Lectures and Events - Faculty of Chemistry

Upcoming Lectures

  • May23

    11:00 AM

    Gerhard M.J. Schmidt Lecture Hall

    Covalent Binders: From Discovery to Function

    Dr. Nir London

    Small molecule inhibitors and drugs that are able to form a covalent bond with their protein target have several...

    Small molecule inhibitors and drugs that are able to form a covalent bond with their protein target have several advantages over traditional binders. While they were avoided for a long time due to concerns of specificity, in recent years they are attracting significant interest as underscored by FDA approvals of rationally designed covalent drugs, such as Ibrutinib and Afatinib. In the past few years my research team has been focused on technology development for the field of Covalent Ligand Discovery. These include: covalent virtual screening, empirical covalent fragment screening, the first reported reversible covalent targeted degraders (PROTACs), and most recently the discovery of new chemistry that enables the design of superior covalent binders. These technologies enabled the discovery of novel, potent inhibitors for several challenging targets. These inhibitors, in turn, have shed new light on the target’s biological function and represent potential therapeutic leads. I will describe our journey from the original goal of mere ‘discovery’ of covalent binders to the current challenge of functionalizing covalent binders for various applications.

  • June06

    11:00 AM

    Gerhard M.J. Schmidt Lecture Hall

    Synthesis of Molecular Wire Nanorings: Light Harvesting & Charge Delocalization

    Prof. Harry Anderson

    Template-directed synthesis can be used to create π-conjugated porphyrin nanorings that are as big as proteins, with...

    Template-directed synthesis can be used to create π-conjugated porphyrin nanorings that are as big as proteins, with diameters ranging from 2 nm to more than 20 nm. These nanorings mimic the ultra-fast energy migration of photosynthetic light-harvesting chlorophyll arrays. They are highly redox active and they display global aromaticity in some oxidation states. For example, the 12-porphyrin nanoring is globally aromatic in its 6+ oxidation state with a Hückel circuit of 4n + 2 = 162 π electrons (diameter 5 nm). This is the largest aromatic circuit yet reported. The aromatic and antiaromatic ring currents confirm that there is long-range charge delocalization. Recent work on these systems will be presented.

  • June20

    11:00 AM

    Gerhard M.J. Schmidt Lecture Hall

    Coupled Colloidal Quantum Dot Molecules

    Prof. Uri Banin

    Colloidal semiconductor Quantum Dots (CQDs) containing hundreds to thousands of atoms have reached an exquisite level...

    Colloidal semiconductor Quantum Dots (CQDs) containing hundreds to thousands of atoms have reached an exquisite level of control, alongside gaining fundamental understanding of their size, composition and surface-controlled properties, leading to their technological applications in displays and in bioimaging. Inspired by molecular chemistry, deeming CQDs as artificial atom building blocks, how plentiful would be the selection of composition, properties and functionalities of the analogous artificial molecules? Herein we introduce the utilization of CQDs as basic elements in nanocrystal chemistry for construction of coupled colloidal nanocrystals molecules. Focusing on the simplest form of homodimer quantum dots (QDs), analogous to homonuclear diatomic molecules, we introduce a facile and powerful synthesis strategy with precise control over the composition and size of the barrier in between the artificial atoms to allow for tuning the electronic coupling characteristics and their optical properties. This sets the stage for nanocrystals chemistry to yield a diverse selection of coupled CQD molecules utilizing the rich collection of artificial atom core/shell CQD building blocks. Such CQD molecules are of relevance for numerous applications including in displays, photodetection, biological tagging, electric field sensing and quantum technologies.