Electron Transport across Bioelectronic Junctions: is it all about the INTERFACES?

Kavita Garg, Sara Raichlin, Tatyana Bendikov, Israel Pecht, Mordechai Sheves, David Cahen

Weizmann Institute of Science, Rehovot, Israel

Different Si wafer batches with nominally the same specifications respond differently to the same chemical surface treatments to regrow Si oxide on them. The resulting oxides differ electrically, thereby affecting solid-state electron transport (ETp) via protein films, assembled on them.

We studied this phenomenon using two different chemical methods to regrow oxides on the same batch of Si wafers.

We examined ETp via ultra-thin layers of the protein bacteriorhodopsin, assembled on them. Our results point to the crucial role of (near) surface charges on/in the substrate in defining the electronic transport across proteins as expressed strikingly in the current's temperature dependences.

We propose that these are governed by the electric landscape at the electrode-protein interface rather than by intrinsic protein properties.

Thus, protein-electrode coupling in junctions is a decisive factor in transport across junctions and for interpreting the current-voltage characteristics, because this coupling can create a barrier that will dominate charge transport and control the transport mode across the junction.

Our findings' wider importance lies in their relevance to hybrid biomolecule-Si junctions, a likely direction for future bioelectronics.

The results also imply that once an electron is injected into the protein, there is no measurable barrier for transport across the protein.

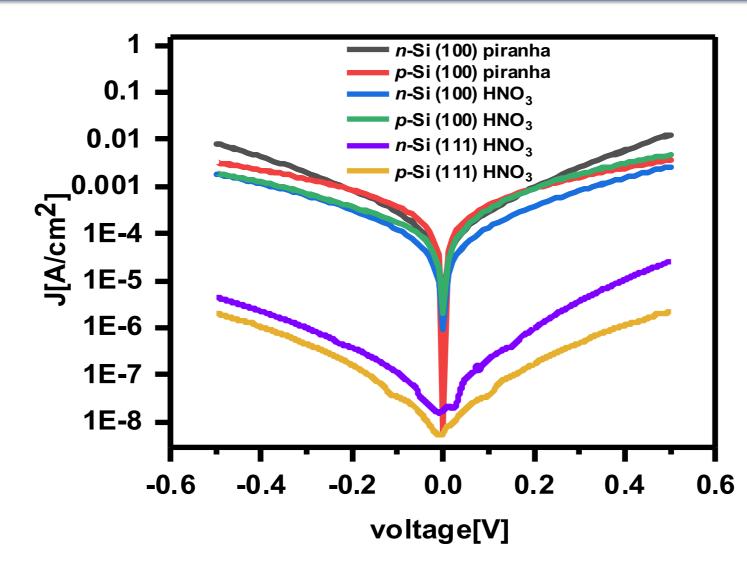
Different batches of Si behave diferently Ea~500 meV -10 **-**-12 **–** ∎Ea~5 meV -16 --18 **-**-20 -1000/T (1/K)

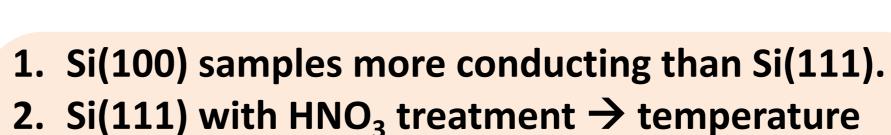
Differences in properties of Batch (I) and Batch (II) wafers

Properties	Batch (I)	Batch (II)
Time to grow oxide in Piranha	30 s	180 s
Specific resistivity (mΩ*cm)	1.1-1.5	0.7-0.9
Work function (UPS) (eV)	4.47	4.33
Current density for Si/SiO ₂ /Au Junction @ 100mV (A/cm ²)	0.6	0.03
I-V shape (Si/SiO ₂ /Au) (-0.5V to +0.5V)	Non-linear	Linear
Si/SiO ₂ /APTMS/OTG-bR /Au: Ea (meV) from current T-dependence	500	20

