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Abstract
Over the past decade, multi-level complex behavior and reactive nature of biological systems, has been a focus point for the
biomedical community. We have developed a computational approach, termed Reactive Animation (RA) for simulating such
complex biological systems. RA is an approach for describing the dynamic characteristics of biological systems based on facts
collected from experiments. These data are integrated bottom-up by computational tools and methods for reactive systems
development and are simulated concomitantly to a front-end user friendly visualization and reporting systems. Using RA, the
experimenter may intervene mid-simulation, suggest new hypotheses for cellular and molecular interactions, apply them to
the simulation and observe their resulting outcomes “on-line”. Several RA models have been developed including models of
T cell activation, thymocyte development and pancreatic organogenesis, which are describe in the in this review.

Keywords: Reactive animation, complex systems, computational models, systems biology, statecharts, simulation, thymus,
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Reactive biological systems

Biological systems orchestrate multilevel complex
behavior into an intuitively friendly format.
In biological systems, most processes take place in a
concurrent and a distributed fashion. These processes
are under varying levels of control, react to multiple
events, and interact over multiple levels, signals, and
conditions. Such systems answer the definition of
Reactive Systems [1].

The biomedical community has been investing
tremendous efforts to understand biological systems
through numerous experiments, each designed to
learn about a different piece in the puzzle. Data have
accumulated, and continue to accumulate at an
ever-growing rate, due much to the development of
high-throughput machinery and other cutting-edge
technologies. The results and the conclusions of these
experiments are collected into databases of facts,
where each fact may describe a snapshot of a
biological system, from a genetic, molecular, bio-
chemical, cellular, tissue, or an organ point of view.
The snapshot nature of such research slights the
dynamic quality of the system.

We have developed a computational approach for
simulating complex biological systems and termed this
approach reactive animation (RA; [2,3]). RA facili-
tates the simulation of complex biological systems and
is built in two main layers: the first layer allows a
bottom-up integration of discrete multilevel exper-
imental data of the interacting agents (cells and
molecules), and defines the logic and dynamics
behind these interactions. This layer is composed of
powerful tools and methods for reactive systems
development, such as the visual language Statecharts
[4], which allows a rigorous specification of the
system’s reactivity (of course, other agent-based
modeling (ABM; [5]) approaches can be integrated
to that layer).

The second layer is a front-end visualization of the
simulation, capable of real-time interactive manipu-
lation of the simulated biological objects. RA allows
the experimenter to intervene mid-simulation,
suggests new hypotheses for cellular and molecular
interactions, applies them to the simulation, and
observes their resulting outcomes “online”.
In addition to the main layers, intermittent layers
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can be incorporated into the simulation to allow

various data mining and visualization, statistical

analysis, and reports [6,7].
It is important to emphasize that RA is not simply a

new way to animate biological phenomena. RA

employs a dynamic user interface and animates or

dynamically redesigns these user interfaces to rep-

resent the system and its operational behavior

realistically. The powerful animation tools that can

be incorporated in the second layer of RA represent

the specifications of the simulations in an intuitive,

controllable, animated front end and are an essential

bridge between experimental biologists and computer

scientists and engineers [2].
Often, mathematical models are used to describe

the relationships between biological quantities and

their change over time through equations (usually

differential equations). Mathematical models can

successfully describe biological systems, but require

the user to think in terms of rate constants and

kinetics, and often represent average or qualitative

behavior of biological entities (cell populations,

ligands, receptors, etc.). Moreover, as the complexity

of the modeled biological system increases, math-

ematical modeling necessitates more complicated

mathematical terms and representations, which

in turn may hinder their mathematical analysis and

their biological relevance.
In contrast to mathematical models, a compu-

tational model is a formal model that assigns a

sequence of steps or instructions to be executed by a

computer [8–10]. Computational models are often

constructed through the composition of a state

machine, which connects qualitative conditions

(“states”) to functions [8]. One can specify a state

machine by defining how, due to given inputs (the

“cause”), a switch from one state to another occurs

(the “effect”). Biological systems are often described

in terms of “cause and effect”, and are, therefore,

amenable for a computational model description [8].

