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ABSTRACT

Active vaccination with amyloid beta peptide (A) to induce beneficial antibodies was found to be effec-
tive in mouse models of Alzheimer’s disease (AD), but human vaccination trials led to adverse effects,
apparently caused by exuberant T-cell reactivity. Here, we sought to develop a safer active vaccine for
AD with reduced T-cell activation. We treated a mouse model of AD carrying the HLA-DR DRB1*1501
allele, with the AP B-cell epitope (A 1-15) conjugated to the self-HSP60 peptide p458. Immunization
with the conjugate led to the induction of AB-specific antibodies associated with a significant reduction
of cerebral amyloid burden and of the accompanying inflammatory response in the brain; only a mild
T-cell response specific to the HSP peptide but not to the A peptide was found. This type of vaccina-
tion, evoking a gradual increase in antibody titers accompanied by a mild T-cell response is likely due to
the unique adjuvant and T-cell stimulating properties of the self-HSP peptide used in the conjugate and
might provide a safer approach to effective AD vaccination.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Alzheimer’s disease (AD) is a progressive, degenerative disor-
der of the brain and the most common cause of dementia among
the elderly. AB1-40 and AP31-42 peptides are generated from the
cleavage of amyloid precursor protein (APP) by beta- and gamma-
secretases and are the major components of senile plaques and A3
fibrils observed in brains of AD patients [1-4]. They are considered
to play a crucial role in the pathogenesis of AD [5] and thus serve
as a target for therapeutic approaches aimed at decreasing their
production, deposition and toxicity.

Among the different A-targeted approaches to AD treatment,
AP immunotherapy has been shown to induce a marked reduction
in amyloid burden and an improvement in cognitive functions in
different animal models [6-13]. Although preclinical studies had
been successful, the initial human clinical trial of an active A3

Abbreviations: AD, Alzheimer’s disease; APP, amyloid precursor protein; CFA,
complete Freund’s adjuvant; HSP, heat shock protein; HLA, human leukocyte anti-
gen; IFA, incomplete Freund’s adjuvant; IFN-v, interferon-gamma; IL, interleukin;
[HC, immunohistochemistry; Ig, immunoglobulin; LN, lymph node; MHC, major his-
tocompatibility complex; PDGF, platelet-derived growth factor; TCR, T-cell receptor;
TLR, Toll-like Receptor.
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vaccine (AN-1792 trial performed by Elan Pharmaceutical) was
stopped due to the development of meningoencephalitis in approx-
imately 6% of the vaccinated AD patients [14]. These severe side
effects were attributed to the use of QS21, a very strong adjuvant,
and the full length of the AP peptide, the combination of which
might have led to the development of pathogenic T-cells [15,16].
Nevertheless, some encouraging outcomes, including signs of cog-
nitive stabilization and apparent plaque clearance, were found in
a subset of patients who generated specific antibodies upon A3
immunization. These promising results have motivated further
efforts to refine AR immunotherapy to produce effective and safer
active and passive vaccines for AD.

While passive immunization against AP has shown to be effec-
tive in mouse models of AD (currently being tested in a phase III
clinical trial), the segregation between the B-cell and T-cell epi-
topes within AB1-42 [9,10,17,18] may allow for the development
of safer active vaccines. Af3 T-cell epitopes are located primarily
between residues 10 and 42 of AP in mice [9,10,17,18] and in
humans [19,20], and thus the N-terminal portion of A has been
used to generate active A3 vaccines. The N-terminal portion of
AB1-15 conjugated to the T-cell epitope of bovine serum albu-
min [18,21], or a promiscuous foreign T-cell epitope PADRE [22]
was shown to elicit effective antibody responses without stim-
ulating an A3-specific T-cell response. These vaccination studies
have led to preclinical studies using the N-terminal portion of A3
presented on the surface of virus particles [23], liposomes [24], or
administered as AP coding DNA plasmids or viral vectors [25-28].
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In addition, a phase II clinical trial ACC-001, using the N-terminal
of AP conjugated to diphtheria toxin is being carried out by Wyeth.
Among the variety of existing carriers that can provide sup-
port for antibody production when conjugated to the N-terminal
portion of Af3, p458, a 17 amino acid peptide derived from the
60-kDa heat shock protein (HSP60), has unique properties. First,
the full length HSP60 protein is recognized by the immune sys-
tem and plays an important role in the regulation of immunity,
autoimmunity and inflammation [29-31]. Second, it has been pre-
viously established that when complexed with an antigen, HSP60,
like other heat shock proteins, acts as an adjuvant, promoting both
humoral and cellular immune responses [32,33]. These adjuvant
properties are attributed to the ability of this protein to activate
dendritic cells and macrophages via TLR pathways [34]. p458 has
thus been efficiently used as a carrier to initiate antibody produc-
tion in a number of bacterial [32-35] and viral vaccines [36,37].

