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Novel Superactive Leptin Antagonists and their Potential Therapeutic Applications
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Abstract: Random mutagenesis of mouse leptin antagonist (L39A/D40A/F41) followed by selection of high-affinity mutants by yeast-
surface display indicated that replacing residue D23 with a non-negatively charged amino acid (most specifically with Leu) leads to dra-
matically enhanced affinity of leptin toward LEPR leading to development of superactive mouse, human, ovine and rat leptin antagonists
(D23L/L39A/D40A/F41A). Superactive leptin antagonist mutants of mouse, human, rat or ovine leptins were developed in our labora-
tory, expressed in E. coli, refolded and purified to homogeneity as monomeric proteins. Pegylation of leptin antagonists resulted in potent
and effective long-acting reagents suitable for in vivo studies or therapies. In the present review we explain the mechanism of leptin inhibi-
tion and summarize the possible use of leptin antagonists as possible leptin blockers in various human pathologies such as anti-
inflammatory and anti-autoimmune diseases, uremic cachexia, and cancer. We also suggest the use of leptin antagonists as research rea-
gents for creation of a novel, fast and reversible model of T2DM in mice.
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DEVELOPMENT OF LEPTIN ANTAGONISTS

Though leptin and leptin receptor (LEPR) were cloned almost
20 years ago [1, 2] and leptin's 3D structure has been resolved [3],
the mechanism of leptin:LEPR interaction and activation has not
yet been elucidated. Nevertheless, several putative models have
been proposed [4]. The extracellular domain (ECD) of LEPR, as
depicted in (Fig. 1), consists of several subdomains termed (from
the N-terminus): cytokine homology region 1 (CHR 1), followed by
an immunoglobulin-like domain (IGD), then by another CHR 2 and
finally by two consecutive F3 domains. Fong and co-workers [5]
localized the leptin-binding domain to the membrane-proximal
CHR 2 (~ 200 amino acids) in the LEPR-ECD. This domain from
human [6] and chicken LEPRs [7] was subcloned in Gertler's labo-
ratory and expressed as a recombinant protein which showed a 1:1
molar interaction with leptin. A decade ago, Tavernier and his
group [8] revealed that leptin binding to its receptor resembles the
interaction between interleukin 6 (IL6) and IL6 receptor [9-11], and
they formulated the existence of the putative leptin site III as a ma-
jor site responsible for the formation of active 2:2 or 2:4
leptin:LEPR complex. The IGD located between the distal and
proximal CK-F3 domains was clearly documented to be essential
for productive dimerization (or even tetramerization) of the LEPR,
as its removal attenuated activation, but not binding, of the ligand
[8]. Schematic illustration of 2:2 leptin:LEPR complex showing
interaction of two leptin molecules, each with the CHR 1 of one
receptor (through binding site 1/2) and with the IGD of the second
receptor (through binding site 3) is shown in (Fig. 1). This model
was further substantiated by the extensive mutagenesis of mouse
and human leptins which led to the identification of Ser 120 and
Thr 121, located in the N-terminal part of helix D, as contributors to
site III [12]. Mutation of these amino acids to Ala led to the forma-
tion of leptin antagonist. In addition to the N-terminal part of helix
D, we found that other parts of the leptin molecule also contribute
to the interaction between leptin and LEPR's IGD. Carefully con-
sidering the known structures of IL6-receptor complexes [viral (v)
1L6/gp130] [9] and IL6/IL6R0V/gp130 complex [10] in which site
III was first identified, we examined the interface between the tips
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of the vIL6 bundle, comprising an A-B loop and the beginning of
helix D, and the edge of one of the IGD B-sheets, involving strands
F and G. We further analyzed the corresponding A-B loop in leptin
and though its sequence differed greatly in length and in composi-
tion compared to IL6, we were able to identify, thanks to the use of
the sensitive bidimensional Hydrophobic Cluster Analysis [13], a
common short B-strand which interacts in the vIL6/gp130 complex
(the only complex for which an ordered structure has been observed
in this region) with a short -strand in the receptor IGD. This strand
was located before the first strand of the IGD core and is predicted
to also be present in LEPR IGD. To verify this hypothesis and to
test its generality, we prepared and purified to homogeneity several
ovine and human recombinant leptin Ala muteins in the A-B loop
(L39A/D40A, L39A/D40A/F41A or L39A/D40A/F41A/141A) and
documented their activity as potent competitive LEPR antagonists
[14]. To verify the preservation and importance of this sequence for
activation of LEPRs, we also prepared the corresponding muteins
of mouse and rat leptin and documented their antagonistic activity
[15]. In subsequent work, we increased the half life of the leptin
antagonist by pegylation, resulting in significant extension of its
bioavailability while retaining antagonistic activity [16]. In mice,
administration of the pegylated antagonist produced rapid and dra-
matic weight gain, due to enhanced appetite and increased food
consumption. The resulting fat was confined to the mesenteric re-
gion with no accumulation in the liver. Remarkably, weight
changes were reversible upon cessation of leptin-antagonist treat-
ment. The mechanism of severe central leptin deficiency was found
to involve inhibition of leptin transport across the blood-brain bar-
rier, as well as accumulation of pegylated antagonist within the
central nervous system and direct inhibition of LEPRs in the hypo-
thalamic region.

