, however, we show that application of a batch

effect removal approach significantly reduced the technical vari-

ance at all levels and provided useful meta-analysis of perturba-

tion effects in both 2D and 3D spheroid culture models performed

in different laboratories, at least under our highly standardized

conditions. Similar batch effect removal approaches have been

important for meta-analysis in other fields and data types, such

as from RNA-sequencing and peptide-centered proteomics via

mass spectrometry (Leek et al, 2010; Gregori et al, 2012; Tran

et al, 2020). The batch effect removal strategy has also started to

be applied in image-based screening (Chandrasekaran et al, 2021;

Walton et al, 2022). However, no standard batch effect method

has yet been widely established for image analysis. The LME-

model-based batch effect removal performed well in this study,

but was not compared with alternative statistical methods. Fur-

ther studies would be useful that focus on the applicability of dif-

ferent batch effect removal methods on different types of real-

world imaging-based data.

The present study, although it entailed a high degree of standard-

ization, indicates that the usefulness of high-content image data

meta-analysis is currently limited to the study of perturbation

effects, and for which batch effect removal is necessary. Further

studies are therefore needed to define the usefulness of meta-

analysis using different cell models and perturbations and in partic-

ular upon use of more typical high-content image datasets that are

more loosely standardized than ours and that often differ not only

in their precise design, but also in study purpose and aim.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or Source
Identifier or Catalog
Number

Experimental Models

HT1080 cells (H. sapiens) DSMZ Braunschweig ACC315

HT1080 cells stably expressing Lifeact-mCherry & H2B-EGFP (H. sapiens) Friedl Lab N/A

Antibodies

Primary antibody YAP, rabbit mAb IgG (D8H1X) Cell Signaling Technology #14074

Isotype control, rabbit mAb IgG (DA1E) Cell Signaling Technology #3900

Goat-anti-rabbit IgG1 AlexaFluor488 Thermo Fischer Scientific A11034

Chemicals, Enzymes and other reagents

High glucose DMEM Gibco 41965-039

FBS Gibco 10270-106

Sodium pyruvate Gibco 11360070

Penicillin/streptomycin Gibco 15140-122

DMSO Sigma D2640

Trypsin (10×) Life Technology 15400-054

T-75 flask SARSTEDT 83.3911.002

T-25 flask SARSTEDT 83.3910.002
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source
Identifier or Catalog
Number

18G syringe needle KDM 900444

6-well plate FALCON 353046

96-Imaging Plate CG (Cover Glass) Mo Bi Tec 5241-20

Collagen I Corning 354249

Heat denatured 0.5% BSA Sigma A2153

Y27632 (ROCK inhibitor) BD 562822

DAPI Sigma D9542

AlexaFluor633-Phalloidin Molecular Probes A22284

Bovine Serum Albumin (BSA), Fraction V biomol 1400

Purecol Bovine Collagen Solution (Type I) Cell Systems 5005-100ML

Methyl cellulose Sigma M6385

DMEM (Dulbecco Modified Eagle Medium, High Glucose) Gibco/Thermo Fischer Scientific 10938-025

Fetal calf serum (FCS) Sigma F7524

EDTA Invitrogen/Thermo Fischer Scientific 15575020

15-cm culture dish Greiner Bio-one 639160

96-well imaging plates (l-Plate 96 Well, cell culture surface coating,
sterile)

Thermo Scientific NUNC #165305

Software

MATLAB Mathworks

CellProfiler (v2.2.0) https://cellprofiler.org/

ImageJ https://imagej.nih.gov/ij/index.html

Nucleus Annotation 3D (NA) plugin https://github.com/Mverp/Nucleus-Annotation-
3D

Cell Migration Analyser 3D (CMA) plugin https://github.com/Mverp/Cell3DMeasurements