In the current study, we used the p458 peptide as a carrier con-
jugated to AB1-15 to promote AB-specific antibody production.
We demonstrate that vaccination of APP Tg bearing the DRB1*1501
allele with AB1-15 conjugated to p458 resulted in AB-specific anti-
body production, associated with only very mild HSP60-specific
T-cell activation, AP plaque clearance and a decrease in the level of
microglial activation in the brain.

2. Materials and methods
2.1. Antigens

We designed a novel peptide by fusing the AB1-15 region
with HSP60 p458. The AB1-15 region contains the A B-cell
epitope, whereas p458 provides T-cell support for antibody
production. The whole sequence of the conjugate was DAEFRHDS-
GYEVHHQNEDQKIGIEIIKRTLKI, referred to hereafter as AB-HSP60.
AB-HSP60, p458 and AB1-42 (the 42 residues of Af3) peptides used
in the study were synthesized by GenScript Corp. (Piscataway, NJ).

2.2. Mice

APP Tg mice (J20 line [13]) on a C57BL6 background express-
ing the human mutated APPs,, ;,q under the PDGF promoter were
kindly donated by L. Mucke. Tg mice co-expressing HLA-DR DRB1-
1501 (DR15 mice [38]) and a human T-cell receptor (TCR) specific
for MBP 85-99 on a C57BL6 background were kindly donated by
Vijay K. Kuchroo and Daniel M. Altmann. DR15 mice were crossed
with APP Tg mice to generate APP/DR15 double-Tg mice. These
mice all develop Alzheimer-like disease spontaneously. Mice were
kept and bred at the animal facility of Ben-Gurion University, Beer
Sheva, Israel, in autoclaved cages with autoclaved bedding, food
and water. All surgical and experimental procedures were reviewed
and approved by the Institutional Animal Care and Use Committee
(IACUC) of Ben-Gurion University of the Negev.

2.3. Vaccination

Mice were vaccinated by subcutaneous injection with
AB-HSP60, p458 or AP1-42 (100 pwg/mouse) emulsified in
complete Freund’s Adjuvant (CFA) or incomplete Freund’s Adju-
vant (IFA) (Sigma, Israel) and at the intervals indicated in figure
legends.

2.4. Cytokine ELISA

Lymph node (LN)-derived cells  were cultured
(10 x 108 cells/mL) in U-shaped 96-well-plate culture dishes
in Biotarget serum-free medium (Biological Industries, Israel)

containing 1% Pen/Strep. For IL-2 and IL-4 measurements, super-
natants were collected 24 h after cell seeding. For IFN-y and IL-17A
measurements, supernatants were collected 48 and 72h after
cell seeding, respectively. Sandwich ELISA was implemented for
measuring cytokine concentrations in the supernatants, according
to manufacturer’s instructions (Biolegend, San Diego, CA).

2.5. Antibody ELISA

Serum samples were subjected to ELISA using the goat anti-
mouse Ig and goat antimouse IgG-HRP conjugated antibodies
(Southern Biotech, Birmingham, AL). Briefly, plates were coated
with AB1-42 (3 pg/mL)or goat anti mouse Ig (0.2 pg/mL) (Southern
Biotech, Birmingham, AL) for samples or standards, respectively.
After blocking, the standards and the samples were applied.
Standards [purified mouse IgG (Southern Biotech, Birmingham,
AL)] were used at 20, 15, 10, 7.5, 5, 2.5, 1 and 0ng/mL. Sam-
ples were applied at different series of dilutions in the range
of 1:1000-1:100,000. The goat antimouse IgG-HRP was used at
0.01 wg/mL. Standards, samples and secondary antibody were
diluted with blocking solution (1% BSA in PBS).