In view of the potential pharmaceutical uses of leptin antago-
nists, the general question of how the biopotency of recombinant
proteins can be enhanced in vivo needs to be explored. One possible
approach is to increase the antagonist's affinity for the receptor by
increasing k,,, or mainly by decreasing k.g, and thus prolonging
receptor occupation. Theoretical thermodynamic considerations
show that if antagonists and agonists exhibit the same affinity, at a
100-fold molar excess of antagonist, 99% of all occupied receptors
will be occupied by antagonists. A 100-fold increase in antagonist
affinity will lead to similar results at an approximate 1:1 molar
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Fig. (1). Schematic illustration of the interaction of 2 leptin molecules with
the extracellular domains of 2 leptin receptors. The first leptin molecule
(designed as a brown-solid line oval) interacts through its 1/2 binding site
with the cytokine homology domain 2 (CHR 2) of the left receptor and
subsequently through its binding site 3 with the immunoglobulin-like do-
main 2' (IGD') of the second receptor. In parallel the second leptin molecule
(designed as a green-pointed line oval) interacts through its 1/2 binding site
with the CHR 2' of the right receptor and subsequently through its binding
site 3 with the (IGD) of the left receptor. There is no known interaction
between the two leptins. Mutations L39A/D40A/F41A abolish the interac-
tion of leptins with the IGDs, preventing receptor activation but not the
binding to CHR2 domains and just acts as antagonist. Mutation D23L in-
creases the affinity of leptin (or leptin antagonist) toward CHR-2.

antagonist:agonist ratio. Pegylation of such muteins combines both
approaches, resulting in a potent and effective long-acting competi-
tive antagonist in vivo. To explore this approach, we employed
random mutagenesis of leptin followed by selection of high-affinity
mutants by yeast-surface display, and discovered that replacing
residue D23 with a non-negatively charged amino acid leads to
dramatically enhanced affinity of leptin for LEPR. Rational
mutagenesis of D23 revealed the D23L substitution to be the most
effective. Coupling the D23 mutation with Ala mutagenesis of three
amino acids (L39A/D40A/F41A) previously reported to convert
leptin into antagonist [14, 15] resulted in potent antagonistic activ-
ity [17]. Those novel superactive mouse and human leptin antago-
nists (D23L/L39A/D40A/F41A) termed, respectively, SMLA and
SHLA, exhibited over 60-fold increased binding to LEPR and 14-
fold higher antagonistic activity in vitro relative to the L39A/
D40A/F41A mutants. To prolong and enhance the in-vivo activity,
SMLA and SHLA were monopegylated mainly at the N terminus.
Administration of the pegylated SMLA to mice resulted in a re-
markably rapid, significant and reversible 27-fold more potent in-
crease in body weight (as compared to pegylated L39A/ D40A/
F41A mutein) due to increased food consumption. To test whether
the D23L mutations confer increased affinity in other leptin species,
we have recently prepared D23L/L39A/D40A/F41A muteins of
ovine [18] and rat leptins [L. Niv-Spector and A. Gertler, unpub-
lished results] and found that they also act as potent leptin antago-
nists.

