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Generalized dietary and lifestyle guidelines have been
formulated and published for decades now from a variety of
relevant agencies in an attempt to guide people towards
healthy choices. As the pandemic rise in metabolic diseases
continues to increase, it has become clear that the one-fit-for-
all diet approach does not work and that there is a significant
variation in inter-individual responses to diet and lifestyle
interventions. Recent technological advances have given an
unprecedented insight into the sources of this variation,
pointing towards our genome and microbiome as potentially
and previously under-explored culprits contributing to
individually unique dietary responses. Variations in our genome
influence the bioavailability and metabolism of nutrients
between individuals, while inter-individual compositional
variation of commensal gut microbiota leads to different
microbe functional potential, metabolite production and
metabolism modulation. Quantifying and incorporating these
factors into a comprehensive personalized nutrition approach
may enable practitioners to rationally incorporate individual
nutritional recommendations in combating the metabolic
syndrome pandemic.
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Introduction
The past century has witnessed our modern ‘developed’
societies adopting dramatic changes in lifestyle and

2,3,4

dietary habits that are characterized by limited physical
activity in conjunction with over nutrition with foods high
in fat, processed meat, sugars, salt and refined grains while
being low in fruits and vegetables [1]. In parallel, the
same societies have developed a global pandemic con-
sisting of obesity, type 2 diabetes [2], non-alcoholic fatty
liver disease and their many complications, collectively
accounting for the morbidity and mortality of billions of
individuals worldwide. In parallel, concerted efforts have
focused on determining the components constituting a
healthy and beneficial diet, and on educating the public
on healthy dietary practices along generalized lines.
Of note is that the US government has been publishing
dietary guidelines and advice for over a century, with no
less than 900 publications (guidance and educational)
during that time (U.S. Department of Agriculture;
URL:  http://fnic.nal.usda.gov/dietary-guidance/
myplate-and-historical-food-pyramid-resources). Easy
to comprehend tools such as the Food Guide Pyramid
and more recent MyPlate act as beacons of daily nutri-
tional recommendation.

Despite the enormous implications of the metabolic
syndrome pandemic on economy and health and wide-
spread efforts to understand its causes and to develop
effective interventions, it has not been efficiently con-
trolled to date [2]. One possible cause of this failure
relates to our poor understanding of nutritional causes
contributing to the prevalence of obesity, diabetes,
NAFLD and their common complications. Commonly,
in the last three decades nutritional guidelines have
attempted to address the epidemic by prescribing popu-
lation-wide recommendations for ‘healthy’ versus
‘unhealthy’ foods [3]. These often failed, as seen by
the global increase in the prevalence of obesity, a major
risk factor of metabolic disease, with over 300 million
adults worldwide estimated to be suffering of morbid
obesity [4]. Furthermore, there has been a significant rise
in the number of individuals with diabetes worldwide,
from 108 million adults in 1980 to 422 million in 2014 [5].
This astounding rise in the prevalence of closely asso-
ciated diseases constituting the ‘metabolic syndrome’
carries significant global medical and economic conse-
quences [6].

The disappointing efficacy of dietary interventions to
obesity and its complications may stem from lack of
regard to inter-individual variabilities in dietary responses
[7]. Indeed, a recent realization is that some of the
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metabolic responses to diet differ from one individual to
another, as exemplified by cholesterol metabolism and
postprandial hyperglycemia, risk factors for cardiovascu-
lar disease (CVD) and type 2 diabetes [8,9], and by recent
studies demonstrating that not all individuals respond in
the same way to changes in lifestyle and this certainly
applies to dietary changes [10,11]. Fundamental factors
suggested to determine our individualized response to
foods, and the biological implications of their consump-
tion include the human genome [12], our epigenome [13],
our microbiome [14°°], and inter-personal variations in a
variety of environmental exposures and life style factors
[15]. Recent technological advances have given us an
unprecedented insight into this interpersonal variability,
in terms of the ability to accurately quantify genetic
background and microbiome community structure, both
of which modulate metabolic activity and form complex
and poorly understood interactions with the components
of our diet, modulating their metabolism and utilization.
The genetic contribution towards disease risk has been
known and studied for decades, while the commensal
microbiota contribution has been ignored until recently
and 1s being increasingly appreciated to contribute to
individualized responses to food, and even link a variety
of environmental factors to host physiology [16]. The
inclusion of the microbiome as a necessary element
explaining personal uniqueness has led to a paradigm
shift in terms of our understanding of inter-individual
variability and how it influences responses to environ-
mental factors (such as diet). We are now in an era where
we finally have the technologies that allow us to devise
data-driven approaches to personalized diet interventions
that take into account variation at the level of our genome
and microbiome.