The antibody isotypes were tested using Mouse Immunoglobu-
lin Isotype Panel kit (Southern Biotech, Birmingham, AL) according
to manufacturer’s instructions. To analyze antibody binding to
AB-HSP60 or p 458 peptides, plates were coated with these pep-
tides (3 pg/mL).

2.6. Immunohistochemistry (IHC)

Mice were killed with an overdose of isofluorane, and their
brains were rapidly excised and fixed in OCT (Tissue-Tek, Torrance,
CA). The tissues were frozen in isopentane (cooled in liquid nitro-
gen) and stored at —80°C. Sagittal sections (12 wm thick) were
taken throughout the hippocampus and fixed in ice-cold methanol
for 2 min, then in 4% formaldehyde for 4 min, and then washed with
distilled water and phosphate-buffered saline (PBS)/Tween (0.05%).
Prior to staining, primary antibody diluting buffer (Biomeda Corp.,
Foster City, CA) was used to block nonspecific binding. Anti-CD11b
(Serotec, Raleigh, NC) was diluted 1:25. Rabbit anti-human AP
antibodies were generated at the animal facility of Ben-Gurion Uni-
versity, Beer Sheva, Israel, and were diluted 1:500. All secondary
antibodies were conjugated to Alexa-488, Alexa-546, or Alexa-647
(Invitrogen, Carlsbad, CA) and diluted 1:500. TO-PRO 3 (Molecular
Probes, Invitrogen, USA) was used for nuclei staining at a dilution
of 1:3000. Sections were examined under an Olympus Fluoview
FV1000 confocal laser scanning microscope.

2.7. Confocal imaging analysis

Quantification analysis of AR plaques and CD11bbigh cells in
the brain was performed in four sections (12 wm thick) per hemi-
sphere stained for Af and CD11b, for accurate representation of
the hippocampus area. Fluorescence intensity was first obtained in
sections from control mice (immunized with adjuvant only), and
identical laser-scanning parameters were then used for the entire
experiment. Using Volocity 3D image analysis software (Improvi-
sion, Waltham, MA), an intensity threshold was set to mark only
those areas showing significant staining as previously described
[39]. The average fluorescence area per brain section was calculated
for each of the analyzed groups.

2.8. Statistical analysis
All statistical analyses were performed using GraphPad Prism

version 5.02 for Windows (GraphPad Software, San Diego, CA). All
variables are expressed as mean + SD or SEM as indicated in figure
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Fig. 1. Cytokine production following AB-HSP60 short-term immunization of
C57BL6 mice. Mice aged 2 months were immunized with AB-HSP60 emulsified
in CFA as described in Section 2. Ten days after immunization LN-derived cells
were pooled and stimulated with AB-HSP60, p458 or AR1-42 antigens. IL-2 (A)
and IFN-y (B) production in supernatants were measured by ELISA. The bars repre-
sent the mean & SEM for pooled LN-derived cells within one experiment (n=3) out
of two independent repeats performed (n = 6). p-Values were calculated by unpaired
two-tailed t-test.

legends. p values were calculated using unpaired two-tailed t-test
for the entire study except for Figs. 2 and 4A where serum samples
of individual mice were analyzed before and after vaccination and
thus a paired one-tailed t-test was performed.

3. Results

3.1. AB-HSP60 vaccination induces HSP60-specific T-cell
responses in C57BL6 mice

To characterize the immunogenicity of AB-HSP60, we ini-
tially characterized the T-cell response to AB-HSP60 vaccination
in young C57BL6 wild-type mice. For this purpose, 2-month-old
C57BL6 mice (H2P MHC class II haplotype) were vaccinated with
AR-HSP60 emulsified in CFA. Ten days later the mice were killed
and their popliteal lymph nodes were excised. LN-derived cells
were then cultured and stimulated with increasing concentrations
of AB-HSP60, AB1-42 or p458. T-cell-dependent cytokine produc-
tion (IL-2 and IFN-v; IL-4 and IL-10; and IL-17A, primarily produced
upon activation of Th1; Th2; and Th17 T-cells, respectively) was
analyzed by ELISA. IL-2 (Fig. 1A) and IFN-y (Fig. 1B), measured
24 and 48 h after stimulation, respectively, were increased in the

supernatants upon p458 and AB-HSP60, but not AR1-42 stim-
ulation, in a dose-dependent manner. No IL-4, IL-10 or IL-17A
production was detected following immunization with AB-HSP60
(data not shown).