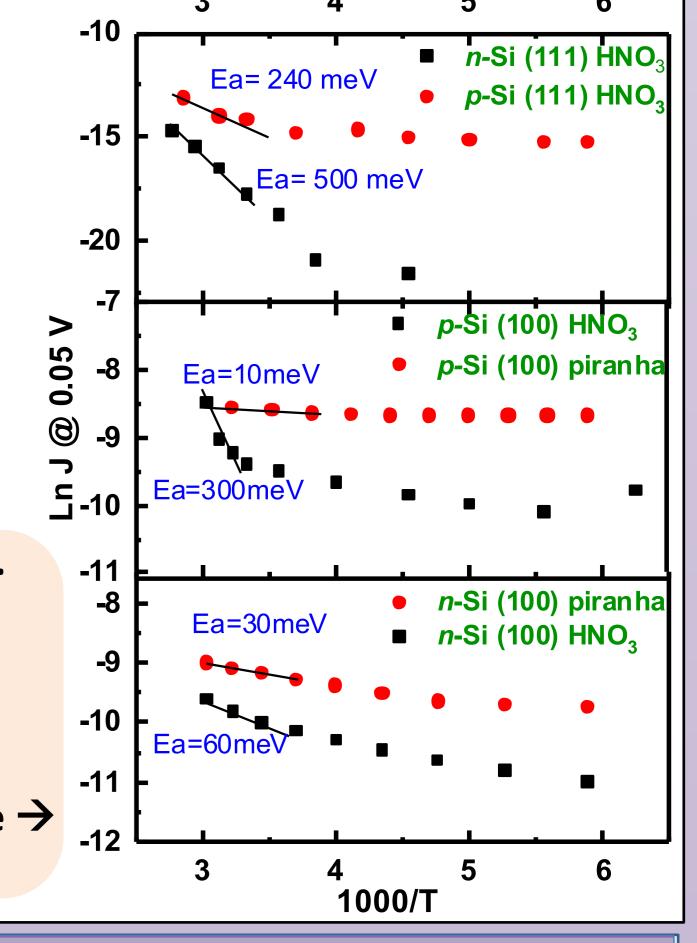
Created differences in Si/SiO₂ using chemical treatments

1. 61% HNO ₃ 10min			Si(100)		Si(111)	
2. (2:1) H ₂ SO ₄ :H ₂ O ₂ 3min	Work function		р	n	р	n
AFM of Si/SiO ₂ /APTMS	CDP (eV)	HNO ₃	4.14	3.97	4.14	4.10
n-Si (100) HNO ₃ p-Si (100) HNO ₃ p-Si (111) HNO ₃ 0.6 nm		Piranha	4.08	3.85	-	-
0.0 Height 2.0 μm 0.0 Height 2.0 μm	UPS (eV)	HNO ₃	3.63	3.63	3.84	3.79
n-Si (100)Piranha p-Si (100)Piranha p-Si (111) HNO ₃		Piranha	3.57	3.55	-	-
-0.6 nm	Si(111)	forms irrep	roducible	e, rough o	xides with	piranha