Thus recognition and mutagenesis of D23 enabled construction
of novel compounds that induce potent and reversible central and
peripheral leptin deficiency. In addition to enhancing our under-
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standing of leptin interactions with its receptor, these antagonists
have enabled in-vivo study of leptin's role in metabolic and immune
processes, and hold potential for future therapeutic use in disease
pathologies involving leptin.

LEPTIN ANTAGONISTS AS POTENTIAL  ANTI-
INFLAMMATORY AND ANTI-AUTOIMMUNE DISEASE
TREATMENTS

For years, white adipose tissue has been regarded as an inert
organ, with the exclusive function of long-term energy storage.
With the cloning of leptin in 1994, that notion has drastically
changed [1]. In subsequent years, a plethora of tissue-specific and
nonspecific adipose-secreted factors were discovered and character-
ized and found to play fundamental roles in multiple aspects of
metabolic processes, some of which take place in distant organs.
Moreover, white adipose tissue has been found to dynamically inte-
grate metabolic and immune signals through complex interactions
between adipocytes and a complex network of innate and adaptive
immune cells, including neutrophils, and mononuclear T and B cell
subsets. Through this complex interaction it was suggested that
immune components fundamentally affect metabolic processes such
as insulin sensitivity, and conversely, adipocyte-secreted factors
affect the innate and adaptive immune response through modulation
of tissue-resident cells of hematopoietic origin [19 20].

Leptin, has been most widely studied for its effects on the im-
mune response. Leptin secretion is inducible upon signaling from
inflammatory mediators such as tumor necrosis factor alpha (TNF-
a), IL1, and IL6. Indeed leptin levels have been shown to increase
during infection and chronic inflammation [21]. Like leptin itself,
LEPRs resemble cytokine receptors [22] and the long functional
isoform of LEPR is found on T-cell subsets, monocytes [23], natu-
ral-killer (NK)) lymphocytes [24], dendritic cells [25], hepatic stel-
late cells [26] and a variety of bone marrow progenitor cells. Func-
tionally, leptin signaling promotes macrophage proliferation,
phagocytosis and cytokine secretion [27], NK cell development,
activation and survival [28], MAPK-mediated neutrophil chemo-
taxis [29], T-cell proliferation and IL2 secretion, especially when
co-administered with classical T-cell mitogens [30]. Leptin has also
been suggested to suppress regulatory T-cell proliferation and in-
flammation suppressive functions, further contributing to a general
pro-inflammatory effect [31].

In vivo, leptin-deficient 0b/ob mice are extremely vulnerable to
the development of systemic infection and lipopolysaccharide
(LPS)-induced organ damage, and resistant to several Thl cells-
mediated immune disorders, including experimental allergic en-
cephalomyelitis, concanavalin A hepatitis, experimental arthritis,
and autoimmune nephritis [32-34]. Leptin replenishment reverses
these disorders [35]. These mice feature reduced cell density in
their bone marrow and thymus, highlighting the importance of
leptin signaling in the development of various subsets of the hema-
topoietic system. Similarly, humans with inherited or starvation-
induced leptin deficiency feature thymic atrophy and severe func-
tional alterations in the innate and adaptive immune response, ren-
dering them susceptible to bacterial infection [36, 37].