Note, however, that computational models can

include a very large number of states, resulting in

highly complex behavior, and generally require an

algorithmic approach for their analysis, such as model

checking [11], rather than a mathematical analysis.
In this paper, we bring out several examples of how

RA has been used in modeling biological systems.

These include models of T-cell activation [12],

thymocyte development [6,7], and pancreatic orga-

nogenesis [13], following their order of publication.

The examples illustrate the evolution of the RA

modeling approach. The basic concepts and utilities of

RA are summarized and explained with each example.

The advantages and disadvantages of RA are discussed

here.

The first layer of RA: Specifying biology with
Statecharts

To model biological systems in a rigorous way, we first
need to specify the studied system with a well-defined
modeling language, amenable to execution by a
computer. As previously mentioned, computational
modeling, as opposed to mathematical modeling, is
based on statemachines [8,10]. Unfortunately, there is
a “cultural gap” between biologists and computer
scientists. Biologists are historically untrained in
computer science, just as computer scientists are
untrained in biology. Therefore, more visual and user-
friendly, yet rigorous and well-defined, modeling
languagesmayhelp to introduce computationalmodels
to biologists.

An intuitive visual modeling language, called
“Statecharts”, was invented by David Harel in 1984
to assist in the development of the avionics system of a
new aircraft [4]. The behavior of an arbitrary system,
including a biological system, can be described using
states and events that cause transitions between states.
States may contain substates, thus enabling descrip-
tion at multiple levels, and zooming-in and zooming-
out between levels. States may also be divided into
parallel (orthogonal) states, thus modeling concur-
rency, allowing the system to reside simultaneously
in several different states. For example, let us consider
a developing T cell.

This cellmayexpress several types ofmolecules on its
membrane such as the T cell antigen receptor (TCR)
and the IL2 receptor [14]. T cells can change their
location in the body to different anatomical compart-
ments ([14] such as thebloodor the lymphnode (LN)).
Upon activation, the T-cell can proliferate, and be
foundmomentarily in different phases of the cell cycle,
or, in other words, T cells can change their own state as
a response to external stimuli [12]. Biological
transitions from one state to another (expressed or
unexpressed; stay at G1 phase or start cell cycle;
mobilize according to a gradient, etc.)may be the result
of an interaction between cells and/or molecules.
In Statecharts, transitions take the system from one
state to another, considering concurrency, in a manner
similar to our existing concepts of biological behavior.
Biologists in need of amodel for biological systems and
who are inexperienced in computer programming can
use tools which support Statecharts-based modeling
and execution that facilitates the automatic translation
from Statecharts to a computer language—such a tool
is Rhapsody, available from IBM [15].

In a Statecharts model that was built to simulate
T-cell activation [12], the authors included the
interaction between T cells and antigen presenting
cells (APCs) through interactions between receptors
and ligands resulting in cytokine secretion and cell
replication. The model considered three concurrent
states for a T cell: The immunological state (active or
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not active, consequently followed by substates of naı̈ve,
memory or anergic T cells), cell cycle control
(describing the phase of the cell cycle), and anatomical
location (blood, LN, and the extra cellular matrix
(ECM)). It should be noted that the role of the
anatomical location is not to describe T-cell migration,
but rather to simulate the context of the interaction
between objects. Figure 1 illustrates a Statechart
representation of the model of T-cell activation.

The T-cell activation Statechart model exemplified
two main features of reactive systems: concurrency
and multiscale description. Changes in the surround-
ings of a cell may result in activating many parallel
processes, from the cellular to the molecular level.
Information processing and computation can propa-
gate across levels. The model can be easily extended
into more detailed levels, such as zooming-in to signal
transduction events resulting from receptor binding,
or zooming-out to account for the spatial arrangement
of cells in organs.

