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ABSTRACT Nutritional content and timing are increasingly appreciated to consti-
tute important human variables collectively impacting all aspects of human physiol-
ogy and disease. However, person-specific mechanisms driving nutritional impacts
on the human host remain incompletely understood, while current dietary recom-
mendations remain empirical and nonpersonalized. Precision nutrition aims to har-
ness individualized bodies of data, including the human gut microbiome, in predict-
ing person-specific physiological responses (such as glycemic responses) to food.
With these advances notwithstanding, many unknowns remain, including the long-
term efficacy of such interventions in delaying or reversing human metabolic dis-
ease, mechanisms driving these dietary effects, and the extent of the contribution of
the gut microbiome to these processes. We summarize these conceptual advances,
while highlighting challenges and means of addressing them in the next decade of
study of precision medicine, toward generation of insights that may help to evolve
precision nutrition as an effective future tool in a variety of “multifactorial” human
disorders.

KEYWORDS machine learning, microbiome, personalized nutrition

NUTRITION-MICROBIOME CROSS TALK
Food digestion and absorption. Mammalian digestion is initiated by cognitive

food perception, which stimulates the production of oral saliva and gastric secretions
(1). Later on, the passage of a food bolus through the esophagus and stomach further
stimulates the secretion of biliary and pancreatic secretions that play a fundamental
role in food decomposition and digestion. Absorption of dietary nutrients takes place
mainly in the small intestine, where structures called villi and microvilli greatly increase
the mucosal surface area, thereby enhancing its absorptive capacity. Residues of food
that was not absorbed in the small intestine reach the colon, in which absorption of
water takes place, further solidifying stools. The proximal part of the gastrointestinal
(GI) tract is loosely inhabited by microbes because of low pH, the presence of toxic bile
acids, and high oxygen content (2). The GI tract gradually becomes more densely
colonized by microbes distally. Depletion of dietary nutrients, such as fatty acids and
carbohydrates in the intestinal lumen during the transit of food across the GI tract,
renders the growth of many gut commensals dependent on nondietary host-derived
energy sources by deconjugation of primary bile acids or degradation of mucin-derived
glycans (3–7).

Dietary impacts on the microbiome. The gut microbiome is strongly influenced by
the composition (8–10), amount, and timing (11–18) of its host’s diet. Mounting
evidence suggests that the timing of feeding has a predominant effect on downstream
metabolic and immune functions in microbiome-dependent and -independent man-
ners. In a given person, substantial variability was noticed when identical meals were
consumed at different times of the day (19). The intestinal microbiome exhibits diurnal
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oscillations that are driven by feeding patterns (15, 17, 18). Circadian-clock perturbation
(commonly termed “jet lag”) induces a dysbiosis that is associated with glucose
intolerance and obesity that are transferable by fecal microbial transfer (FMT) (15, 18).
The transcriptomic landscape of nonintestinal organs was shown to oscillate as a
function of feeding timing, which is (at least partially) regulated by corresponding
oscillations in gut-derived serum metabolites (14, 18). An irregular feeding pattern may
result in impairments of fundamental physiological functions, such as hepatic detoxi-
fication. The peculiar propensity of the gut microbiome to adapt to dietary perturbation
is mirrored by the speed at which this adaptation takes place (20–24). Dietary constit-
uents may support or impede the growth of particular microbes and also contain
foodborne microbes, directly contributing to the net composition of the microbial
genetic pool in the gut (9). Other dietary elements act as “immunomodulators” and can
indirectly affect the microbiome composition in an immune-dependent manner via
regulation of cellular and secreted immune effectors (25–28).