In humans, the causative correlation between leptin levels and
the propensity and severity of autoimmune disease remains contro-
versial. Perhaps the strongest association between leptin levels and
autoimmunity has been found in multiple sclerosis (MS), a T-cell-
mediated autoimmune disorder of the central nervous system; ob/ob
mice are protected from EAE, the most common small animal
model of MS, possibly through leptin-deficiency-induced expansion
of nTregs cells [38, 39]. In humans, leptin levels have been sug-
gested to correlate with disease activity and to decrease following
successful treatment with interferon beta (INF-B) [40]. In other
systemic autoimmune disorders, such as rheumatoid arthritis and
systemic lupus erythematosus, leptin levels have been suggested in
some, but not all, reports to be elevated independently of gender or
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weight and to possibly correlate with disease severity [41-46]. In-
terestingly, one study suggested that acute fasting promotes im-
provement in multiple immune parameters in rheumatoid arthritis
patients, an effect that may be linked to the reduced leptin levels in
these patients [47]. Similarly, leptin was suggested to contribute to
the pathogenesis of diabetes mellitus in mice, while a mutation in
the LEPR of mice with a NOD background ameliorated diabetes
severity in these mice [48, 49]. Yet another example of leptin’s
effect on the immune response was recently demonstrated by our
groups [50], whereby administration of competitive leptin antago-
nists induced significant amelioration in a model of chronic liver
inflammation and fibrosis.

A role for leptin was suggested in the pathogenesis of intestinal
autoinflammation. Inflammatory bowel disease (IBD) is a chronic
inflammatory disorder affecting 0.3% of the Western population; its
pathogenesis is thought to result from loss of tolerance of the intes-
tinal immune system in the presence of constant antigenic stimuli
mediated by resident microflora. In recent years, mounting evi-
dence has suggested that IBD pathogenesis is closely related to a
combination of abnormal challenges by normal gut microflora,
coupled with inherent or acquired aberrations in the intestinal innate
immune response. Leptin’s central role as a mediator of colonic
autoinflammation has been suggested in both animal models and
human studies. Leptin-deficient ob/ob mice are resistant to acute
and chronic experimental colitis [51, 52]. In those studies, leptin
was suggested to augment pro-inflammatory cytokine secretion,
including IFN-y, TNF-a, IL18, IL1b, IL6 and IL10, and to inhibit
inflammation-associated apoptosis of colonic mononuclear cells.
Inflamed colonic epithelial cells were also found to express and
release leptin apically into the intestinal lumen. Intrarectal admini-
stration of leptin induced activation of NF-kB and epithelial wall
damage associated with neutrophil infiltration [53]. The source of
local and/or systemic leptin has not been elucidated, but it has been
suggested not to be the lamina propria T cells themselves. Simi-
larly, the leptin-responsive cells have not yet been identified. Col-
lateral evidence for a possible pro-inflammatory interaction be-
tween leptin and lamina propria dendritic cells (IpDCs) comes from
studies showing that LEPRb is expressed on immature and mature
human DCs, and that leptin induces STAT3 and NF-kB activation,
production of IL1, IL6, IL12, TNF-o and MIP-1a, an anti-apoptotic
effect through Bcl-2 and Bcl-XL, downregulation of IL10, polariza-
tion into Th-1, and increased CD40 expression [54, 55]. In human
IBD patients, leptin levels have been suggested to correlate with the
severity of the disease [56-58].

Taken together, a large body of evidence suggests an associa-
tion between leptin levels and responsiveness in terms of propensity
for autoimmunity, autoinflammation and infection. While much of
the current data, particularly in humans, is observational and asso-
ciative, they suggest that leptin may play direct or indirect roles in
the modulation and regulation of innate and adoptive immune re-
sponses and that excessive leptin signaling might result in a delete-
rious tendency toward autoinflammation in susceptible populations.
As such, inhibition of leptin signaling, as has been recently sug-
gested by Gertler's and Elinav's groups [16, 17, 50], may offer a
unique therapeutic modality targeting leptin signaling in the autoin-
flammatory setup.