In this mini-review we discuss the current state of play
with regards to personalized nutrition and highlight the
main factors modulating individual responses to nutri-
tional interventions.

Source of human variation modulating
responses to diet

The main sources of human variation that modulate
responses to diet include the genome and microbiome.
While both may be used for a person-specific diagnosis
and stratification of dietary responses and recommenda-
tions, the microbiome is also amenable to modulation by
approaches such as pro-biotics, pre-biotics, antibiotic
treatment, and recently post-biotic intervention, thereby
representing an exciting new potential for preventive and
interventional modification of personalized dietary
responses.

Human genome

Successful full genome characterization by the Human
Genome project [17] was followed by additional large
collaborative efforts to characterize human genetic

variation, including the International HapMap consor-
tium [18], the Human Variome Project [19] and the
1000 Genomes Project Consortium [20]. Large scale
genetic variation information has facilitated population
based studies such as genome-wide association studies
(GWAS) to determine genetic influences on disease risk
[21]. Tt 1s now accepted that genetic variations influence
the bioavailability and metabolism of nutrients between
individuals but also between ethnic groups. This notion
has revolutionized the field of nutritional sciences and has
paved the way for personalized nutrition approaches.

Propagated by rampant advances in genomics technolo-
gies, an unprecedented volume of data on genetic varia-
tions throughout the genome has been acquired and
characterized [19,20]. Epidemiological nutritional studies
have suggested an association between diet and chronic
diseases, revolutionizing the field of nutritional research
by incorporating individual genetic information (Figure 1)
and giving rise to a new area of study, namely nutrige-
nomics that is the study of how our genes influence
dietary intake. Understanding these underlying interac-
tions can translate into individual specific nutritional
interventions based on their genetic characteristics and
result in the identification of positive and negative
responders or those that do not respond at all to diet
interventions.

The neutrigenomics approach was best exemplified in
rare monogenic disorders such as phenylketonuria (PKU).
PKU patients have mutations in the PAH gene (encodes
the enzyme that converts phenylalanine to tyrosine)
resulting in an accumulation of phenylalanine and its
toxic metabolites, leading to mental retardation and
delayed  development.  Nutritional  intervention
(restricted in phenylalanine and supplemented in tyro-
sine) is currently regarded as the only available treatment,
which, when properly followed, prevents the deleterious
life-risking complications of PKU. Another example of
neutrigenomics interventional approaches in a mono-
genic disease can be seen in the case of Galactosemia,
a metabolic disease resulting in the inability to metabo-
lism galactose. It represents a group of three metabolic
diseases (Type I, Type II and Type III galactosemia
caused by mutations in the genes GAL'T', GALK1, GALE
respectively) with deficiencies in enzymes from the
Leloir pathway of galactose catabolism [22]. Currently,
the only form of effective treatment for galactosemia is
galactose restriction.

Despite the efficiency exemplified in the above mono-
genic disorders in using genomics for dietary recommen-
dations, adaptation of genomic diagnostics and stratifica-
tion tools in tailoring diets for the prevention and
treatment of chronic polygenic complex diseases such
as cancer, CVD, obesity and type 2 diabetes has proven
much more complicated and of limited value. Examples
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Figure 1
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Rationally designed personalized dietary approaches determine the effects of numerous parameters on diet response (e.g. microbiome
composition, genome variability, personal lifestyle, medical metadata). Machine learning algorithms utilize these comprehensive data sets to

deliver dietary recommendations.

of genomic contribution to dietary planning in the context
of multi-factorial diseases are sparse and include
enhanced benefits of Mediterranean diet in preventing
breast cancer risks in patients carrying SNPs in GST1
(glutathione S-transferase 1) and Nat2 (N-acetyltransfer-
ase 2) of the xenobiotic metabolism pathway [23].
Another example relates to individuals with the APOA2
CC genotype who are found to feature a greater suscep-
tibility to increased BMI and obesity upon consumption
of a diet that is abundant in high-saturated fat [24]. These
individuals with the APOA2 CC genotype may therefore
benefit from following a diet regiment with reduced
saturated fat intake. Furthermore, transcription factor
7-like 2 gene (TCF7L2) polymorphism 157903146
(C>T) has been associated with type 2 diabetes [24].
A randomized trial following 7018 participants found
Mediterranean diet to decrease fasting glucose and lipids
and reduced the incidence of stroke in TT homozygote
individuals [25].