3.2. AB-HSP60 vaccination induces AB-specific antibody
production in C57BL6 mice

In light of the fact that the T-cell response to A-HSP60
immunization was very mild, we sought to determine whether
such T-cell activation could provide sufficient support for Af3-
specific antibody production. To this end, 2-month-old wild type
C57BL6 mice were vaccinated four times with the AB-HSP60 pep-
tide emulsified in IFA at 2-week intervals. The mice were bled
two weeks after each immunization and antibody production
was determined in the sera by ELISA as described in Section 2.
Limited titers of AB-specific antibodies were detected after the
first immunization (3.14 +2.47 pg/mL), raised subsequently with
the following injections and reached 7.8 +4.015, 46.9+30.8 and
119.9 +43.6 pg/mL after the second, third and fourth vaccinations,
respectively (Fig. 2A). The antibodies recognized both the entire
AB1-42 and AB-HSP60 peptides, and no p458-specific antibodies
were detected (Fig. 2B). The pattern of antibody isotypes evoked
upon AB-HSP60 immunization revealed that IgG1, IgG2b and IgM
were the predominant isotypes with relatively lower titers of IgG2c
(Fig. 20C).

3.3. AB-HSP60 vaccination promotes a milder T-cell response
than AB1-42 in Tg mice carrying the HLA-DR allele DRB1*1501

We have recently demonstrated that humans carrying the
highly frequent HLA-DR DRB1*1501 allele have AP specific T cells in
their circulation. AB1-42 was also highly immunogenic in human-
ized mice carrying this allele (DR15 Tg mice) [20]. In both human
individuals and mice carrying the DRB1*1501 allele, AB28-42 was
the dominant T-cell epitope [20]. We thus sought to determine
the immune response evoked by AB-HSP60 (where the A28-42
T-cell epitope was replaced by p458) in young DR15 Tg mice com-
pared with that evoked by AB1-42. Two-month-old DR15 Tg mice
were vaccinated with AB-HSP60 or AB1-42 following the same
protocol used for C57BL6 mice. The mice were killed 10 days after
the immunization and their popliteal draining LNs were excised.
LN-derived cells were then analyzed for cytokine secretion. In LN-
derived cultures from both AB-HSP60 (white bars) and AB1-42
(black bars) immunized mice, the cytokines IL-2 (Fig. 3A), [FN-y
(Fig. 3B) and IL-17A (Fig. 3C) were increased in the supernatant
upon activation with the respective antigen, in a dose dependent
manner. Whereas remarkably high amounts of IL-2 (Fig. 3A), [FN-
v (Fig. 3B) and IL-17A (Fig. 3C) were detected in cultures from
mice vaccinated with AB1-42, their presence was minor in cul-
tures derived from AB-HSP60-vaccinated mice (Fig. 3A-C). Taken
together these data indicate that the AB-HSP60 peptide conjugate
evokes a significantly milder T-cell response than does AB31-42 in
DR15 mice.

3.4. The B-cell response elicited in AB-HSP60-vaccinated DR15
Tg mice

To determine AP antibody production during a long-term
immunization protocol, 2-month-old DR15 Tg mice were immu-
nized four times with AB-HSP60 or ARB1-42 emulsified in IFA
at 2-week intervals as described in Section 2. Two weeks after
each immunization, the mice were bled and their sera were ana-
lyzed for antibody production. As shown for immunized C57BL6
mice (Fig. 2), AB-HSP60 immunization of DR15 Tg mice promoted
the gradual increase of AB1-42-specific antibody titers at the fol-
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lowing injections of AB-HSP60 up to a maximal concentration of (I»lg/ml) (Pg/ml)

144 + 78 pg/mL after the third immunization (Fig. 4A). Immuniza-
tion with either AB-HSP60 or A31-42 evoked antibodies specific
to AP1-42 and AB-HSP60 but not to p458 (Fig. 4B). The anti-
body titer evoked upon AB-HSP60 vaccination was significantly
lower than after AB1-42 vaccination, but the pattern of antibody
isotypes was similar. IgG1 and IgG2b were found to be the predomi-
nant isotypes with relatively low levels of [gG2c and IgM following
immunization with either AB-HSP60 or A31-42 (Fig. 4C). Since
HSP was shown to have adjuvant properties [34,35] we exam-
ined whether the AB-HSP60 conjugate alone evokes an immune
response upon intracutaneous injection. Whereas significant T-cell