Microbiome impacts on digestions and absorption. Host-microbiome metabolic
interactions are bidirectional. Intestinal motility is regulated by bacterial metabolism of
bile acids and bacterially induced nitric oxide production in a diet-dependent manner
(Fig. 1) (29–32). Food choices are hypothesized by some to be subjected to microbiome
influences, although evidence supporting that notion remains scarce (33–35). Postdi-
eting weight recidivism, a common complication in nutritional clinical practice, is
modulated by a persistent diet-altered microbiome “memory” (36), at least in rodent
models. Adiposity and weight gain in various mammals can be modified with micro-
biome manipulation and were hypothesized to be governed by the gut microbiomes’
capacity to extract energy from diet (37–40). Promotion of weight gain is commonly
achieved in livestock by antibiotic treatment (41, 42), a practice that is futile in germfree
(GF) poultry (43), suggesting that microbiome manipulation by antibiotics may enhance
dietary energy extraction. In healthy individuals, a short course of oral vancomycin (an
antibiotic agent that is not absorbed systemically and therefore affects only the gut)
attenuated dietary energy harvest compared with that after administration of a pla-

FIG 1 Examples of dietary microbiome cross talk. During digestion, food is decomposed to fat, proteins,
carbohydrates, minerals, and other substances. Interactions between dietary habits and the intestinal
microbiome result in alterations of various aspects of mammalian physiology in intestinal and nonin-
testinal organs. The image was created at BioRender. LPS, lipopolysaccharides; TMAO, trimethylamine
N-oxide.
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cebo, as mirrored by stool calorie loss (44). Interestingly, GF mice were previously
reported to be resilient to deleterious effects of high-fat diet (HFD) feeding, such as
weight gain and glucose intolerance (45, 46); however, findings from recent studies
using various types of HFDs suggest that vivarium-dependent factors may differentially
induce this trait (47–52).

Major macronutrients and the microbiome. Dietary fibers, also termed “glycans”
or “polysaccharides,” are mainly plant-derived complex polymers of covalently linked
simple carbohydrates (5). Humans are virtually devoid of enzymes that can decompose
fibers, whereas gut bacteria express thousands of genes that encode carbohydrate-
degrading enzymes (53). The products of primary and secondary fiber degradation are
utilized by other members of the gut microbiome and the host in a convoluted web of
cross-feeding (5, 6, 54, 55). A combination of person-specific fiber degradation capacity
and the given fiber most probably determines the effects of fiber on host metabolism
and the microbiome; however, in general, an increased intake of dietary fibers is
associated with a higher overall microbial diversity, dominated by enrichment of
Bacteroidetes and Prevotella spp. (20, 21, 56–58), and coupled to favorable metabolic
and immunologic effects, such as improved insulin resistance and lower susceptibility
to infection and malignancy (59, 60). Inversely, fiber deprivation leads to decreased
microbial diversity, lower colonic bacterial butyrate production, barrier dysfunction,
and susceptibility to perturbation and infection (21, 61–67). There is a notable inter-
personal variability in complex and simple-carbohydrate digestion that is believed to
be microbiome mediated and has been the subject of extensive research (as described
in the next section) (59, 68–70).

Carbohydrates, proteins, and fats have all been shown to interact with the gut
microbiome. Western diets that are rich in fat induce weight gain and insulin resistance
by impairing intestinal barrier function and propagating a Toll-like receptor 4-mediated
inflammatory response that is termed “metabolic endotoxemia” (51, 71–81). The re-
sulting deleterious effects can be diminished by treatment with antibiotics (82) or
phenocopied to another host by fecal microbial transfer (37). Proteins are metabolized
by gut microbes into small metabolites, such as short-chain fatty acids (SCFAs), neu-
rotransmitters, and organic acids, that have physiological effects both locally and
systemically (83–87). A plethora of widely consumed dietary and nondietary constitu-
ents, such as emulsifiers (88–90), nonnutritive sweeteners (91–96), trehalose (97),
probiotics (98–101), omega-3 fatty acids (102), and medications (103–105), were shown
to feature considerable microbiome-mediated health impacts and are a subject of
intensive research that is beyond the scope of this review.