However, the many other claimed nutrigenomics
approaches of effectively influencing dietary choices
among the general population at risk have mostly proven
to be non-evidence based. For example, Pavlides e a/.
[26°°] show this in a meta-analysis focusing on 38 genes
that are included in commercially available nutrige-
nomics tests and are commonly analyzed. They found

inconsistencies and conflicting results with regards to
gene—diet associations, as well as a lack of significant
association for these 38 genes [26°°]. Apart from indicat-
ing the need for a solid scientific basis in the implemen-
tation of neutrigenomics, it also highlights the fact that
these are still early days and the field is in need of further
development. Furthermore, a meta-analysis of thirteen
observational studies reporting gene—macronutrient
interactions and T'ype 2 diabetes [27°°] showed that none
of the eight unique interactions reported to be significant

between macronutrients and genetic variants in or near
TCF7L2, GIPR, CAVZ2 and PEPD were replicated.

Furthermore, the added value of providing elaborate
genetic information to individuals undergoing personal-
ized nutrition (PN) advice should be considered. It is
indicative that the largest intervention study to date
comparing the effect of PN on health related dietary
behavior showed the advantage of PN advice based on
individual baseline diet and lifestyle over a conventional
approach. However, no additional advantage was found
by basing PN advice on individual baseline diet and
phenotype (anthropometry and medical metadata), or
individual baseline diet plus phenotype plus genotype
(five diet responsive genetic variants) [28]. It should
be noted however that the basecline diets, lifestyle
and phenotypes were self-reported by participants,
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potentially introducing a bias and in turn reducing the
benefits of including genetic information.

Gut microbiome

A recently appreciated factor that greatly contributes to
our understanding of inter-individual human variability is
the enormous micro-organismal ecosystem and its gene
pool that are integrated into all mucosal surfaces of the
human body, collectively termed the microbiome. The
most heavily colonized and studied ecosystem, the gut
microbiome, contains a heavy population of bacteria of
equal numbers as our own cells [29] and as many as
100 times more genes as the human genome, and is
considered to be our ‘second genome’ [30]. In addition
to bacteria, the gut microbiome contains a plethora of
viruses [31], achaea [32], fungi [33] and parasites [34],
collectively forming a large ecosystem that is increasingly
recognized to impact multiple facets of human physiology
[35]. Among others, our microbiome modulates our
metabolism and disease risk [36]. The inter-individual
microbiota community structure of healthy individuals
differs significantly in colonized sites such as gut and skin
[37-39]. Furthermore, inter-individual variation in gene
content of microbiota species leads to differences in their
functional potential [40].

Commensal microbionts have a deeply symbiotic rela-
tionship with their human host, providing it with many
essential functions [41]. It is now established that micro-
biota, along with other important factors such as lifestyle
and genetics, can modulate responses to diet. Changes in
diet can modulate host physiology and disease through
commensal microbiota. For example, elevated levels of
Trimethylamine-N-oxide (TMAO) and other choline
metabolites are associated with greater risks of adverse
cardiovascular events and are dependent on gut micro-
biome metabolism [42]. Plasma levels of TMAO in
patients were significantly suppressed after the intake
of antibiotics and reappeared after cessation of antibiotics
[42]. The intra-personal difference in the circulation of
TMAO when consuming TMAO precursors is a function
of gut microbiome, with people who showed greater
TMAO response having the higher ratio of Firmicutes
to Bacteroidetes [43].

Another example is of flavonoids, polyphenolic com-
pounds found in numerous dietary components including
vegetables and fruits. Several subclasses of flavonoids
have been suggested to play a role in human physiology
affecting for example cardiometabolic health as well as
cognitive function [44]. A large amount of ingested fla-
vonoids reach the colon and undergo hydrolysis and
fermentation by commensal microbiota. A high level of
variability in flavonoid bioconversion occurs as a result of
variability in microbiome composition with some individ-
uals having a greater ability to convert flavonoids [45] that

can result in the production of metabolites with greater
biological activity.

In addition to the above examples demonstrating how the
microbiome responds to diet and utilizes dietary com-
pounds in its interactions with the host, diet is also a
crucial component in shaping the microbial environment
[46]. Following some types of dietary interventions, the
microbiome may undergo changes in less than a week,
and these changes occur at both taxonomic and bacterial
gene expression levels [47]. Importantly, community
changes imposed by diet can be predicted, with important
ramifications on the prospect of dietary interventions
[48°]. It is however relevant to point out that although
dramatic dietary alterations indeed impact the micro-
biome structure, more subtle changes may not [49],
demonstrating potential microbiome resilience to some
less dramatic dietary changes, as indicated by Korem ¢z 4/.
[48°]. Furthermore, changes conferred to the microbiome
structure can be direct, and be mediated through diet
composition, for example high protein and animal fat as
opposed to carbohydrates that can each drive the abun-
dance of particular bacteria such as Bacteroides and Pre-
votella respectively [50]. Changes conferred can also be
indirect via microbiota-associated metabolites innate
immune modulation, whereby microbiota metabolites
modulate NLRP6 inflammasome signaling and the
resulting microbiome-host interactions can influence
community stability [51].