Fig. 3. Comparison of cytokine production following AB-HSP60 and AB1-42 vac-
cination in DR15-Tg mice. DR15 mice aged two months were immunized with
AB-HSP60 (n=7) or AB1-42 (n=9) emulsified in CFA. Ten days later mice were
killed, and LN-derived cells were stimulated with increasing concentrations of
AB-HSP60 (white bars) or AB1-42 (black bars) for AB-HSP60 and AP1-42-
vaccinated mice, respectively. The cytokines IL-2 (A), IFN-y (B) and IL-17A (C) were
measured by ELISA. The data show one representative experiment out of two inde-
pendent repeats performed. The bars represent the mean value obtained for each
of the antigen concentrations for AB-HSP60 vaccination (n=4) and for AB1-42
vaccination (n=6)+ SEM. p-Values were calculated by unpaired two-tailed t-test.
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Fig. 4. Antibody characteristics in AB-HSP60 and Af31-42-vaccinated DR15 mice.
DR15-Tg mice aged two months were immunized four times with AB-HSP60 (n=6)
or AB1-42 (n=3) emulsified in IFA at 2-week intervals. Mice were bled two weeks
after each immunization. Total antibody titers were measured following each immu-
nization with AB-HSP60 (A). The bars represent the mean antibody levels obtained
in each group + SEM. Total IgG antibody titers and specificity (B) and antibody iso-
types (C) were compared between the two groups (vaccinated with AB-HSP60 or
AB1-42), two weeks after the last immunization. The bars represent the mean
antibody levels obtained in each group 4+ SEM. p-Values were calculated by paired
one-tailed t-test for the data shown in panel A and unpaired two-tailed t-test for
the data shown in panel B.

responses above background levels were not detected (data not
shown), we demonstrate that following 4 intracutaneous injections
low levels of AP antibodies were produced (Supplementary Fig. 2).

3.5. AB-HSP60 immunization of APP/DR15 Tg mice promotes the
clearance of amyloid plaques

To determine whether AB-HSP60 immunization reduces the
deposition of AP in the brain, 5.5-month-old APP/DR15 Tg mice
were immunized five times with AB-HSP60 emulsified in IFA at
25 day intervals. Control mice were injected with PBS emulsi-
fied in IFA. Mice were killed 25 days after the last immunization
and serum samples were tested for AR antibodies by ELISA. As
shown in Fig. 5A, AB-HSP60 immunization evoked the gradual
production of AB1-42-specific antibodies. No AB-specific anti-
bodies were observed in the control group (data not shown).
Brain sections were then immunostained with Af antibodies
and amyloid deposits were quantified as described in Section 2.
Representative images of brain sections show remarkably fewer
AR deposits (green) in the hippocampal dentate gyrus area of
AB-HSP60-vaccinated mice relative to control mice immunized
with adjuvant alone (Fig. 5B). Quantification of A deposition in
the brain revealed a significant reduction in the brain area occu-
pied by AR in AB-HSP60-immunized mice compared with the
IFA-immunized control group (Fig. 5C).

To characterize the extent of microglial accumulation and
activation associated with AP clearance, brain sections were
immunostained with AR and CD11b antibodies. Co-staining of A3
(red)and CD11b (green) shows co-localization between A3 plaques
and activated microglia in the hippocampi of both AR-HSP60-
immunized and control mice (Fig. 6). Importantly, the significant
decrease in AP plaques in the AB-HSP60-vaccinated group was
accompanied by a proportional decrease in the amount of activated
microglia detected in these areas of the brain (Fig. 6).

Recently we have shown that limited expression of IFN-y in the
brains of APP Tg mice is sufficient to promote CD4 T-cell migration
to the brain upon vaccination with AB1-42 [39,42]. We thus sought
to use this mouse model to examine whether p458 itself affects
the deposition of A in the brain. As shown in Supplementary
Fig. 1A, AP antibodies were produced following AB-HSP60 but
not p458 vaccination. Concomitantly, significant clearance of A3
was observed in mice vaccinated with AB-HSP60 but not in mice
vaccinated with p458 (Supplementary Fig. 1B and C).

