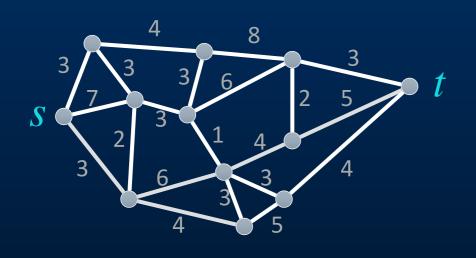
APMF < APSP? Gomory-Hu Tree in Subcubic Time



Which are easier to compute: distances or connectivities?

Shortest-Path(s, t) = ?

Max-Flow(s, t) = ?

With Robert Krauthgamer (Weizmann) and Ohad Trabelsi (Michigan) [SODA'20, FOCS'20, STOC'21, FOCS'21, SODA'22]

+ [new paper] also with Jason Li (Simons), Debmalya Panigrahi (Duke), and Thatchaphol Saranurak (Michigan)

Amir Abboud (Weizmann)

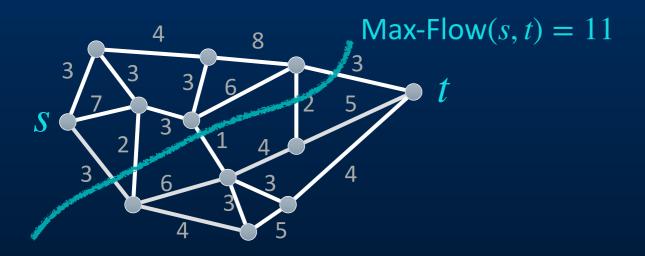
Max-Flow

VS.

Shortest Path

= Min-s,t-Cut

Which is easier to compute?



Shortest-Path(s, t) = 16 s = 16 s

[Dinitz'70] *mn*

[Goldberg-Rao'98] $mn^{2/3}$

[Lee-Sidford'14] $mn^{1/2}$

1950's Dijkstra's $O(m + n \log n)$

via Continuous Optimization

[BLLSSSW'21] $\tilde{O}(m + n^{1.5})$

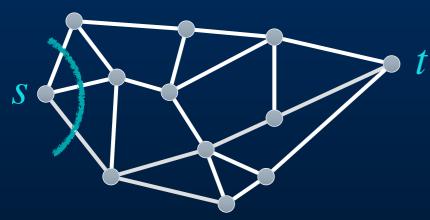
Both $\tilde{\Theta}(n^2)$ but shortest path is much simpler.

Max-Flow

VS.

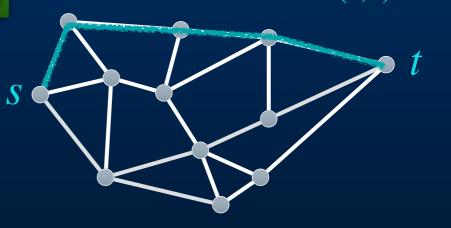
Shortest Path

Which is easier to compute?



Unweighted (simple graphs)

Shortest-Path(s, t) = 4



via Randomized Contractions

[Karger-Levine'02] $\tilde{O}(m+n^2)$

via Continuous Optimization

[BLLSSSW'21] $\tilde{O}(m + n^{1.5})$

1950's BFS

$$O(m+n)$$

Both $\tilde{\Theta}(n^2)$ but shortest path is much simpler.

Max-Flow

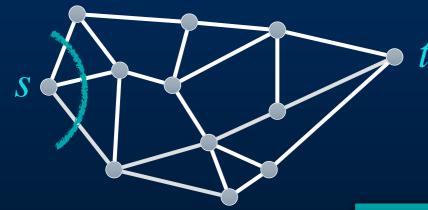
VS.

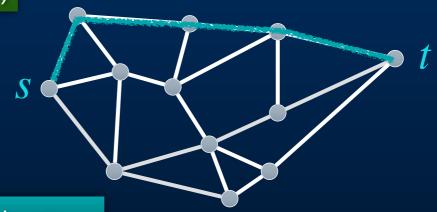
Shortest Path

Which is easier to compute?