R (v4.1.2) https://www.r-project.org/

Other

Nikon A1 plus confocal microscope Nikon

Wide field Delta Vision microscope Delta Vision

Zeiss LSM780 confocal microscope Zeiss

Zeiss LSM880 Zeiss

Methods and Protocols

Cell culture and imaging
2D cell migration

We developed highly detailed protocols for cell culture and

seeding for live cell imaging that was shared and used for all

experiments (see Appendix Protocol S1). Briefly, the Friedl labo-

ratory provided HT1080 cells stably expressing LifeAct-mCherry

and H2B-EGFP (before sharing, the Sahai laboratory performed

the standard cell authentication procedure on this cell line by

comparing its STR profile to the public database). Mycoplasma

infection was excluded prior to the experiments. Cells were cul-

tured with high glucose DMEM supplemented with FBS (10%),

sodium pyruvate (1 mM), and penicillin/streptomycin (100 U/

ml). Cells were passaged at ~80–90% confluence, up to passage

number 20. One day before imaging, 2 × 105 cells were seeded

onto one well of the six-well plates and left overnight in the

incubator. On the experimental day, the assay wells were pre-

pared as follows:

1 100 ll of 20 lg/ml collagen I was added to each of six wells in a

96-well imaging plate or chambered coverslip and incubated at

37°C for 2 h.

2 The supernatant was discarded by flipping the plate upside

down and subsequently, each well was incubated at 37°C for

20 min with 100 ll of heat denatured 0.5% BSA for

blocking.

3 500 cells in 100 ll of serum-free culture medium were seeded in

each of the six individual wells of the 96-well imaging plate or

chambered coverslip, ensuring homogeneous cell distribution by

tapping the plate or chambered coverslips in perpendicular

directions.

4 After 10 min, during which cells attached to the well bottom, the

imaging plate was incubated at 37°C and 5% CO2 for 2.5 h.
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For the live cell imaging, we used multidimensional automatized

microscopes with an environmental chamber to keep temperature,

humidity, and CO2 constant. Prewarmed media with or without

ROCK inhibitor (Y27632, final concentration at 15 lM) was added

before the start of imaging. A 20× 0.75 NA objective was used and

tiled images (5 × 5) were generated to capture a large area in each

well. The images were acquired in 5-min interval for 6 h.

The detailed protocol is attached in the Appendix Protocol S1

and Movies EV1 and EV2. Any deviations from the distributed pro-

cedure were recorded and summarized (Dataset EV1).

3D spheroid invasion assay (3D cell migration experiment)

We developed a detailed workflow for a 3D spheroid invasion assay

that was shared and used for all experiments performed at two dif-

ferent locations. For detailed protocols for 3D spheroid culture and

labeling, imaging, and image analysis, see Appendix Protocols S2–

S4, respectively.

3D spheroid culture and labeling Briefly, the Friedl laboratory pro-

vided HT1080 cells. Before sharing among the two groups, the Sahai

laboratory validated this cell line by comparing its STR profile to the

published ones. Mycoplasma infection was excluded prior to the

experiments. Cells were cultured in T75 flask with 10% CO2 at

37°C. 3D spheroid culture and labeling were performed as follows:

1 Multicellular spheroids containing 1,000 HT1080 cells were gener-

ated using hanging-drop culture method (Del Duca et al, 2004).

2 The spheroids were embedded in rat-tail collagen I (Corning, Cat

no. 354249), in up to 18 wells of 96-well imaging plates per colla-

gen concentration, using 1 spheroid per gel and a final collagen

concentration of 2.5 or 6 mg/ml. Former protocols for spheroid

embedding (Wolf et al, 2013; Haeger et al, 2014) were adapted to

have control over the number of spheroids per well, spheroid

height with respect to imaging window and the onset of collagen

polymerization, to minimize variation between technical repeats

per plate.

3 Plates were incubated for 24 h at 37°C to establish cancer cell

invasion in three dimensions, prior to fixation in 4% PFA.

4 The 3D cell cultures were fluorescently stained with DAPI (Sigma,

D9542, 2 lg/ml) and AlexaFluor633-Phalloidin (Molecular

Probes, A22284, 1:200 dilution) and stored (preferably for

< 48 h) at 4°C prior to imaging.