LEPTIN ANTAGONISTS AS ANTICANCER AGENTS

The epidemiological evidence linking obesity and breast, cervi-
cal, colon, rectal, esophageal, gall bladder, kidney, liver, ovarian,
pancreatic, stomach and uterine cancers is well-established [59-64];
the high level of leptin in obese subjects thus raises the notion of a
possible link between leptin and cancer. Leptin is an anti-apoptotic
molecule in many cell types and its possible role in obesity-linked
cancers originates from its known pro-angiogenic, pro-inflam-
matory and mitogenic activities. Furthermore, leptin was defined as
a growth factor not only because of its proliferative activity but also
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due to its effect on cell motility and migration [65]. Leptin is over-
expressed in at least 80% of cases of human skin melanoma [66],
breast [67], ovarian [68] and prostate [69] cancers. In most of those
cases, LEPR is overexpressed as well [70]. Interestingly, cancer
stem cells, and particularly breast cancer stem cells, also overex-
press LEPR, thus sensitizing those cells to leptin action [71]. In one
such cell type, termed triple-negative breast cancer cell, leptin at-
tenuated the inhibitory effect of cisplatin on cell proliferation and
viability [72].

Leptin-induced modulation of colorectal cancer (CRC) has been
reported in several in-vitro and in-vivo studies (for most recent
report see ref. [79]). Leptin's stimulation of proliferation and inhibi-
tion of apoptosis have been shown in several human epithelial co-
lon cancer cells, such as HT-29, CACO-2, DDL-1, SW480,
HCT116, LS174-T and Lovo [73-75]. However the in vivo role of
leptin in CRC remains unclear. In spontaneous CRC models, such
as in ApcMin/+ mice, leptin did not increase and even decreased
intestinal tumorigenesis in ApcMin/+ mice, a mutation that predis-
poses the animal to tumor development in the intestine and colon
[74, 76]. In contrast, inflammation-induced CRC induced by Dex-
trane Sodium Sulphate - axoxymethane was attenuated in ob/ob and
db/db mice as compared to wild-type mice [77]. Note that leptin's
effect may be indirect as leptin is known to induce inflammatory
cytokines in colonic tissue that are implicated in colon carcinogene-
sis, such as IL6, IL1B and CXC [78]. Likewise the impact of leptin
on colon cancer in humans remains unclear. While some reports
show increased leptin expression with progressing tumorigenesis,
other have failed to confirm such observations [79]. However, it
should be noted that serum leptin levels may not be indicative of
local leptin levels. Putatively, blocking localized leptin secreted by
leptin antagonists endoscopically applied to colon cancer cells may
be considered as a possible future treatment option.

The role of leptin in hepatocellular carcinoma (HCC), the third
leading cause of cancer death in the world, is also not clear. Patients
with cirrhosis resulting from hepatitis B or C infection were found
to exhibit increased leptin levels which were suggested to represent
a negative prognostic factor [80], but again, studies have reported
contradictory findings [81]. Another major factor leading to HCC is
non-alcoholic fatty liver disease (NAFLD) ranging from simple
steatosis to non-alcoholic steatohepatitis (NASH). In an animal
model of NAFLD, leptin was suggested to contribute to insulin
resistance and steatosis, and leptin injections increased the expres-
sion of procollagen-I, TGF-B1 and smooth muscle actin and led to
increased liver fibrosis [82]. In another study without leptin signal-
ing, neither fibrosis nor HCC developed in the rat NASH model
[83]. However, exogenous leptin significantly decreased tumor size
and increased survival rate in an HCC mouse model [84]. In human
studies, leptin levels were significantly higher in NASH patients
and correlated with severity of hepatic steatosis [85], but in another
study no differences were found [86]. Furthermore, high leptin
expression correlated with better survival in HCC patients [87].

More recently, attention has been given to the role of leptin in
glioblastoma and is reviewed elsewhere (see ref. [65]). Though
extensive in-vivo studies are still lacking and the information link-
ing leptin to glioblastoma stems mainly from studies with glioma
cell line C6 [88, 89], the authors strongly suggest leptin's role not
only in cell proliferation and inhibition of apoptosis but also in
leptin-enhanced cell migration [90]. Moreover, indirect leptin ac-
tions such as promotion of angiogenesis and augmentation of
VEGF levels may also play an important role in leptin promotion of
glioblastoma and other cancers [91-94].

