
Thermal Properties

Primer Materials
Spring 2021

Linear Thermal expansion

 $L=L_0(1+\alpha\Delta T)$

 α - Linear thermal expansion coefficient

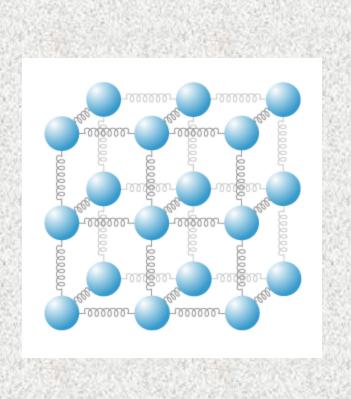
Material	α [K ⁻¹] *10 ⁻⁵
Aluminum	2.4
Brass	2
Copper	1.7
Ероху	1.8-2.5
Glass (common)	0.8
Quartz, Fused Silica	0.04
Steel	1.2
Zinc	2.6
Diamond	0.1

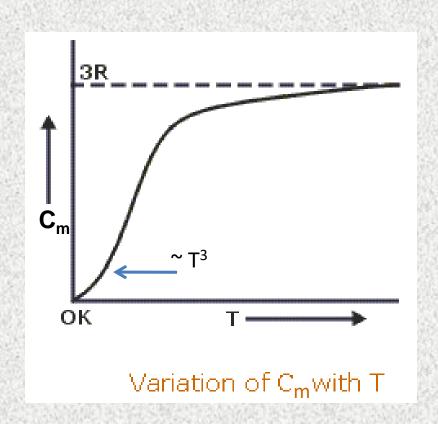
Heat Capacity

 Specific Heat Capacity – the amount of energy needed to increase 1 kg of material 1 degree

$$c = \frac{1}{m} \frac{dQ}{dT} c_p$$
 =constant pressure, c_v =constant volume $c_{p, volume} = c_p \times \rho$ $c_{p, mol} = c_p \times M$

Substance	[J/(Kg*K)]	[J/(cm³ *K)]	[J/(mol *K)]
Aluminum	930	2.51	24.3
Copper	390	2.87	24.5
Water, fresh	4179	4.18	75.2
iron	444	3.49	25.1
gold	129	2.49	25.6
zinc	390	2.78	25.2
Lithium	3580	1.91	24.8
Hydrogen	14000	0.00125	28.8
Ar	520	0.00086	20.8
Diamond	509	1.8	6.1


 $25 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 3 \text{ R}$

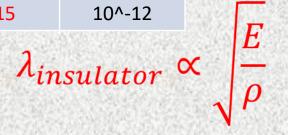

Example

- How much energy one need to invest in order to heat 1 kg of water from 25 °C to 60 °C?
- C=4179 [J/(Kg*K)]
- $\Delta Q = M^*c^*\Delta T = 4179^*35 = 146KJ$

$$c = \frac{1}{m} \frac{dQ}{dT}$$

Heat Capacity of Solids

At high temperatures all monoatomic solid crystals have the same heat capacity


$$C_{mol} = 3*R = 24.9 [J/(mol*K)]$$

Thermal Conductivity

Thermal Conductivity— the ability of a material to transport heat

Material	λ[W/m*K]	E [GPa]	ρ[gr/cm^3]	σ[S/cm]
Aluminum	250	68	2.7	37*10^4
Copper	390	110	8.96	59*10^4
Brass	130	106	8.73	16*10^4
PVC	0.19	4	1.3	10^-8
Glass (SiO ₂)	1	70	2.5	10^-10
Alumina	25	370	3.7	10^-10
Steel	54	210	8	10*10^4
Silver	427	83	10.5	62*10^4
Diamond	2000	1050	3.5	10^-13
AIN	170	320	3.25	10^-12
ZrO ₂	3	100	6.15	10^-12

 $\lambda_{metal} \propto \sigma_{electron}$

Thermal Diffusivity

Thermal Diffusivity— how fast a material can transfer temperature

$$D = \frac{\lambda}{C_{volume}}$$

	Material	D [cm²/sec]
	Aluminum	1
3	Copper	1.36
	PVC	0.0014
	Glass (SiO ₂)	0.0045
	Steel	0.28
	Silver	1.73
	Diamond	11

Exercise

- A zinc rod has a length of 1.9 m at 20 °C. What should its length be a) on a hot day in Sahara desert (48 °C) b) on a cold night in Greenland (-53 °C)
- 2. An engineer is working on a new engine design. One of the moving parts contains 1.6 kg of Al and 0.3 kg of iron and design to operate at 210 °C. How much heat is required to raise its temperature from 20 to 210 °C
- 3. Can you think of an a device which can conduct heat in only one direction?

- The thermal expansion coefficient of zinc is: α = 2.6X10⁻⁵ [1/K].
- A) $\Delta T = 28 \rightarrow L = L_0 + L_0 \alpha \Delta T = 1.9014 m$
- B) $\Delta T = -73 \rightarrow L = L_0 L_0 \alpha \Delta T = 1.8964 m$

$$\texttt{Cv_A1} \coloneqq \texttt{910} \, \frac{\texttt{J}}{\texttt{kg} \cdot \texttt{K}} \qquad \texttt{Cv_Fe} \coloneqq \texttt{444} \, \frac{\texttt{J}}{\texttt{kg} \cdot \texttt{K}}$$

$$M/A1 := 1.6 kg$$

$$M_A1 := 1.6kg$$
 $M_Fe := 0.3kg$

 $kJ := 1 \cdot 10^3 J$

 $\Delta T := 190 K$

$$\Delta Q_A1 := M_A1 \cdot Cv_A1 \cdot \Delta T$$

$$\Delta Q \ Fe := M \ Fe \cdot Cv \ Fe \cdot \Delta T$$

$$\Delta Q := \Delta Q_A1 + \Delta Q_Fe$$

$$\Delta Q = 301.948 \, kJ$$

- Consider put two parts with similar dimensions made from two different materials with different thermal expansion.
- When heat will flow from right to left the red material will expend and will touch the blue one and heat will flow.
- The thermal expansion coefficient of the blue is much smaller than the red. So if heat comes from left to right the blue material will not touch the red and heat will not flow form left to right