Towards individualized dietary approaches
Moving towards rationally designing personalized die-
tary approaches must take into account the intricacies of
the microbiome and its effects on human physiology, as
well as details on person specific life style and medical
metadata. Exemplifying the use of personalized nutri-
tional intervention to lower postprandial glycemic
response, Zeevi et al. [14°°] developed a machine-learn-
ing algorithm integrating numerous clinical blood
parameters and gut microbiota data to accurately predict
postprandial blood glucose responses to meals on a
personal level. Diet intervention based on these predic-
tions proved to be successful in lowering postprandial
responses [14°°]. The benefits of improved glucose
metabolism through consumption of barley kernel-based
bread display substantial inter-individual variability
with responders having a gut microbiota enriched in
Prevotella copri that may be contributing by potentially
promoting glucose storage [52]. The effects of eating
traditionally prepared artisanal sourdough bread
(coveted for its health benefits) compared to industrially
made white bread, were found to be highly personal to
cach type of bread [49]. Interestingly, machine-learning
algorithms predicted the type of bread inducing a lower
glycemic response in each person based on gut micro-
biome compositional data [49].
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In a further display of inter individual variation through
gut microbiome involvement, dysbiosis resulting by the
intake of non-caloric artificial sweeteners (NAS) can lead
to induction of glucose intolerance. The response of the
individuals to the consumption of NAS is highly variable
and gut microbial composition related [53°]. At a time of
obesity reaching pandemic proportions and diet interven-
tions to reduce weight are on the rise but generally fail in
the long run, in another recent study we showed that the
microbiome is implicated in what is termed the ‘yo-yo’
effect, defined as accumulation of excessive weight gain
when undergoing weight gain-and-loss cycles [54°]. It was
found that the microbiome of normal weight mice with a
history of obesity have a microbiome composition differ-
ent to that of normal mice (without part obesity), that
drives the ‘yo-yo’ effect. Furthermore, transferring the
microbiome of ex-obese mice to germ free (GF) normal
weight mice results in excessive weight gain and other
unfavorable metabolic syndrome effects when given a
high fat diet (HFD). The weight gain of the mice was
predicted with high accuracy using only microbial taxa
abundances and the top ranked bacteria in predicting
weight gain are bacteria capable of breaking flavanoids
and Lactobacillus. Furthermore, the mechanism under-
lying the yo-yo effect is that the energy expenditure of ex-
obese mice is lower compared to normal mice when both
are fed a HFD, and when supplementing ex-obese mice
with Apigenin or Naringenin (plant derived substances
belonging to the Flavanoid family), the energy expendi-
ture increases and the ‘yo-yo’ effect is gone [54°]. Another
study discovered a positive feedback loop between gut
microbiota and the central nervous system, that promotes
hyperphagia and increased energy storage as fat [55]. It
was shown that acetate production increases due to a gut
microbiota—nutrient interaction in HFD-fed rodents,
which in-turn results in parasympathetic nervous system
activation and increased ghrelin (the hormone which
regulates appetite) and glucose stimulated insulin secre-
tion. Collectively, these studies demonstrate the capacity
of massive quantification of person-specific data in con-
tributing to a heightened capability to utilize computa-
tional platforms in predicting clinical outcomes.

Conclusion

As in the emerging field of personalized medicine, there
are increasing efforts to go beyond the one-fit-for-all diet
approaches [3]. Driven by technological advances, our
insights into human variation (with all that it encom-
passes) and its effect on disease risk are steadily increas-
ing. Our inherited genome and our microbial ‘second
genome’ both intricately modulate our response to diet;
this has been studied and established. There is now a
need for developing new tools that will allow using the
whole potential of individual microbiome and genetic
fingerprints for the benefit of PN. This is no easy feat and
requires new approaches in analysis of the ever expanding
data being accumulated. The instruments from the
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emerging field of machine learning and big data were
successfully implemented in a series of studies
[49,54°,55,56,57], and with more data available the proper
utilization of information will become a crucial point
(Figure 1). Public acceptance of genetic testing and
microbiome characterization towards implementing PN
in disease prevention is a predominant factor along with
user participation and involvement, as well as their nutri-
ent environment that all play an important role since diet
compliance is crucial [58]. Moreover, the long term effi-
cacy of PN and its advantages over customary population
based dietary recommendations in preventing, ameliorat-
ing and treating metabolic syndrome-associated disorders
remain to be determined. Of note, smartphones are
becoming a universal accessory with the number of
smartphone users estimated to reach 2.5 billion by
2018 (Statistica; URL: https://www.statista.com/
statistics/330695/
number-of-smartphone-users-worldwide/) and can be uti-
lized as a tool in the implementation of PN regiments
through the use of interactive diet related applications for
monitoring nutrient consumption (Figure 1) [59,60].
These can aid in improving long-term compliance, con-
sidered by many in the field to co-constitute the biggest
hurdle in integrating ‘healthier’ dietary habits in large
populations. Another important challenge, as a more
refined understanding of how variability influences dis-
ease risk is achieved, relates to ethical issues concerning
the safeguarding of delicate individual-specific informa-
tion as well as who can access this data and for what
reason. With these limitations and challenges notwith-
standing, integrating ‘big data’ including genomic and
microbiome data into personalized nutrition and person-
alized medicine constitutes one of the most exciting and
promising approaches in tackling common human meta-
bolic disorders.