One of the most interesting findings connecting leptin to sus-
ceptibility to cancer in mouse models of melanoma and colon can-
cer, related to environmental enrichment, showed that mice kept in
an enriched environment express higher levels of brain-derived
nerve factor (BDNF), which in turn activates sympathetic nerve
fiber innervation of white adipose tissue, resulting in decreased
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leptin secretion, cancer inhibition and remission [95]. Thus, al-
though the role of leptin in tumor promotion is controversial and
may depend on tumor type, at least in those cases in which leptin
plays a negative role, leptin antagonists may be potentially used as
both important research tools and potential therapeutic modalities.

LEPTIN ANTAGONISTS IN UREMIC CACHEXIA

Most recently, the negative role of leptin in uremic patients has
been reviewed [96]. Leptin has been defined as a true uremic toxin,
and reducing leptin levels in uremic patients, particularly those
suffering from uremia-related cachexia, may have potential benefi-
cial effects. This suggestion is based on the finding that plasma
leptin is associated with reduced energy intake and protein-wasting
in uremic patients [97]. In a murine animal model of uremic
cachexia, application of pegylated superactive leptin antagonist
prevented weight gain, protein and fat losses and normalized mus-
cle function (Michal Ayalon-Soffer and Robert Mak, personal
communication). Use of leptin antagonists in the treatment of ure-
mic patients seems at present as a most feasible therapeutic applica-
tion.

LEPTIN ANTAGONISTS IN OTHER PATHOLOGIES

The role of leptin signaling in myocardial hypertrophy, heart
diseases associated with metabolic syndrome, endothelial dysfunc-
tion, arterial hypertension are reviewed in depth in the present is-
sue. In all of these conditions, leptin’s negative effects can be po-
tentially antagonized by leptin antagonists.

LEPTIN ANTAGONIST-INDUCED RAPID AND REVERSI-
BLE MOUSE MODEL OF T2DM

Obesity and its major consequence, type II diabetes mellitus
(T2DM), has become an epidemic in Western society. T2DM ac-
counts for 95% of the diabetes worldwide. One limitation to the
development of new T2DM treatments has been a lack of effective
animal models to use in research. There are no rodent models that
recapitulate the pancreatic B-cell lesions of humans with T2DM.
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Moreover, animal models of obesity require either overfeeding,
which is expensive and takes weeks to months to establish, or spe-
cific genetic mutations that cause lifelong metabolic dysfunction.
Thus the ability to rapidly induce obesity in healthy rat and mouse
strains would constitute a major advance in diabetes and obesity
research leading to the development of novel therapies. In its mo-
nopegylated form, the compound PEG-SMLA has strong orexi-
genic properties, and when given to mice every 24 to 48 h leads to
remarkable weight gain. So far, over 15 experiments have been
performed over the course of 2 to 12 weeks to test the effects of
PEG-SMLA on weight gain in mice, achieving a uniform 25 to
45% weight gain in 14 to 21 days. Some representative data from
these studies are presented in Table 1 and show that weight gain is
accompanied by elevated glucose, cholesterol and triglyceride lev-
els, and an even more dramatic increase in insulin levels and insulin
resistance (HOMA-IR). Interestingly no hepatic damage was ob-
served, even after 12 weeks of treatment, although morphologically
the livers of PEG-SMLA-treated animals seem fatty. PEG-SMLA
treatment did not affect other blood parameters such as albumin,
globulin, creatinine, urea, calcium, potassium, phosphorus or bili-
rubin (not shown). An additional experiment was carried out to test
the effects of PEG-SMLA, and showed abnormal glucose tolerance
(by oral glucose tolerance test) after 3 weeks of treatment. This
change, along with others such as weight gain, increased fat con-
tent, hyperinsulinemia and hypertriglyceridemia, were fully re-
versible with cessation of PEG-SMLA injections, disappearing
within 10 to 14 days.