This modeling approach is based on an object-
oriented design, which is likely to be intuitive to
experimentalists who are accustomed to look at their
systems in terms of individual objects. It can also be
applied to many research fields and various organisms
(Caenorhabditis elegans’ vulval development [16]).

Moreover, data are organized in an individualized
manner (a single protein, a specializing cell, etc.), rather
than a network of information. Therefore, object-
oriented design and modeling may bridge between
intuition and data catalogs, and intuitively show how
single components interact to create a complex system.

The second layer of RA: Front-end visualization

A step forward from the model of the T-cell activation
discussed previously was the addition of the second
main layer of RA, the front-end visualization [6]. We
exemplified this component of RA through a simu-
lation of the maturation of T cells in the thymic lobule
and the lineage choice (CD4 or CD8 T cell) [7]. This
work demonstrated the dynamic relationship between
molecules and cells in the thymus, consequently
leading to the organ’s structural and functional
properties. The thymus is the organ in which T cells
mature and establish the basis for the immunological
repertoire.

Therefore, modeling T-cell maturation in the
thymus is highly relevant to homeostasis and to
disease, especially to AIDS and to autoimmune
diseases [17–19]. The thymic micro-environment is
divided anatomically into lobes and lobules, and the
lobules are further divided into a cortex and amedulla.

Figure 1. Statecharts realization of T-cell activation. Figure adopted from [12].
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Stem cells arrive at the thymus from the bone marrow,
and the developing T cells go through a series of
interactions in different locations inside the thymus,
potentially proliferating into 106 offspring cells from a
single cell [20].

T-cell maturation involves many agents: epithelial
cells interact with developing T cells to activate and
regulate many of the processes needed for their
maturation [20,21]. Macrophages perform mainly
housekeeping tasks to clear the thymus of dead cells
[22]. Cytokines, such as IL2, responsible for signaling
between the cells [23], and chemokines and chemo-
kine receptors, such as CCL25 and CCR9, respect-
ively, are responsible for cell movement along
gradients [24]. Peptides combined with major
histocompatibility complex molecules induce different
T-cell selection events [25,26]. Thymocytes (T cells in
the thymus) express many different surface molecules,
including CD4, CD8, both or none, which serve to
interact with other cells and molecules.

This biology has been specified using Statecharts,
which, asmentionedpreviously, provides a controllable
environment to process the dataset into orthogonal
states and state transitions. For instance, thymocyte
movement in the thymus is directed by chemokine
gradients, such as CCL25 (TECK), CXCL12 (SDF),
CCL22(MDC), andCCL21(SLC).Thegradients are
calculated, and the movement of a cell across the
gradient is determined by its cell-surface marker
expression (which correlates with its developmental
stage). Seven cell markers are suggested by the
literature as relevant for gradient tracing decisions.
Five of them may be either expressed or unexpressed,
and two of them have an intermediate level of
expression termed “low”, leading to 288 optional
expression states [7].

During simulation, a decision tree is used to scan
through these optional expression states, and, conse-
quently, the simulation generates events that direct the
cell to the chemokine gradients it should follow.
Another specification of this model involves the
structure of the thymic epithelial cells, which interact
with thymocytes and serve as APCs. The epithelial
cells interact with thymocytes through specialized
arms, and their varying length may influence
thymocyte movement (see Figure 2).

The front-end visualization was established in
three dimensions (3D): two spatial dimensions and
the dimension of time—the dynamics of the system
(Figure 3(A) and (B)). Each cell was colored
differently, and the thymus was divided into its main
structural compartments: the cortex and the medulla.
The user of the simulation has the ability tomanipulate
the simulation by pressing buttons on the animation
screen.

