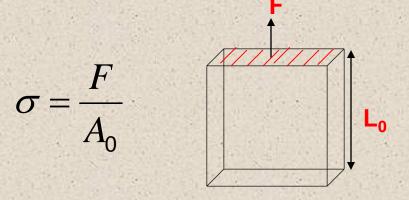
Mechanical Properties

Primer Materials Spring 2021

Definitions (engineering)

Stress (σ): force divided by cross sectional area $\frac{N}{m^2} = MPa$



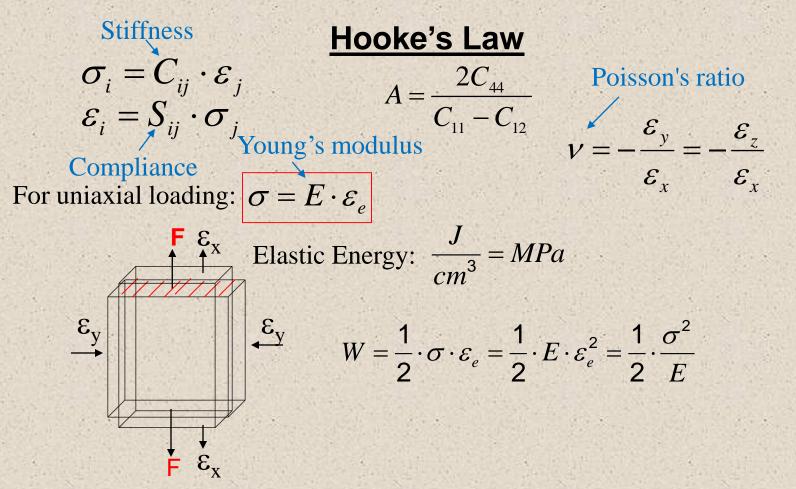
Strain (ϵ): elongation divided by the original length

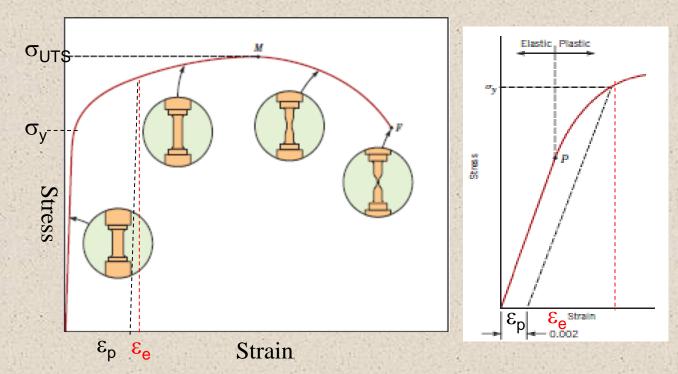
$$\varepsilon = \frac{L - L_0}{L_0} = \frac{\Delta L}{L_0}$$

Elasticity

Elastic strain (ϵ_e) is reversible – when the stress goes to 0 the strain goes to 0

Plastic strain (ϵ_p) is irreversible – when the stress goes to 0 the strain remain





Yield Stress (σ_y): the stress in which the plastic deformation begins. Engineering yield Stress is the stress in which the plastic deformation equal to 0.002.

Ultimate Tensile Strength (σ_{UTS}) or (σ_M): The maximum engineering tensile stress. An additional deformation will cause the formation of "neck" in the sample.

Fracture Energy (W_f): equal to the area below the Strain-Stress curve.

Total Strain (ε_{tot}): $\varepsilon_{total} = \varepsilon_p + \varepsilon_e$

There is no plastic stress

For shear stress:

$$\sigma_{j} = G \cdot \varepsilon_{i}$$

shear modulus

For isotropic material:

$$G = \frac{E}{2(\nu+1)}$$

For Cubic:

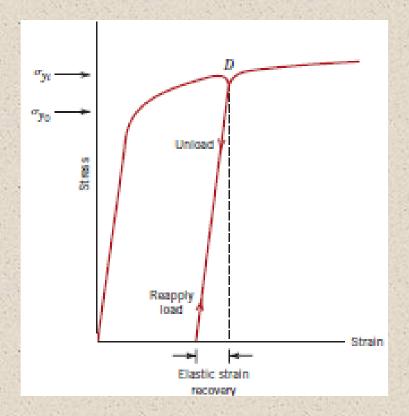
(in isotropic material $A = \frac{2C_{44}}{(C_{11}-C_{12})} = 1$)

- Calculate the volume change for small strains.
- $$\begin{split} \frac{\Delta V}{V_0} &= \frac{V V_0}{V_0} = \frac{(L_{x0} + \Delta L_x) \cdot (L_{y0} + \Delta L_y) \cdot (L_{z0} + \Delta L_z) L_{x0} \cdot L_{y0} \cdot L_{z0}}{L_{x0} \cdot L_{y0} \cdot L_{z0}} \approx \\ &\approx \frac{L_{x0} \cdot L_{y0} \cdot L_{z0} + \Delta L_x \cdot L_{y0} \cdot L_{z0} + \Delta L_y \cdot L_{z0} \cdot L_{x0} + \Delta L_z \cdot L_{x0} \cdot L_{y0} L_{x0} \cdot L_{y0} \cdot L_{z0}}{L_{x0} \cdot L_{y0} \cdot L_{z0}} = \\ &\varepsilon_x + \varepsilon_y + \varepsilon_z \end{split}$$
 - Show that if the Poisson ratio is 1/2 the volume do not change under elastic deformation.