Conflict of interest statement
Eran Elinav & Eran Segal are payed consultants to
Daytwo.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

e of special interest
ee Of outstanding interest

1. Cani PD, Everard A: Talking microbes: when gut bacteria
interact with diet and host organs. Mol Nutr Food Res 2016,
60:58-66.

2. Franks PW, McCarthy MI: Exposing the exposures responsible
for type 2 diabetes and obesity. Science 2016, 354:69-73.

3. Magni P, Bier DM, Pecorelli S, Agostoni C, Astrup A, Brighenti F,
Cook R, Folco E, Fontana L, Gibson RA et al.: Perspective:
improving nutritional guidelines for sustainable health
policies: current status and perspectives. Adv Nutr2017, 8:532-
545.

4. Stevens J, Oakkar EE, Cui Z, Cai J, Truesdale KP: US adults
recommended for weight reduction by 1998 and 2013 obesity

www.sciencedirect.com

Current Opinion in Biotechnology 2018, 51:57-63


https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0005
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0005
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0005
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0010
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0010
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0015
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0015
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0015
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0015
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0015
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0020
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0020

62 Systems biology

guidelines, NHANES 2007-2012. Obesity (Silver Spring) 2015,
23:527-531.

5. NCD Risk Factor Collaboration (NCD-RisC): Worldwide trends in
diabetes since 1980: a pooled analysis of 751 population-
based studies with 4.4 million participants. Lancet (London,
England) 2016, 387:1513-1530.

6. Scholze J, Alegria E, Ferri C, Langham S, Stevens W, Jeffries D,
Uhl-Hochgraeber K: Epidemiological and economic burden of
metabolic syndrome and its consequences in patients with
hypertension in Germany, Spain and Italy; a prevalence-based
model. BMC Public Health 2010, 10:529.

7. Greenwood DC, Threapleton DE, Evans CEL, Cleghorn CL,
Nykjaer C, Woodhead C, Burley VJ: Glycemic index, glycemic
load, carbohydrates, and type 2 diabetes: systematic review
and dose-response meta-analysis of prospective studies.
Diabetes Care 2013, 36:4166-4171.

8. American Diabetes Association: 4. Prevention or delay of type
2 diabetes. Diabetes Care 2016, 39(Suppl 1):S36-S38.

9. Gallwitz B: Implications of postprandial glucose and weight
control in people with type 2 diabetes: understanding and
implementing the International Diabetes Federation
guidelines. Diabetes Care 2009, 32(Suppl 2):S322-S325.

10. Bohm A, Weigert C, Staiger H, Haring H-U: Exercise and
diabetes: relevance and causes for response variability.
Endocrine 2016, 51:390-401.

11. Winett RA, Davy BM, Savla J, Marinik EL, Winett SG, Baugh ME,
Flack KD: Using response variation to develop more effective,
personalized behavioral medicine? Evidence from the Resist
Diabetes study. Trans/ Behav Med 2014, 4:333-338.

12. Heianza, Qi L: Gene-diet interaction and precision nutrition in
obesity. Int J Mol Sci 2017, 18:787.

13. Park JH, Yoo Y, Park YJ: Epigenetics: linking nutrition to
molecular mechanisms in aging. Prev Nutr food Sci 2017, 22:81-
89.

14. ZeeviD, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A,
ee Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M et al.:
Personalized nutrition by prediction of glycemic responses.
Cell 2015, 163:1079-1094.
Authors developed a revolutionary algorithm for predicting postprandial
glucose responses by integrating microbiome composition, blood tests
and antropometrics of 1000 people. This is the first study that utilizes a
machine learning approach and microbiome information for personally
tailored diet intervention.

15. Mozaffarian D: Dietary and policy priorities for cardiovascular
disease, diabetes, and obesity. Circulation 2016, 133:187-225.

16. Claus SP, Guillou H, Ellero-Simatos S: The gut microbiota: a
major player in the toxicity of environmental pollutants? NPJ
Biofilms Microbiomes 2016, 2:16003.

17. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J,
Devon K, Dewar K, Doyle M, FitzZHugh W et al.: Initial sequencing
and analysis of the human genome. Nature 2001, 409:860-921.

18. International HapMap Consortium KA, Frazer KA, Ballinger DG,
Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A,
Hardenbol P et al.: A second generation human haplotype map
of over 3.1 million SNPs. Nature 2007, 449:851-861.

19. BurnJ, Watson M: The human variome project. Hum Mutat 2016,
37:505-507.

20. 1000 Genomes Project Consortium A, Auton A, Brooks LD,
Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL,
McCarthy S, McVean GA et al.: A global reference for human
genetic variation. Nature 2015, 526:68-74.

21. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H,
Klemm A, Flicek P, Manolio T, Hindorff L et al.: The NHGRI GWAS
catalog, a curated resource of SNP-trait associations. Nucleic
Acids Res 2014, 42:D1001-D1006.

22. Timson DJ: The molecular basis of galactosemia — past,
present and future. Gene 2016, 589:133-141.

23. Kakkoura MG, Loizidou MA, Demetriou CA, Loucaides G,
Daniel M, Kyriacou K, Hadjisavvas A: The synergistic effect
between the Mediterranean diet and GSTP1 or NAT2 SNPs
decreases breast cancer risk in Greek-Cypriot women. Eur J
Nutr 2017, 56:545-555.

24. Corella D, Peloso G, Arnett DK, Demissie S, Cupples LA, Tucker K,
Lai C-Q, Parnell LD, Coltell O, Lee Y-C et al.: APOA2, dietary fat,
and body mass index: replication of a gene-diet interaction in
3 independent populations. Arch Intern Med 2009, 169:1897-
1906.

25. Corella D, Carrasco P, Sorli JV, Estruch R, Rico-Sanz J, Martinez-
Gonzalez MA, Salas-Salvadé J, Covas MI, Coltell O, Arés F et al.:
Mediterranean diet reduces the adverse effect of the TCF7L2-
rs7903146 polymorphism on cardiovascular risk factors and
stroke incidence: a randomized controlled trial in a high-
cardiovascular-risk population. Diabetes Care 2013, 36:3803-
3811.

26. Pavlidis C, Lanara Z, Balasopoulou A, Nebel J-C, Katsila T,

ee Patrinos GP: Meta-analysis of genes in commercially available
nutrigenomic tests denotes lack of association with dietary
intake and nutrient-related pathologies. OMICS 2015, 19:512-
520.

The authors addressed the issue of consistency in scientific studies

reporting neutrigenomics data by conducting a meta-analysis studying

gene—diet interaction for 38 genes included in commercially available

neutrigenomics tests and found that there was no significant association

for these genes.

27. LiSX, ImamuraF, Ye Z, Schulze MB, Zheng J, Ardanaz E, Arriola L,
ee Boeing H, Dow C, Fagherazzi G et al.: Interaction between genes
and macronutrient intake on the risk of developing type
2 diabetes: systematic review and findings from European
Prospective Investigation into Cancer (EPIC)-InterAct. Am J
Clin Nutr 2017, 106:263-275.
The reported contribution of gene-macronutrient interactions in the
development of type 2 diabetes was addressed in this study. A large
scale meta-analysis was carried out to ascertain whether eight gene-
macronutrient interactions identified in the literature as risk factors for
type 2 diabetes were replicated in the large scale EPIC (European
Prospective Investigation into Cancer)-InterAct case-cohort. These inter-
actions were not replicated highlighting the need for independent repli-
cation of reported interactions in neutrigenomics studies.

28. Sender R, Fuchs S, Milo R: Are we really vastly outnumbered?
Revisiting the ratio of bacterial to host cells in humans. Cell
2016, 164:337-340.

29. Zhao L: Genomics: the tale of our other genome. Nature 2010,
465:879-880.

30. Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC,
Kambal A, Monaco CL, Zhao G, Fleshner P et al.: Disease-
specific alterations in the enteric virome in inflammatory
bowel disease. Cell 2015, 160:447-460.

31. van de Pol JAA, van Best N, Mbakwa CA, Thijs C, Savelkoul PH,
Arts ICW, Hornef MW, Mommers M, Penders J: Gut colonization
by methanogenic archaea is associated with organic dairy
consumption in children. Front Microbiol 2017, 8:355.

32. Underhill DM, lliev ID: The mycobiota: interactions between
commensal fungi and the host immune system. Nat Rev
Immunol 2014, 14:405-416.

33. McSorley HJ, Hewitson JP, Maizels RM: Immunomodulation by
helminth parasites: defining mechanisms and mediators. /nt J
Parasitol 2013, 43:301-310.