These buttons include performing statistical rep-
resentations of the data, pausing the simulation,
highlighting the chemokines, zooming-in and-out
abilities and connections between the animation and
simulation. In addition, the user can givedifferent color
codes relevant to the display, enabling one to trace the
motion of specific cells, avoiding clutter made by
overlapping cells, and to receive visual indications
of interactions, andmore. The time of the simulation is
controlled by a clock that shows how much biological
time has gone by since the onset of the simulation.

RA simulation adds the dimension of time to the
model and, therefore, projects the dynamical nature of
the interaction of cells and molecules, based on
discrete data, which give rise to the emergence of the
higher scale organ seen in histologic sections (which are
a 2D representation of a 3D reality). For example,

Figure 2. Specifying thymocyte development. Figure adopted from [6].
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Figure 3. RA visualization layer. The utilities of the visualization layer (A) are described in detail in (B). Figure adopted from [7].
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targeted gene deletion of a chemokine receptor
involved in cell-migration in the thymus, CXCR4
[27], resulted in intact cortical localization and
developmental arrest. Figure 4(A) (left) shows the
thymic lobule as it was captured under the microscope
(described in [27]) and as it is captured during RA

simulation (right). In both cases, thymocytes do not
respond to CXCR4 stimulation, and thymocyte
development gets hung up close to the cortico–
medulary junction in the DN1 stage (labeled red).
Figure 4(B) shows an anatomical section in a wild-type
thymus in which the double-positive cells (blue cells in
the simulation) have spread into the cortex.

Every object in the animation can display a clickable
menu, enabling data manipulation and data requests.
For example, the user can notify the simulation that a
specific cell can perform apoptosis. The results of
apoptosis are performed in the simulation itself, i.e. a
thymocyte is deleted from the simulation
(Figure 5(A)). Events thus can be specified and
manipulated both from the user interface and directly
from the simulation. The user can retrieve data, which
do not direct or drive the simulation. For instance, the
user can extract the developmental stage of a
thymocyte, denoted by its surface markers, through
a diagram that describes the path of development that
thymocytes go through in the thymus as reported in
the literature (Figure 5(A)).

The diagram that opens in response to the click
indicates graphically which developmental stage the
thymocyte currently is in. The publications that
provide the factual basis for this diagram can also be
presented to the user. The amino acid sequence of the
TCR can also be shown to the user (Figure 5(A)).

Experimentalists often observe the end result of a
process they are interested in. Sometimes, several paths
maypotentially lead to the same output, and, therefore,
several theories may explain these outputs. One of the
advantages of a model, whether computational or
mathematical, is the ability to examine hypotheses or

Figure 4. Histological data emerge from RA. (A) targeted CXCR4

gene deletion. (B) control. Figure adopted from [7].

Figure 5. Theories can be selected by the user before and during the simulation.
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theories. In the RA works of Efroni colleagues,
biological objects were modeled with the option to
instantiate different theories from a collection of
available theories for an interaction before and during
the simulations. For example, the user can change the
ability of a cell to migrate to any of the chemokines
upon clicking the cell object in the animation andmark
in the checkbox table in the clickable submenu
(Figure 5(B) and (C)). Then, the animation sends an
event to the simulation.

The simulation accordingly does two things: it
notifies the cell that it may then migrate according to
the chemokine selected by the user, and it informs the
animation that the thymocyte should then indicate
that it is susceptible to that chemokine. These theories
describing interactions are interchangeable, and some
cells may follow one theory, whereas all the others may
follow a different theory. The choice between theories
can also be made at run time by the simulation itself,
when the right conditions develop. Note, however,
that the interpretation of the simulation results is the
responsibility of the user scientist.

RA’s interactive nature makes it possible to knock
out molecules or cells and observe the effects. Each
knockout influences the resulting thymus morphology
in a different way, a phenomenon that RA makes
visible quite effectively. For instance, RA simulation
suggested that the lack of phenotype observed in mice
with CCR9 knocked out (CCR9 2 /2) might be
explained by dynamic compensation through popu-
lation pressure. RA simulation also explains the
competitive growth advantage enjoyed by wild-type
cells over CCR9 2 /2 cells.