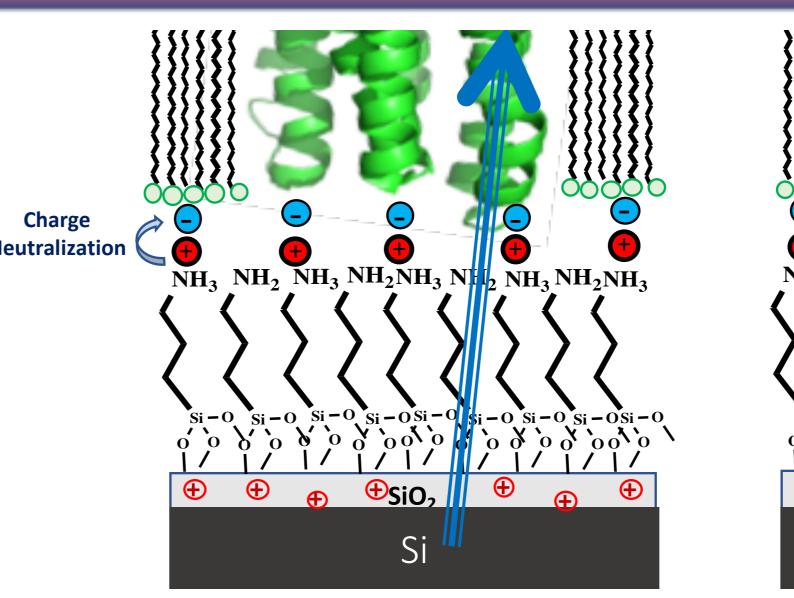

Work-function of Si/SiO ₂ /APTMS							
		Si(100))	Si(111	Si(111)		
Work function		р	n	р	n		
CDP (eV)	HNO ₃	4.14	3.97	4.14	4.10		
	Piranha	4.08	3.85	-	-		
UPS (eV)	HNO ₃	3.63	3.63	3.84	3.79		
	Piranha	3.57	3.55	_	-		

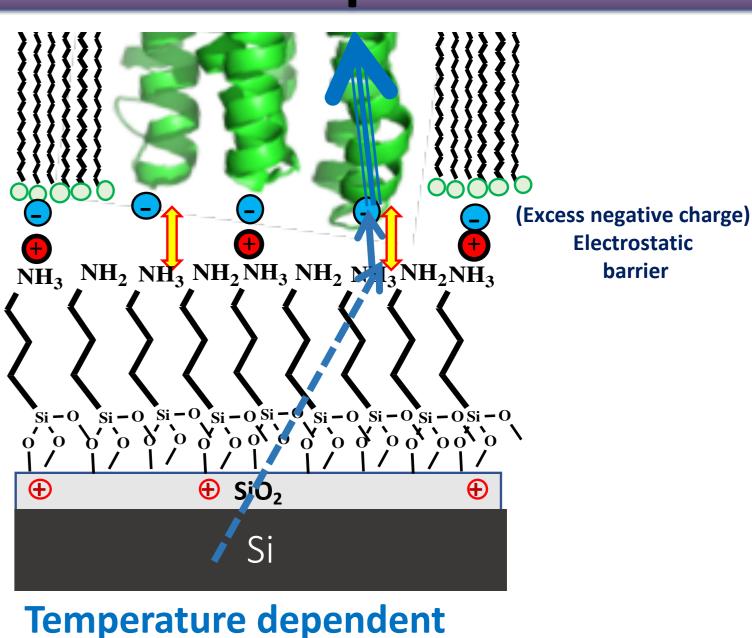

Si(100) | Si(111) Rough oxides > 0.3 nm showed lower 0.23 0.37 | 0.26 | 0.3 WF ~4.0

XPS analysis


	Si(100	0)-n type	Si(100)-p type		Si(111)		
Si oxidized					HNO ₃		HNO ₃
Species (%)	HNO ₃	Piranha	HNO ₃	Piranha	n-type	p-type	treated
Si+	4.5	4.5	12.2	13.5	5.5	7.5	samples
Si2+	0.5	0.7	1.6	2.0	3.0	2.0	are less
Si3+	2.2	1.5	0.7	1.0	0.5	0.5	positively
Si4+	22.0	16.0	21.0	20.0	23.0	23.0	charged
NH ₃ ⁺ /NH ₂	1.72	2.2	0.6	1.0	0.8	0.8	→ Less charged

J-V characteristics




- dependence. 3. For P-Si(100) HNO₃ treated samples \rightarrow temperature dependence
- 4. Rough oxides with low WF and low +ve charge → temperature dependent

Mechanism of Electron transport

Temperature Independent

Conclusion

0.48

0.42 |-

Roughness

(nm)

HNO₃

Piranha

SiO₂ formation

- 1. Batches of Si with same specifications behaves differently to chemical treatments for oxide growth.
- 2. Homogeneity of SiO₂ surface decides the Work Function and, in turn, electron transport (ETp)
- 3. More positive charge \rightarrow better neutralization of protein surface charge \rightarrow no barrier \rightarrow temperature-independent ETp
- 4. Less positive charge \rightarrow electrostatic barrier \rightarrow temperature-dependent ETp