34. Sartor RB, Wu GD: Roles for intestinal bacteria, viruses, and
fungi in pathogenesis of inflammatory bowel diseases and
therapeutic approaches. Gastroenterology 2017, 1562 327-339.
ed.

35. Grice EA, Segre JA: The human microbiome: our second
genome. Annu Rev Genomics Hum Genet 2012, 13:151-170.

36. Structure, function and diversity of the healthy human,
microbiome. Nature 2012, 486:207-214.

37. Ding T, Schloss PD: Dynamics and associations of microbial
community types across the human body. Nature 2014,
509:357-360.

Current Opinion in Biotechnology 2018, 51:57-63

www.sciencedirect.com


http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0020
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0020
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0025
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0025
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0025
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0025
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0030
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0030
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0030
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0030
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0030
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0035
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0035
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0035
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0035
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0035
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0040
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0040
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0045
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0045
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0045
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0045
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0050
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0050
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0050
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0055
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0055
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0055
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0055
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0060
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0060
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0065
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0065
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0065
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0070
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0070
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0070
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0070
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0075
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0075
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0080
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0080
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0080
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0085
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0085
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0085
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0090
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0090
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0090
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0090
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0095
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0095
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0100
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0100
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0100
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0100
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0105
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0105
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0105
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0105
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0110
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0110
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0115
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0115
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0115
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0115
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0115
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0120
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0120
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0120
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0120
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0120
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0125
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0125
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0125
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0125
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0125
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0125
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0125
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0130
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0130
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0130
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0130
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0130
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0135
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0135
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0135
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0135
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0135
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0135
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0305
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0305
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0305
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0310
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0310
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0315
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0315
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0315
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0315
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0320
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0320
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0320
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0320
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0325
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0325
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0325
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0330
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0330
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0330
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0335
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0335
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0335
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0335
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0340
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0340
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0345
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0345
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0350
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0350
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0350

38. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A,
Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP et al.: A core gut
microbiome in obese and lean twins. Nature 2009, 457:480-484.

39. Zhu A, Sunagawa S, Mende DR, Bork P: Inter-individual
differences in the gene content of human gut bacterial
species. Genome Biol 2015, 16:82.

40. Bach Knudsen KE: Microbial degradation of whole-grain
complex carbohydrates and impact on short-chain fatty acids
and health. Adv Nutr 2015, 6:206-213.

41. Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu'Y,
Hazen SL: Intestinal microbial metabolism of
phosphatidylcholine and cardiovascular risk. N Engl J Med
2013, 368:1575-1584.

42. Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF,
Yan J, Sutter JL, Caudill MA: Trimethylamine-N-oxide (TMAO)
response to animal source foods varies among healthy young
men and is influenced by their gut microbiota composition: a
randomized controlled trial. Mo/ Nutr Food Res 2017,
61:1600324.

43. Cassidy A, Minihane A-M: The role of metabolism (and the
microbiome) in defining the clinical efficacy of dietary
flavonoids. Am J Clin Nutr 2017, 105:10-22.

44, Tomas-Navarro M, Vallejo F, Sentandreu E, Navarro JL, Tomas-
Barberan FA: Volunteer stratification is more relevant than
technological treatment in orange juice flavanone
bioavailability. J Agric Food Chem 2014, 62:24-27.

45. Meyer KA, Bennett BJ: Diet and gut microbial function in
metabolic and cardiovascular disease risk. Curr Diab Rep 2016,
16:93.

46. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE,
Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA et al.: Diet
rapidly and reproducibly alters the human gut microbiome.
Nature 2014, 505:559-563.

47. Faith JJ, McNulty NP, Rey FE, Gordon JI: Predicting a human gut
microbiota’s response to diet in gnotobiotic mice. Science
2011, 333:101-104.

48. Korem T, Zeevi D, Zmora N, Weissbrod O, Bar N, Lotan-

. Pompan M, Avnit-Sagi T, Kosower N, Malka G, Rein M et al.:
Bread affects clinical parameters and induces gut
microbiome-associated personal glycemic responses. Cell
Metab 2017, 25 1243-1253.e5.

Traditional sourdough bread is considered superior to industrial made

white bread in terms of health benefits. However, effects of eating each

type of bread were found to be variable among individuals and were
dependent on microbiome composition. Furthermore, machine-learning

algorithms were implemented and predicted the type of bread inducing a

lower glycemic response in each individual based on their microbiome

composition.

49. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA,
Bewtra M, Knights D, Walters WA, Knight R et al.: Linking long-
term dietary patterns with gut microbial enterotypes. Science
2011, 334:105-108.

50. Levy M, Thaiss CA, Zeevi D, Dohnalova L, Zilberman-Schapira G,
Mahdi JA, David E, Savidor A, Korem T, Herzig Y et al.:

Personalized nutrition and microbiome Bashiardes et al. 63

Microbiota-modulated metabolites shape the intestinal
microenvironment by regulating NLRP6 inflammasome
signaling. Cell 2015, 163:1428-1443.

51. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De
Vadder F, Arora T, Hallen A, Martens E, Bjorck |, Béackhed F:
Dietary fiber-induced improvement in glucose metabolism is
associated with increased abundance of prevotella. Cell Metab
2015, 22:971-982.

52. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA,
Maza O, Israeli D, Zmora N, Gilad S, Weinberger A et al.: Artificial
sweeteners induce glucose intolerance by altering the gut
microbiota. Nature 2014, 514:181-186.

53. Thaiss CA, ltav S, Rothschild D, Meijer M, Levy M, Moresi C,

. Dohnalova L, Braverman S, Rozin S, Malitsky S et al.: Persistent
microbiome alterations modulate the rate of post-dieting
weight regain. Nature 2016 http://dx.doi.org/10.1038/
nature20796.

Using germ free mice authors demonstrate the underlining mechanism of

the “yo-yo effect”. This study finds that Apigenin or Naringenin increase

energy expenditure in ex-obease mice fed a HFD and shows the causal
role of the microbiome by changing Apigenin or Naringenin gut levels.

54. Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL,

. Petersen KF, Kibbey RG, Goodman AL, Shulman Gl: Acetate
mediates a microbiome-brain-g-cell axis to promote
metabolic syndrome. Nature 2016, 534:213-217.

Authors discover how the diet-microbiota interaction can drive obesity

and metabolic syndrome. The study uses high fat fed mice to demon-

strate that increased production of acetate by microbiome leads to
activation of the parasympathetic nervous system which results in ele-
vated ghrelin secretion and glucose-stimulated insulin secretion.

55. Albers DJ, Levine M, Gluckman B, Ginsberg H, Hripcsak G,
Mamykina L: Personalized glucose forecasting for type
2 diabetes using data assimilation. PLoS Comput Biol 2017, 13:
e1005232.

56. Sudharsan B, Peeples M, Shomali M: Hypoglycemia prediction
using machine learning models for patients with type
2 diabetes. J Diabetes Sci Technol 2015, 9:86-90.

57. Fallaize R, Macready AL, Butler LT, Ellis JA, Lovegrove JA: An
insight into the public acceptance of nutrigenomic-based
personalised nutrition. Nutr Res Rev 2013, 26:39-48.

58. Celis-Morales C, Livingstone KM, Marsaux CF, Macready AL,
Fallaize R, O’Donovan CB, Woolhead C, Forster H, Walsh MC,
Navas-Carretero S et al.: Effect of personalized nutrition on
health-related behaviour change: evidence from the Food4Me
European randomized controlled trial. Int J Epidemiol 2017,
46:578-588.

59. Ashman AM, Collins CE, Brown LJ, Rae KM, Rollo ME: Validation
of a smartphone image-based dietary assessment method for
pregnant women. Nutrients 2017, 9:73.

60. Borgen I, Garnweidner-Holme LM, Jacobsen AF, Bjerkan K,
Fayyad S, Joranger P, Lilleengen AM, Mosdgl A, Noll J,
Smastuen MC et al.: Smartphone application for women with
gestational diabetes mellitus: a study protocol for a
multicentre randomised controlled trial. BMJ Open 2017, 7:
e013117.

www.sciencedirect.com

Current Opinion in Biotechnology 2018, 51:57-63


http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0355
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0355
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0355
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0360
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0360
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0360
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0365
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0365
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0365
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0370
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0370
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0370
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0370
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0375
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0375
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0375
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0375
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0375
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0375
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0380
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0380
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0380
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0385
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0385
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0385
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0385
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0390
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0390
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0390
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0395
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0395
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0395
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0395
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0400
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0400
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0400
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0405
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0405
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0405
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0405
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0405
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0410
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0410
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0410
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0410
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0415
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0415
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0415
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0415
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0415
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0420
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0420
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0420
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0420
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0420
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0425
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0425
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0425
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0425
http://dx.doi.org/10.1038/nature20796
http://dx.doi.org/10.1038/nature20796
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0435
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0435
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0435
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0435
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0440
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0440
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0440
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0440
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0445
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0445
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0445
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0450
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0450
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0450
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0455
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0455
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0455
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0455
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0455
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0455
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0460
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0460
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0460
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0465
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0465
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0465
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0465
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0465
http://refhub.elsevier.com/S0958-1669(17)30144-1/sbref0465

	Towards utilization of the human genome and microbiome for personalized nutrition
	Introduction
	Source of human variation modulating responses to diet
	Human genome
	Gut microbiome

	Towards individualized dietary approaches
	Conclusion
	Conflict of interest statement
	References and recommended reading