Indeed, over-expression of CCR9 on thymocytes
leads to an in vivo phenotype that can be explained by
RA as an early attraction of the thymocytes by cortical
epithelial cells. RA simulation also suggests that the
absence of thymic output resulting from CXCR4
inhibition can be attributed to the non-migratory
behavior of cells entering the thymus. Another
interesting observation from the RA simulation is the
instrumental role of cell competition during thymo-
cyte development.

This competition is actually a life-or-death matter:
during development, thymocytes require suitable
stimulation by epithelial cells for preventing their
death. As the thymus is packed with full of cells, there
is a constant competition among thymocytes for space
and stimulation, which has not been a subject for
experimentation thus far. This competition between
individual thymocytes for productive interactions with
thymic epithelial cells, not seen in static histologic
sections, emerged from the model’s simulation and
was not programmed in advance. By changing the
parameters of the model, the authors suggested that
thymocyte competition might function as an import-
ant factor in three emergent properties of T-cell
maturation: the functional anatomy of the thymus, the

selection of thymocytes with a range of migratory
velocities, and the relative prevalence of single positive
CD4 T cells.

Another model, described in Swerdlin et al. [28],
showed the use of RA and its two main layers applied
to describe the spatial and the temporal behavior of
the LN, and its interaction with B cells and their
behavior within the LN. Similar to the RA model of
thymocyte development [6,7], the simulations of the
LN-B-cell RA model resulted in emergent properties
of the LN, which rose from the piecemeal integration
of experimental data. The authors reported the
dynamic cellular composition of the various anatomic
compartments of a LN that hosts a cohort of reacting
B cells toward the generation of antibody-producing
plasma cells and memory B cells. For mode details,
see [28]

Dimensional realistic modeling with RA

An RA model that covers the primary stages of
pancreatic organogenesis in the mouse was developed
by Setty et al. [13]. Similar to the RA model that was
constructed to simulate thymocyte development [6,7],
their approach integrated static experimental data into
a Statechart-based reactive model, linked to an
animation layer and a mathematical interface for
analysis. The main difference, however, from the
approach taken in [6,7], is that the visualization layer
generated the simulation in 3D animation.

This addition to the RA model allowed the authors
to formulate hypotheses about the structural charac-
teristics of pancreatic organogenesis and provided an
extended dynamic description of the system, which
resulted in visual resemblance to developmental
histology of the pancreas. In the pancreas organogen-
esis RA model, a cell was defined as an autonomous
entity that senses the factors in its near environment
surrounding the pancreas, which supplies important
inducer signals.

In mice, pancreatic organogenesis is initiated on the
eighth embryonic day, and is roughly divided into two
transitions, primary and secondary [29]. During the
primary transition, cells at the appropriate regions of
the flat gut are specified as pancreatic and form a bud;
during the secondary transition, the bud evolves to
become a lobulated structure [30]. The organogenesis
process terminates when endocrine cells aggregate to
form many sphere-like endocrine tissues, the islets of
Langerhans, embedded within the exocrine pancreas.
The pancreas develops simultaneously from a ventral
site and a dorsal site; during organogenesis the ventral
pancreas associates with the significantly larger dorsal
pancreas.

The ECM plays a critical role in pancreatic
organogenesis by generating signals that trigger
intracellular processes, such as gene expression
[31,32]. These intracellular processes govern cell
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function and cell migration; for example, two external
signals from the notochord, such as activinb and
FGF2, both together direct endodermal cells toward a
pancreatic fate specification. These signals inhibit
expression of proteins that repress the expression of
the pancreatic marker, Pdx1, and the absence of one
of them from the notochord results in the loss of
pancreatic specification. Pancreatic organogenesis
depends on simultaneous interactions across molecu-
lar and morphogenetic scales, which decisively affect
each other [13].