The microbiome as a “signaling hub.” The intestinal microbiome generates
downstream systemic signals, many of which are diet derived (106). One prominent
example is the ketogenic diet, which aims at biochemically replacing carbohydrates
with fat as a primary energy source through consumption of a low-carbohydrate,
high-fat diet. This diet is commonly used in clinical practice to reduce seizure frequency
in the treatment of drug-resistant epilepsy and is known to induce considerable
microbiome and immune alterations; however, its mechanism of action remains un-
known (107, 108). A recent study demonstrated that the ketogenic diet lacks an
antiseizure effect in microbiome-depleted mice (either GF or antibiotic-treated mice)
and that a fecal microbiome transfer from mice fed a ketogenic diet into mice fed a
control diet induced a seizure-protective effect (109). A reduced amino acid gamma-
glutamylation capacity of the ketogenic diet-associated microbiome was shown to
elevate the seizure threshold in that mouse model of epilepsy. Collectively, evidence in
support of an intensive cross talk between the gut microbiome and host nutrition,
which may impact a variety of physiological and pathophysiological traits, is accumu-
lating.

THE GUT MICROBIOME IN PRECISION NUTRITION

Dietary habits constitute a strong driver of interpersonal variance in the gut micro-
biome composition, and its influence prevails over that of genetics by most estimates
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(23, 110–112). One example of person-specific microbiome impact on dietary physio-
logical responses to consumed food focused on artificial sweeteners, mainly saccharin,
and demonstrated that glycemic responses to these seemingly inert food supplements
were driven by variations in the human microbiome (95). Moreover, adverse glycemic
responses to saccharin could be predicted using machine learning by utilizing micro-
biome data collected before sweetener exposure (95). Indeed, a longitudinal concur-
rent daily dietary log and stool metagenomic sequencing throughout 17 consecutive
days for 34 healthy individuals recently revealed markedly person-specific diet-
microbiome interactions (113). Whereas some aspects of optimal nutrition unanimously
apply, most are person specific and may differ in a population based on genetic and
environmental factors. Within the environmental component, the gut microbiome
accounts for some variation in subject-specific responses to diets, as do the timing of
meals, time between meals, level of physical activity, and multiple other individualized
features.

Adherence to dietary recommendations in the long term is a salient obstacle to
dietary interventions (114, 115). A tailored intervention can potentially increase com-
pliance, improve patient selection, and prevent weight gain-weight loss cycles that may
predispose to adverse cardiometabolic health outcomes (116). Microbiome-based pre-
dictions of person-specific responses to some foods were demonstrated to be accurate
and clinically beneficial in several studies. The baseline microbiome predicted the
response to caloric restriction in mice. Interestingly, cohousing mice before dietary
intervention resulted in a convergence of their microbiome configuration and a sub-
sequent similar response to the dietary intervention (117). Nonnutritive sweetener
consumption induces glucose intolerance, which is transferable to germfree mice by
fecal microbial transfer and can be abrogated by antibiotics, suggesting a microbiome-
dependent effect (95). Intriguingly, a subject-specific response to nonnutritive sweet-
eners was exhibited in humans, with the microbiomes of responders and nonre-
sponders clustering separately (95, 118). Similarly, the glycemic response to different
types of bread could be reliably predicted based on microbiome features (119). In
contrast, 16S rRNA sequencing of stool microbiomes before the commencement of
low-carbohydrate/fat diets was not predictive of weight loss success (120). Several
studies on dietary interventions to treat obesity and metabolic syndrome have reported
various associations between microbiome parameters and treatment efficacy. However,
their heterogeneous design, small sample sizes, and short-term intervention profoundly
limit their translational potential (111, 121–124). The same applies to a few studies
assessing the low FODMAP diet (a diet low in fermentable carbohydrates) in the
treatment of irritable bowel syndrome (IBS) (125–129).