3D spheroid microscopy imaging

1 The lower left corner of the spheroid was positioned in the scan

field, with the border of the spheroid core touching the image

border (see details in Appendix Protocol S3).

2 A z-range of up to 120 lm was used to image from z = 1/2 to

z = 4/5 of spheroid dimensions.

3 Transmission, reflection and fluorescence channels were recorded

sequentially at 8-bit resolution. The laser power was set close to

the saturation limit of the dye. The detector amplification (high

voltage) was set in such a manner, that the brightest cells in

migration zones made use of the full digital detection range.

4 In both laboratories, imaging was performed using a Zeiss

LSM880 equipped with a 20× 0.8 NA objective. The following

microscope parameters were used: scan field 708.5 lm2, pixel

size 1.2 lm, pixel dwell time 1.3 ls, z-step size 2 lm and line

averaging 3.

The metadata of the 2D and 3D images were also recorded and

saved based on the Minimum Information About Cell Migration

Experiments (MIACME) reporting guideline, which is being devel-

oped by the Cell Migration Standardization Organization (CMSO;

Gonzalez-Beltran et al, 2020). The metadata are available together

with the raw images at the SciLifeLab Data Repository (https://doi.

org/10.17044/scilifelab.21407402) and the BioImage Archive

(https://www.ebi.ac.uk/bioimage-archive) under accession number

S-BIAD657.

Image processing
2D live cell imaging data

1 Images were converted from the original format to .tif format.

2 To generate large image composites, stitching was performed

either automatically during acquisition or via a custom-made

MATLAB script.

3 Images from different laboratories were resized to the same resolu-

tion (0.8260 lm/pixel), to allow proper further comparison.

4 A CellProfiler (v 2.2.0) pipeline was used to automatically seg-

ment and track cells and nuclei, and to extract 15 morphologi-

cal and dynamic variables from the raw images (shown in

Fig 3A). Because images from different laboratories were

acquired with different types of microscopes, Gaussian noise

with a mean of zero and a standard deviation of 0.00001 was

added to the wide field images from Laboratory 2 before the

cytoplasm segmentation to equalize the segmentation across

laboratories as much as possible. All the other CellProfiler

pipelines and parameters were the same across all the three

laboratories. The nuclei were identified as primary objects

using a global background thresholding method, while the

corresponding cytoplasm was identified as the secondary

object with an adaptive robust background thresholding strat-

egy and a watershed method to separate touching cells. The

identified cells were tracked based on the distances of nuclei

between time points. All the parameter details could be found

in the shared CellProfiler pipelines in the SciLifeLab Data

Repository and in GitHub (see specifics below).

5 In order to identify protrusions, retractions, and short-lived cell

regions, we compared consecutive, segmented cell images from

the CellProfiler analysis results using tailored Matlab scripts.

Protrusions were identified as regions present in a cell at a cer-

tain time point but absent in the previous. Retractions were

defined as regions present at one time point but absent in the

next time point. Short-lived regions are those regions that are

present at only one time point but not in the ones directly before

or after, corresponding to a lifetime of < 10 min (Kowalewski

et al, 2015).

The CellProfiler pipelines for each laboratory and the Matlab

scripts are available together with the raw images at the SciLifeLab

Data Repository (https://doi.org/10.17044/scilifelab.21407402). The

CellProfiler pipelines for each laboratory and the Matlab scripts are

also available in GitHub (https://github.com/hujianjiang/

Variability) and the raw images are also available in the BioImage

Archive (https://www.ebi.ac.uk/bioimage-archive) under accession

number S-BIAD657.
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3D spheroid invasion data

This workflow was implemented in Fiji as the Nucleus Annotation

3D (NA) and the Cell Migration Analyser 3D (CMA) plugin sets

(https://github.com/Mverp/Nucleus-Annotation-3D and https://

github.com/Mverp/Cell3DMeasurements) and was distributed to

two independent laboratories (RUMC and CRICK) for standardized

analysis of independent datasets from spheroid culture performed in

each laboratory independently (Appendix Protocol S4).