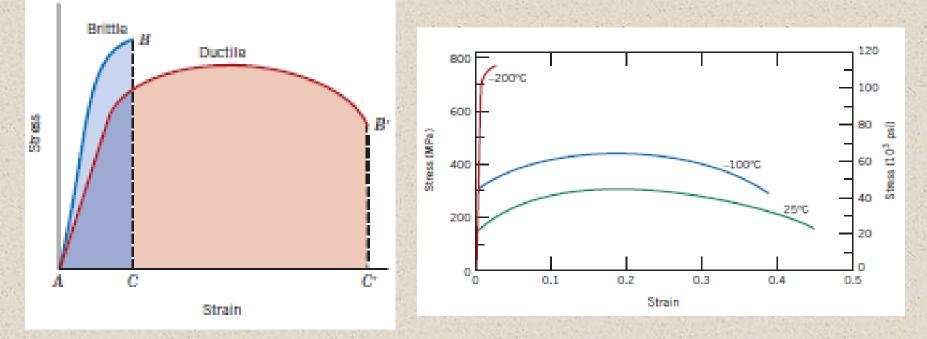
$$\frac{\Delta V}{V_0} = \varepsilon_x - v \cdot \varepsilon_x - v \cdot \varepsilon_x = \varepsilon_x \cdot (1 - 2 \cdot v) = \frac{\sigma}{E} \cdot (1 - 2 \cdot v)$$

Hard- resistance to plastic deformation (σ_y)
 Stiff - resistance to elastic deformation (E)
 Tough- resistance to fracture (W_f)

• Show by using strain-stress curve that plastic deformation make the materials harder.

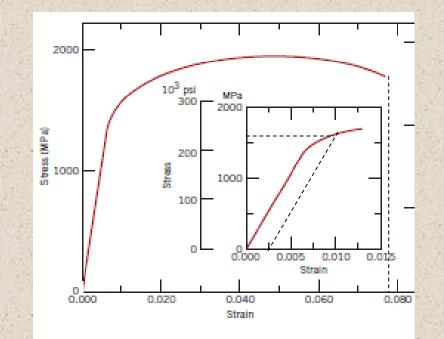


Ductile and Brittle Materials



Brittle material is a material that can not stand even small plastic deformation.
Ductile material is a material that can undergo large plastic deformation.

 Using the following stress-strain curve of 8mm diameter 150mm length steel bar calculate the yield force and the maximum elongation of the sample.

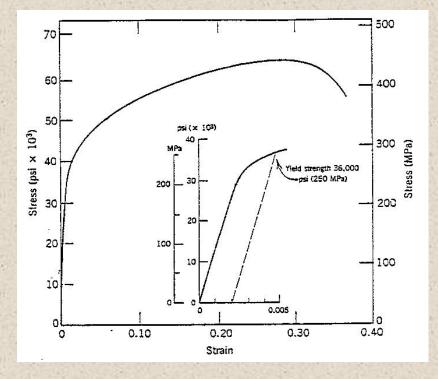


From the stress-strain curve the yield stress is 1600 MPa $F_v = \sigma_v \cdot A_0 = 1600 \cdot \pi \cdot 4^2 = 25,600 N$

From the stress-strain curve the strain for break is 0.077 $\Delta L = \varepsilon_f \cdot L = 0.077 \cdot 150 = 11.55mm$

Using the following stress-strain curve of 10mm diameter 26mm length brass bar calculate:

- 1) The Young's modulus
- 2) The total elongation and the volume strain of the sample at load of 27000N, if the Poisson ratio of brass is 0.33



 $\Delta V/V_0 = \sigma/E \cdot (1 - 2v) = 343.77/91000 \cdot 0.34 = 0.0013$

b)

2. a) $\sigma = F/A = 27000/(\pi r^2) = 27000/(\pi \cdot 25) = 343.77 MPa$ $\varepsilon_{tot} = 0.055, \Delta L = L_0 \cdot \varepsilon; \Delta L_{tot} = 26 \cdot 0.055 = 1.43 mm$

r=5mm; L₀=26mm; v=0.33 1. E= σ/ϵ_{el} =200/0.0022=91,000 MPa=91GPa