Trimethylamine N-oxide (TMAO) is produced by intestinal microbes from dietary
choline, which originates mainly in red meat. High TMAO levels are associated with
adverse cardiovascular outcomes due to atherosclerosis and thrombosis (130–135).
TMAO production is largely microbiome dependent and can be suppressed by antibi-
otics (133) or inhibition of bacterial enzymes (136). Considerable interindividual vari-
ability in TMAO production capacity exists across populations, with carnivores and
vegans/vegetarians having on average higher and lower TMAO production capacities,
respectively (131). Identification of individuals with a nonfavorable TMAO production
capacity can serve as a source of microbiome-based personal nutrition recommenda-
tion and can be achieved without expensive sequencing by an oral carnitine challenge
test (137). Unfortunately, such personalized predictions are not provided by nutrition-
ists at this time, and recommendations to avoid red meat are generally dispensed to
patients with high cardiovascular risk.

Dietary fibers are nutritionally beneficial, and their metabolism is almost entirely
dependent on the expression of specific bacterial genes, potentially making them a
focus of precision nutrition (59, 69, 138). Dietary guidelines recommend consumption
of �30 g fiber a day for adults (or 14 g for every 1,000 cal), but such general
recommendations are suboptimal due to several considerations (139). The chemical
structures of molecules jointly referred to as fibers vary, and so do the identities and
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functions of the bacterial strains that can degrade them. Therefore, the effect that fibers
may have on host health and the host’s intestinal microbial community is highly
individualized (5, 54, 140). Hence, high interpersonal variability in metabolic outcomes
and microbiome readouts is exhibited in clinical trials testing fiber supplementation
(141–143).

Although the gut microbiome is a key determinant of a person’s response to fiber
consumption, no reliable means of predicting a person-specific response to fiber
supplementation exist to date, although some associations between clinical outcomes
and microbiome features (community diversity and certain abundances of taxa, mainly
the Bacteroides, Prevotella, Bifidobacterium, and Ruminococcus genera) have been sug-
gested by multiple studies (21, 58, 59, 123, 141, 144–152). Habitual dietary fiber
consumption may best predict the response to fiber supplementation more than any
other microbiome parameter, and long-term multigenerational fiber deprivation leads
to the extinction of fiber-degrading taxa, resulting in a hampered recovery of those taxa
upon reintroduction of fiber (10, 153, 154). Considering the benefits of fiber consump-
tion and the fact that fiber degradation is exclusively bacterial and highly variable,
microbiome-driven prediction of person-specific fiber degradation capacity constitutes
an exciting future challenge in clinical nutrition.

As previously discussed, gut microbes actively take part in carbohydrate metabolism
and glucose homeostasis by degrading carbohydrates and by producing secondary bile
acids and SCFAs that stimulate secretion of glucoregulatory hormones (e.g., glucagon-
like peptide 1 [GLP-1], peptide YY [PYY]) (155–160). The postprandial surges in blood
glucose levels (i.e., postprandial glycemic response, or PPGR) considerably vary be-
tween individuals, even following the ingestion of the same type and quantity of
carbohydrates in identical meals or following exercise (Fig. 2) (119, 157, 161, 162). The
Personalized Nutrition Project (PNP) demonstrated that a person-specific PPGR to
real-life meals can be accurately predicted based on basic clinical parameters and
microbiome data (163). The accuracy of the machine-learning pipeline that based its
prediction on continuous glucose monitoring (CGM) data, stool microbiome sequenc-
ing, dietary logs, and other clinical variables from 800 individuals was validated in an
additional validation cohort of 100 subjects. The algorithm predicted individual PPGRs
better than models based on caloric/carbohydrate content only, and microbiome
features accounted for the explained variability in PPGRs to various degrees. A person-
ally tailored dietary intervention based on the algorithm’s predictions improved gly-
cemic parameters in 26 prediabetic individuals. While some microbiome-based classi-
fiers that were developed in a given geographical context exhibited poor accuracy

FIG 2 Person-specific postprandial responses. Genetic and nongenetic factors, such as age, the nature of a meal, habitual diet, level of physical activity, and
the microbiome, account for considerable interindividual variability in energetic and endocrine postprandial responses, resulting in large differences in
metabolic parameters following identical meals. The image was created at BioRender.
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when applied to subjects from different geographical origins (164, 165), the personal-
ized nutrition concept was subsequently validated in another cohort of 327 subjects
from a different geographical area (166). The clinical efficacy of a person-tailored
dietary intervention based on the algorithm’s predictions in improving glycemic control
in prediabetic individuals is currently being tested in a long-term randomized con-
trolled trial (clinical trial NCT03222791).