1 First, the outline of the spheroid core was defined by manually set-

ting four points far away from each other, in the 3D image stack

to be analyzed, at the spheroid border.

2 Based on the four points, the annotation program defined a sphere

in the dataset, which was used as a reference for migration dis-

tance from the spheroid core.

3 Then, the DAPI channel of the 3D image datasets was used for

nuclear segmentation, segments at the border were removed and

the distance of the center of each nucleus to the defined spheroid

core was quantified and recorded for subsequent analysis. To

optimize and validate the plugin, segmentation outputs were com-

pared with manually annotated “gold standard” images.

4 After segmentation, the nuclei occurring in both annotation and

segmentation output, the true positives, were automatically

calculated.

5 Next, the performance of the segmentation was quantified by cal-

culating the precision (# true positives / # nuclei in segmentation)

and recall (# true positives/# nuclei in the annotation).

The analysis was performed on the image data of both laborato-

ries using the optimized settings (MigrationAnalysisParameters.txt,

included in the SciLifeLab Data Repository https://doi.org/10.

17044/scilifelab.21407402 and GitHub https://github.com/

hujianjiang/Variability).

Data processing and statistical modeling of the 2D cell migration
data
Preprocessing: Based on the original tracking data, the static and

rounded cells were excluded based on visual assessment. Then, the

duplicated and merged cell/nuclear trajectories were identified and

removed. Excessively large (cell area > third quantile +1.5*inter-

quantile range of the areas from all cells) or small (nuclear

area < 100 lm2) cells were excluded based on the measurements of

cellular and nuclear area, in order to remove noise from cell debris

and cell aggregations. The remaining trajectories were smoothed

with the rolling window method with window size of 9. The Instan-

taneous Cell Speed (ICS) was calculated based on the smoothed

trajectories.

We used a linear mixed effects model to estimate the mean value

of the input (instantaneous cell speed, first principal component,

second principal component, migration distance, and all the other

16 parameters) across levels of laboratories, persons, experiments,

technical replicates, and cells. The numeric independent variable in

the model was the input. The model included a fixed intercept

parameter and no independent variables. It also contained a hierar-

chical structure of five nested levels of random intercepts. The

nested levels corresponded to, in order, laboratories, persons, exper-

iments, technical replicates, and cells. The random intercepts were

assumed to follow a normal distribution. We used the variance of

the inner-level residual as measure of the temporal variability. The

estimation of all the parameters in the model was based on the max-

imization of the likelihood function. The linear mixed effect model-

ing was performed based on the R package lme4 (Goldstein, 1986;

Bates et al, 2015; Hox et al, 2017).

For the cumulative variability calculation, we designed a hypo-

thetical experimental design with increasing levels of complexity:

two or three replicates, two or three experiments with three repli-

cates each, two or three persons performing three experiments

with three replicates each, or two or three laboratories where

three persons perform three experiments with three replicates. For

this, we generated all the possible subdatasets that fulfilled the

specified criteria ensuring dataset consistency (this is, we avoided

the combination of data that did not have the same origin in the

higher level of the hierarchical structure), and computed the

cumulative variability for each level. Appendix Table S1 shows

how the datasets were generated. As a control, we first random-

ized the original data and then generated similar subdatasets as

the original ones and calculated the cumulative variability in the

same way.

Batch effect removal
After fitting the original data with linear mixed effect model to

extract the fixed and random effects, each single observation was

modified by subtracting the intercept from all levels (laboratory,

person, experiment, technical replicate, and observation) and

adding the fixed effect between two conditions (control vs. perturba-

tion in 2D migration; 2.5 mg/ml vs. 6 mg/ml collagen in 3D

invasion).

Data availability

The image and metadata are available in the BioImage Archive

(http://www.ebi.ac.uk/bioimage-archive) under accession number

S-BIAD657. The computer codes and pipelines used for image and

data analysis are available in GitHub (https://github.com/

hujianjiang/Variability). The datasets and computer code produced

in this study are also available in the SciLifeLab Data Repository

(https://doi.org/10.17044/scilifelab.21407402).

Expanded View for this article is available online.
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