Electronic properties

Primer Materials For Science Teaching

Ohm's low

Drude model

Assumptions

•All atoms gives their valance electron to the 'sea of electron'

e

- •Ion are localized, Electron moves in straight lines between collisions
- Relaxation time: τ time between collisions

$$\sigma = \mu n e \qquad \sigma = \frac{n e^2 \tau}{m_e} \quad \text{The electrical conductivity related to} \\ \mu = \frac{e \tau}{m_e} \qquad \tau = \frac{m_e}{\rho n e^2} = \frac{1}{n_e \pi a^2} \cdot \sqrt{\frac{m_e}{3KT}}$$

V 3K I

pne-

Typical relaxation times

Table 1.2 ELECTRICAL RESISTIVITIES OF SELECTED ELEMENTS ^a					Table 1.3 DRUDE RELAXATION TIMES IN UNITS OF 10 ⁻¹⁴ SECOND ^a			
LEMENT	77 K	273 K	373 K	$(\rho/T)_{373 \text{ K}}$	ELEMENT	77 K	273 K	373 k
				$(\rho/T)_{273 \text{ K}}$	Li	7.3	0.88	0.61
Li	1.04	8.55	12.4	1.06	Na	17	3.2	0.01
Na	0.8	4.2	Melted	56 S	К	18	4.1	
ĸ	1.38	6.1	Melted	8	Rb	14	2.8	
Rb	2.2	11.0	Melted		Cs	8.6		
Cs	4.5	18.8	Melted	12			2.1	1211421
Cu	0.2	1.56	2.24	1.05	Cu	21	2.7	1.9
Ag	0.3	1.51	2.13	1.03	Ag	20	4.0	2.8
Au	0.5	2.04	2.84	1.02	Au	12	3.0	2.1
Be	0.02	2.8	5.3	1.39	Be		0.51	0.27
Mg	0.62	3.9	5.6	1.05	Mg	6.7	1.1	0.74
Ca Sr	7	3.43 23	5.0	1.07	Ca		2.2	1.5
Ba	17	60		100	Sr	1.4	0.44	
Nb	3.0	15.2	19.2	0.92	Ba	0.66	0.19	
Fe	0.66	8.9	14.7	1.21	Nb	2.1	0.42	0.33
Zn	1.1	5.5	7.8	1.04	Fe	3.2	0.42	0.14
Cd	1.6	6.8			Zn	2.4		
Hg	5.8	Melted	Melted		Cd		0.49	0.34
AI	0.3	2.45	3.55	1.06		2.4	0.56	
Ga	2.75	13.6	Melted	20	Hg	0.71		
In	1.8	8.0	12.1	1.11	Ai	6.5	0.80	0.55
TI	3.7	15	22.8	1.11	Ga	0.84	0.17	
Sn	2.1	10.6	15.8	1.09	In	1.7	0.38	0.25
Pb	4.7	19.0	27.0	1.04	П	0.91	0.22	0.15
Bi	35	107	156	1.07	Sn	1.1	0.23	0.15
Sb	8	39	59	1.11	Pb	0.57	0.14	0.09
Desistivities	in milene has seen	imatern and simo	-+ 77 V (++ - 1 - 1)	1 . CV . / A	Bi	0.072		
Resistivities	in microhm cent	imeters are given:	at 77 K (the boilin			0.072	0.023	0.01

" Resistivities in microhm centimeters are given at 77 K (the boiling point of liquid nitrogen at atmospheric pressure), 273 K, and 373 K. The last column gives the

approximate linear temperature

 $[\mu\Omega\cdot cm] = 1X10^{-8}[\Omega\cdot m]$ ture.

r

d

Summer of Physical and Chemical Constants, Longmans Green, London, 1966. " Relaxation times are calculated from the data in Tables 1.1 and 1.2, and Eq. (1.8). The slight temperature dependence of n is ignored.

0.055

0.036

0.27

Sb

Drift velocity

 V_{th} – thermal velocity E – electric field V_{drift} – drift velocity

$$V_{th} = \sqrt{\frac{3KT}{m_e}}$$

$$J = \sigma E = n e v_{drift}$$

When J = 0 the drift velocity is zero. Meaning that in average each electron has zero displacement

When J \neq electron moves with typical velocity of v_{drift}

Electron moves in metal

Example 1

You apply a potential difference of 4.5 [V] between the ends of a wire that is 2.5 [m] in length and 0.64 [mm] in radius. The resulting current through the wire is 18 [A]. What is the resistivity of the wire? What is the heat loss?

Example 2

The resistivity of Cu is $1.7 \times 10^{-8} \Omega m$ at 300 K and the electron density is $8.5 \times 10^{28} m^{-3}$.

(a) Calculate the relaxation time of electrons in Cu at 300 K .(b) Calculate the mean free path of the electrons using Drude approximation.

a)
$$\tau := \frac{\text{me}}{\rho \cdot n \cdot e^2}$$
 $\tau = 2.46 \times 10^{-14} \text{s}$

$$m_e = 9.1093837 \times 10^{-31} \text{ Kg}$$

$$e = 1.60217663 \times 10^{-19} \text{ C}$$
b) $\text{Vther} := \left(\frac{3 \cdot \text{k} \cdot \text{T}}{\text{me}}\right)^{\frac{1}{2}}$ Ither := $\text{Vther} \cdot \tau$ $\frac{\text{Ither}}{10^{-9} \cdot \text{m}} = 2.874$ nm

Example 3

Prove that the combination of Hall effect measurements and resitivity measurements permits determination of the electron relaxation time

$$R_{h} = \frac{1}{e \cdot n}$$

Hall voltage $V_{h} = R_{h} \cdot \frac{IH}{d} = \frac{H \cdot I}{e \cdot n \cdot d} \Longrightarrow n = \frac{H \cdot I}{e \cdot d \cdot V_{h}}$

Conductivity
$$\sigma = \frac{ne^2 \tau}{m_e} \Rightarrow \tau = \frac{m_e \sigma}{ne^2} = \frac{m_e \cdot \sigma \cdot d \cdot V_h}{H \cdot I \cdot e}$$