4. Discussion

In this study, the N-terminal region A31-15, which contains
most of the B-cell epitopes of AR-peptide, was conjugated to the
HSP60 peptide p458 to generate a novel AD vaccine. We first
characterized the immune response towards the AB-HSP60 con-
jugate in C57BL6 mice carrying the H2P MHC class II haplotype.
Our results demonstrated a very mild T-cell response specific to
the HSP60 peptide, associated with a gradual increase in specific
antibodies to the AB1-42 peptide. Immunization of mice carrying
the human HLA-DR DRB1*1501 allele with AB-HSP60 resembled
the humoral response elicited by AB1-42 by means of antibody
specificity and isotypes, however, with a substantially milder anti-
body and T-cell response. Furthermore, immunization of APP/DR15
double transgenic mice with AB-HSP60 resulted in significant A
plaque clearance from the brain associated with a decrease in the
inflammatory response in the brain.

The utilization of AB1-42 for active vaccination of AD patients
(Elan’s clinical study) caused a pathogenic activation of the immune
system against A within the CNS [14]. It thus became clear that
the immune response evoked to AP should be well controlled for its
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Fig. 5. ARB1-42-specific antibody production and AP plaque clearance from the
brains of APP/DR15 Tg mice immunized with AB-HSP60. APP/DR15 Tg mice (n=4)
aged 5.5 months were immunized five times with AB-HSP60 emulsified in IFA at
25 day intervals. Control mice (n=3) were immunized with PBS emulsified in IFA.
Twenty five days after the last immunization the mice (aged 9.5 months) were
killed and their brains were excised and analyzed for AB1-42-specific antibody
production and AP plaque deposition as described in Section 2. (A) Gradual pro-
duction of AB1-42-specific antibody during immunization. Bars represent mean
antibody titers + SEM. p-Values were calculated by unpaired two-tailed t-test. (B)
Brain sections were immunolabeled with anti-Af (green) and nuclei were stained
with TO-PRO 3 (blue). Representative sections from AB—HSP60-vaccinated and
adjuvant-only vaccinated groups are shown. (C) The average sum of AB-stained
area was quantified for each 12-pum-thick section using the Volocity 3S Image Anal-
ysis software, as described in Section 2. The bars represent mean -+ SEM. p-Value
was calculated by unpaired two-tailed t-test. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of the article.)

effector function in the brain, a feature which can be achieved by the
choice of adjuvant [22], route and dose of the vaccine [40], and alter-
ations of the T-cell epitopes. Utilizing the fact that the B-cell and
T-cell epitopes are segregated in the AB1-42 peptide [19,20,41,42],
numerous active vaccination approaches conjugating the AB1-15
region to various carriers have been established (see review [27]).
The non-self carriers in these vaccines indeed prevented the T-cell
response against Af; however, they evoked a strong T-cell response
against the foreign epitopes and high titers of AfB-specific anti-
bodies generated in a relatively short period of time. Compared
to the T-cell responses induced by previous attempts at AB1-42
immunization, our results show that the AB-HSP60 vaccine pro-
moted a very mild T-cell response, evident by the significantly
lower production of the proinflammatory cytokines IFN-y and IL-
17A in lymphocyte cultures from DR15 mice. Notably, the mild
T-cell response induced by AB-HSP60 caused a gradual increase in
specific AP antibody titers, which were sufficient for effective clear-
ance of AR plaques from the brain of aged APP-Tg mice. Importantly,
we demonstrate that in APP/IFN-y mice where A3 antibody titers
were even lower, presumably as a result of the lower immuno-
genicity of p458 in this background, robust plaque clearance still
occurred following vaccination with AB-HSP60.

In line with our study, which demonstrates no pathogenic
reaction to AB-HSP60 immunization, numerous studies have
established the unique immunogenic characteristics of mammalian
HSPs-derived peptides [32,33,43-46]. In addition, no induction of
pathogenic autoimmunity was observed when p458 was injected
into mice alone [47], as a conjugate with the pneumococcal cap-
sular polysaccharide [34], or as a chimeric peptide with a West
Nile virus-derived peptide [36], suggesting that the activation of
HSP60-specific T cells is tightly regulated. While there are still open
questions regarding these unique properties of HSP60-specific T
cells i.e., how these T cells are selected in the thymus to be part of
the T-cell repertoire and how they are stimulated to play a differen-
tial role in immune activation and regulation, it seems reasonable
to suggest that in the context of AD where the adaptive arms of
the immune system weaken, such stimulation of HSP60-specific T
cells would not put patients at risk of autoimmune diseases but may
rather provide beneficial stimulatory effects for the aging immune
system. This is, of course, provided that the proper adjuvant and
doses are used.