The specification of the basic element of the
pancreatic organogenesis RA model, the autonomous
cell, included two distinct cellular compartments:
nucleus and membrane. Two concurrent components,
the cell cycle and differentiation processes, were also
specified within the cell object. The nucleus compart-
ment specifies gene expression in a discrete fashion
(expressed or unexpressed), whereas the membrane
object specifies the response to external stimulations
via receptor interactions with a ligand (bound or
unbound). The membrane compartment also
includes a motion compartment, which senses the
3D environment and causes the cell to move according
to external signals (Figure 6).

The ECM was represented as a 3D grid that
overlays the pancreatic tissue. The notochord, aorta,
and mesenchyme were defined as objects, and their
behavior was specified based on the literature. These
tissues are known to promote early stages of pancreatic
development by secreting factors in the ECM; their
concentrations were stored in the ECM grid and could
be updated by the different tissue objects (Figure 7).

The emerging pancreatic organogenesis qualitat-
ively reproduced structures similar to those as seen in
histology experiments: it starts from a flat sheet of cells

and evolves to a lobed structure through budding and
branching processes (Figure 8). The simulation gave
rise to an emergent property that corresponds well
with the primary transition clusters appearing early in
the developing organ in vivo [30,33,34], although the
authors had not explicitly programmed the RA model

Figure 6. Specification for an autonomous cell.

Figure 7. Specifying pancreatic organogenesis. (A) the biology,
(B) the modeled objects.
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to do so. Furthermore, the simulations reproduced
results similar to in vivo ablation experiments of
tissues surrounding the pancreas, thus providing a
dynamic analysis for the “wet-lab” experiments.

Conclusions and discussion

RAmodeling provides an integrated view of a complex
process that we usually analyze through snapshots,
derived by experiments. This integration allows
experimentalists to understand how details at one
scale—genetic, molecular, intra- and inter-cellular,
environmental, organ-dependant, etc.—affect other
scales. Moreover, RA allows the understanding of how
an organ structure and environment can determine
molecular interactions and, vice versa, how molecular
interactions can determine the emergence of structure
and environment in 3D.

The dynamics of a biological system is visually
traceable, enabling the user of RA to perform in silico
experiments to better understand complex biological
systems. Hypotheses can be formulated and examined
before and during the simulation to explore the
interplay between multiscale agents in health and
disease. The simulations can help in directing the
experimenter toward a more decisive experiment and
thereby save time, resources, and animalmanipulations.

The collection of individual data precedes their
application to RA simulation. Most often, some of the
required data for constructing a precise model are
lacking, and, therefore, our awareness is directed to
previously unconsidered key experimental inquiries or
questions that were not believed worthwhile to ask.

The RAmodels presented in this paper describe in a
multiscale fashion the dynamic behavior of biological
systems. However, when discussing molecular events,
these models do not include a detailed description of
molecular signaling networks, but rather utilize simple
input-output relationships between molecules.
A platform providing the ability to model biological
signaling networks is Simmune [35,36].

Simmune facilitates the design and simulation of
complex signaling pathways due to chemosensing,
based on the definition of specific molecular binding-
site interactions and the subcellular localization of
molecules. The molecular interactions are translated
into spatially resolved simulations via a dynamic
graphical output. Amongst RA and Simmune, other
successful computational platforms for modeling the
immune system, such as IMMSIM [37–40] or
signaling pathways, for example, Qualitative Networks
[41], have been previously provided.

Nomatterwhat computationalmodelingapproach is
taken, RA or others, they all require the understanding

Figure 8. Pancreatic organogenesis (left) and its emergence from the RA model (right).
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of the underlying biology of a system and the
capabilities of models and the questions they can
answer. Therefore, mutual work between biologists
and modelists should be encouraged to construct
well-supported and validated models
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