The recent PREDICT1 study assessed subject-specific postprandial metabolic re-
sponses (19). Unlike the PNP, PREDICT1 also predicted postprandial triglyceride (TG)
levels and insulin responses in addition to glucose. Furthermore, it included 230 twin
pairs with genomic data that allowed the investigator to estimate the contribution of
inheritance to postprandial metabolic responses. As with the PNP, clinical and meta-
bolic parameters as well as microbiome and CGM data were collected from 1,002
healthy individuals (and from an additional 100 individuals in the validation cohort).
Genetics accounted for 48%, 9%, and 0% of the variability in postprandial glucose,
insulin, and triglycerides, respectively, whereas the stool microbiome accounted for
only 6.4%, 5.8%, and 7.5% of postprandial variability in blood glucose, insulin, and TG,
respectively. A meal’s macronutrient composition and timing in relation to previous
meal/sleep/exercise are well-established effectors of PPGR and were also shown in the
PREDICT1 study to surpass the microbiome in their PPGR predictive power. Notably, the
predictive algorithm developed in the PREDICT1 study reached an accuracy in PPGR
prediction similar to that of the PNP (Pearson’s correlation coefficients [r] were 0.7 and
0.77 between predicted and measured PPGRs, respectively) despite the different inputs
and machine-learning approaches used. Prediction of postprandial TG and insulin in the
PREDICT1 study were less accurate. In summary, both the PNP and PREDICT1 studies
provide good-quality evidence that dietary recommendations can be optimized to be
patient tailored.

CURRENT CHALLENGES IN PRECISION DIETS AND FUTURE PROSPECTS

With these major advances in understanding the contribution of the microbiome to
precision nutrition notwithstanding, many challenges need to be addressed in order to
increase our mechanistic understanding of the forces shaping individualized human
responses to food and the role that the microbiome plays in this complex and poorly
understood process.

CGM systems are extremely pragmatic research tools, as they enable affordable
real-life assessment of glucose levels in an outpatient setting without the inconve-
nience of a finger prick. However, the accuracy of CGM systems may pose a challenge
in the nondiabetic setting. In a study funded by Abbott, a manufacturer of CGM
systems, the concordance of CGM with direct capillary blood glucose measurement
was �90% (167). Moreover, the within-individual variability in nondiabetics upon si-
multaneous PPGR measurement by two identical (19) or two different (168) sensor
systems was not negligible. These differences may possibly stem from variations
between sensors or from true differences in glucose kinetics in different anatomical
locations.

While machine learning provides valuable insights into features possibly contribut-
ing to these physiological outcomes, their mechanistic elucidation merits further
molecular-level research. Equally elusive are the potential roles of the viral, fungal, and
parasitic microbiomes in contributing to personalized human responses to food, as well
as roles played by niche-specific microbiomes along the oral and gastrointestinal
regions. Additionally, better annotations of microbial reads currently constituting “dark
matter” may enable us to refine and improve the utility of the microbiome, when
coupled with other clinical features, in predicting food-induced human responses.
Finally, as nutrition is estimated to impact a plethora of infectious, inflammatory,
neoplastic, and even neurodegenerative processes, understanding of the causative
food-induced and microbiome-modulated effects induced in the human host under
these contexts may enable us to rationally harness precision nutrition as part of the
therapeutic arsenal in these common and often devastating human diseases.
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