Elan pharmaceuticals used the QS21 adjuvant in their AB1-42
vaccination clinical trial AN-1792 [14]. Considering the increased
frequency of AB-reactive T cells in some patients with AD com-
pared to adult individuals [19], it is reasonable to speculate that the
adjuvant had a key role in their stimulation towards pathogenic T
cells, which may have promoted the development of meningoen-
cephalitis observed in about 6% of the vaccinated patients [16]. The
HSP60-derived peptide p458 used in our study to provide the T-
cell epitope has in itself been shown in previous studies to have
adjuvant properties. Notably, vaccines against pneumococcal and
meningococcus infection combining the p458 peptide conjugated
to bacterial-derived capsular polysaccharides were effective when
administrated without an additional adjuvant [34,35]. It was fur-
ther demonstrated that p458 has an intrinsic adjuvant-like effect
via stimulating Toll-like Receptor 4 (TLR4) signaling and induc-
ing prolonged antigen presentation of the antigens on the surface
of Antigen Presenting Cells (APCs) [34]. The roles of mammalian
HSP60 and HSP70 as endogenous adjuvants have been shown in
several studies demonstrating the activation of macrophages and
dendritic cells primarily via TLR2 and TLR4 [44,45,48]. It is there-
fore possible that certain formulations of AB-HSP60 will allow its
use for AD vaccination without administration of any additional
adjuvant, hence further minimizing the risk of pathogenic T-cell
activation. Possible carriers and routes of administration need to
be further studied in animal models of AD.
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Fig. 6. Decreased microglial activation associated with AP plaque clearance in the brains of APP/DR15 Tg mice. Brain sections derived from adjuvant- (upper panels) and
AB- (lower panels) vaccinated mice were immunolabeled with anti-CD11b (green) and anti-A3 (red) and counterstained with TO-PRO 3 (blue), as described in Section
2. Three-dimensional Z-stack images taken from the hippocampal area of representative sections show separate panels of CD11b (green) and AR (red), and their merged
appearance. Bars represent the distance of 100 wm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Using a peptide such as p458 requires the validation of its
immunogenic characteristics in the context of HLA alleles. We have
recently shown that A31-42 itself has several immunodominant
epitopes in mice carrying different genetic backgrounds [42] and
that these are quite different from the A3 T-cell epitopes deter-
mined in humans [19,20]. The epitopes in humans were mostly
in the C-terminus and were HLA-DR dependent. Here we exam-
ined the immunogenicity of AB-HSP60 vaccine in DR15-Tg mice
carrying the highly frequent DR1501 allele where A3 evoked a
robust immune response via the immunodominant T-cell epitope
AB28-42 [20]. Compared with AB1-42 immunization, AB-HSP60
elicited a substantially milder immune response where both proin-
flammatory cytokines IFN-vy and IL-17A were substantially lower.
Furthermore, long-term immunization of APP/DR15 Tg mice with
AB-HSP60 showed that despite the mild HSP60-specific T-cell
response, Af specific antibody titers were gradually increased and
sufficient to promote the clearance of A3.

The recent clinical results of treating AD patients by either pas-
sive or active immunotherapy demonstrated that this approach is
far more complicated than originally thought. However, at present
it is still one of the promising approaches for the treatment of
this devastating disease. Inducing an immune response against A3
remains a fundamental strategy for elimination of one of the key
players in the disease pathology - the amyloid fibrils. Nonetheless,
one should note that the beneficial effects shown by the clearance
of AB in mouse models of the disease may be partially misleading as
they do not necessarily represent the neuronal/synapse loss of neu-
rons possibly preceding the accumulation of Af in AD patients. A3
clearance should therefore be considered as only part of the ther-
apy. Stimulating an immune response that promotes Af3 clearance
as well as neuronal repair such as via cytokines and neurotrophic
factors [49-53] may be considered as a more appropriate goal of
AD immunotherapy.
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