Determining insulin and glucose levels, and HOMA scores can
indicate whether mice are normal (euglycemic with normal insulin
levels), insulin-resistant, or have developed T2DM according to the
following criteria:

Normal: Glucose and insulin are less than 2.5 SD above con-
trol average

Insulin-resistant: Insulin more than 2.5 SD above control av-
erage but glucose less than

Table 1.  Weight gain and selected biochemical and hormonal parameters in 8-week-old male and 4-week-old female mice after
long-term 4 or 12 weeks IP administration of PEG-SMLA at 12 (male) or 5 (female) mg/kg daily.
Males' Females’
after 4 weeks after 4 weeks after 12 weeks
Control PEG-SMLA Control PEG-SMLA Control PEG-SMLA
Weight gain (%) 15+0.3 65 £1.2%* 201 69 + 7k 3944 124 + g%
Glucose (mg/dl) 97+6 151 £ 8%* 178 £ 15 246 £ 21* 131 +£8 183+ 10*
Chol (mg/dl) 133+4 173 £ 10** 96 +8 147 £ 9** 105 +4 153 &+ 4%%*
TG (mg/dl) 63+3 86 & 4%* 63+3 87 £ 4% 7945 106 + 8**
Insulin (ng/ml) Not tested 0.80+0.1 4.1£0.7%* 0.31+0.07 1.84 £0.08***
HOMA (arbit U) Not tested 57+9 380 + 80*** 18+4 146 + 28***
SGOT (IU/ml) 150 £ 19 165 £20 120 £23 249 + 54 187+ 13 173 £ 16
SGPT (IU/ml) 158 £37 136 £ 16 74 +41 203 £ 67 129 +£41 163 +£45
AP (IU/ml) 122+ 10 136 £ 18 192+ 6 166+ 19 124 £5 115+6

'Initial weight 20.8 g at 8 weeks of age.
*Initial weight 11.8 g at 4 weeks of age.

Values are mean + SEM, *P > 0.05, **P > 0.01, ***P > 0.001; male: 4 h post-fasting, females: not fasted.

Chol - cholesterol, TG — triglycerides, HOMA - homeostatic model assessment, SGOT - serum glutamic oxaloacetic transaminase, SGPT - serum glutamic pyruvic transaminase, AP

— alkaline phosphatase
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2.5 SD above control average

T2DM: Both insulin and glucose more than 2.5 SD above con-
trol average.

Using these criteria, we have found in various experiments that
36 to 100% of PEG-SMLA-treated animals develop insulin resis-
tance or T2DM in a time-dependent manner within 3 to 6 weeks of
PEG-SMLA treatment. In view of these results, we conclude that
PEG-SMLA treatment leads to the appearance of metabolic syn-
drome and even to a reversible T2DM phenotype.

In conclusion, administration of PEG-SMLA or even PEG-
MLA to mice causes reversible obesity, hyperglycemia and hyper-
insulinemia. These findings raise questions as to whether islet -
cells are specifically affected by a LEPR blockade preventing their
full compensation for insulin resistance. A second issue raised by
these findings is the role of hepatic glucose production and insulin
sensitivity in the rapid development of hyperglycemia. Hypotha-
lamic LEPRs have been implicated in the regulation of hepatic
glucose production, and direct effects of leptin on hepatocytes have
also been demonstrated. The ability to rapidly and directly affect
systemic and CNS leptin signaling with high potency LEPR an-
tagonists provides a powerful means of addressing the breadth of
leptin action.

One-month exposure to PEG-SMLA altered the expression of
key regulatory genes in adipose tissue, muscle and brain. These
findings indicate that leptin antagonism induces systemic dysme-
tabolism in a rapid and practical manner, and provides a valuable
tool for research in obesity and diabetes.
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