Unweighted (simple graphs)

Shortest-Path(s, t) = 4





Both work for directed graphs too.

via Randomized Contractions

[Karger-Levine'02] $\tilde{O}(m+n^2)$

via Continuous Optimization

[BLLSSSW'21] $\tilde{O}(m + n^{1.5})$

1950's BFS

$$O(m+n)$$

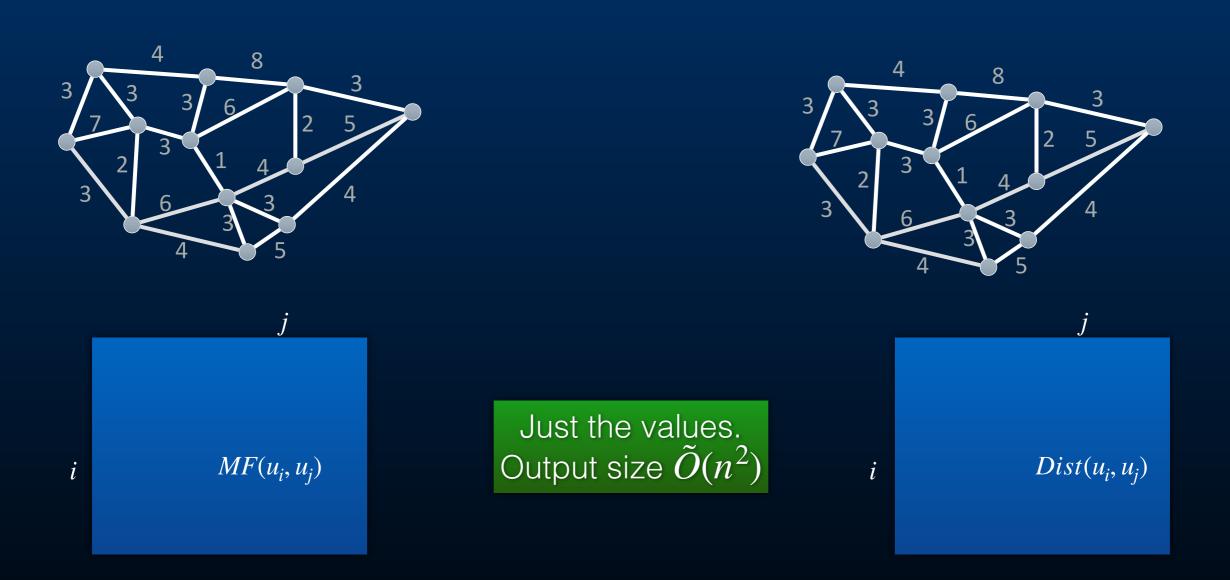
Also solves the Single-Source version.

Both $\tilde{\Theta}(n^2)$ but shortest path is much simpler.

VS.

All-Pairs SP

APSP: $\forall s, t \in V$: Shortest-Path(s, t) = ?



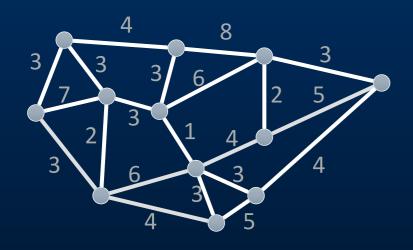
Which is easier to compute?

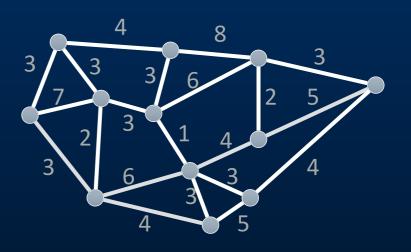
VS.

All-Pairs SP

APMF: $\forall s, t \in V$: Max-Flow(s, t) = ?

APSP: $\forall s, t \in V$: Shortest-Path(s, t) = ?





Trivial: $n^2 \cdot MF(n) = \tilde{O}(n^4)$

 $n^2 \cdot SP(n) = \tilde{O}(n^4)$

Trivial 2:

 $n \cdot \text{Single-Source-SP}(n) = \tilde{O}(n^3)$

Gomory-Hu 1961:

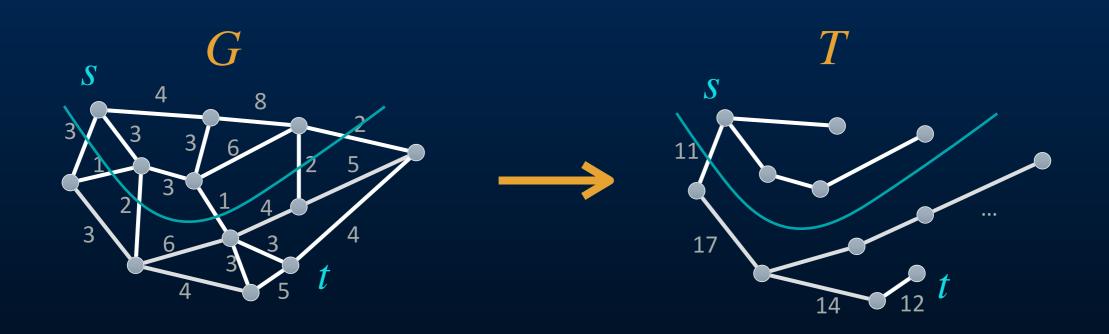
$$(n-1) \cdot MF(n) = \tilde{O}(n^3)$$

Which is easier to compute?

Gomory-Hu Tree

Thm [GH 1961]:

Every undirected graph has a (weighted) cut-equivalent tree. Moreover, it can be computed in $(n-1) \cdot MF(n)$ time.



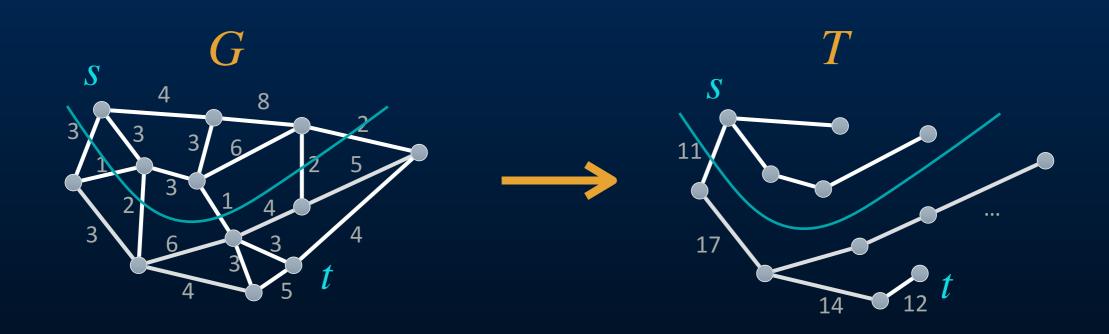
 $\forall s, t \in V : \mathsf{Min}\text{-}\mathsf{Cut}_G(s, t) = \mathsf{Min}\text{-}\mathsf{Cut}_T(s, t)$

APMF on a tree is in $ilde{O}(n^2)$ time. The challenge is to compute a GH tree...

Gomory-Hu Tree

Thm [GH 1961]:

Every undirected graph has a (weighted) *cut-equivalent tree*. Moreover, it can be computed in $(n-1) \cdot MF(n)$ time.



 $\forall s, t \in V : \mathsf{Min}\text{-}\mathsf{Cut}_G(s, t) = \mathsf{Min}\text{-}\mathsf{Cut}_T(s, t)$

- => APMF has only n-1 answers.
- Space-optimal min-cut oracle.
- First graph sparsification result?

Impossible for APSP.

vs. All-Pairs SP

Gomory-Hu 1961:

$$(n-1) \cdot MF(n) = \tilde{O}(n^3)$$

Open: $o(n) \cdot MF(n)$?

Meanwhile... APSP in "mildly sub-cubic time"

Author	Runtime	Year
Fredman	n ³ log log ^{1/3} n / log ^{1/3} n	1976
Takaoka	n ³ log log ^{1/2} n / log ^{1/2} n	1992
Dobosiewicz	n ³ / log ^{1/2} n	1992
Han	n ³ log log ^{5/7} n / log ^{5/7} n	2004
Takaoka	n³ log log² n / log n	2004
Zwick	n³ log log1/2 n / log n	2004
Chan	n³ / log n	2005
Han	n ³ log log ^{5/4} n / log ^{5/4} n	2006
Chan	n³ log log³ n / log² n	2007
Han, Takaoka	n³ log log n / log² n	2012
Williams	$n^3 / 2\Omega(\sqrt{\log n})$	2014

Both $\tilde{O}(n^3)$ but APSP seems easier.

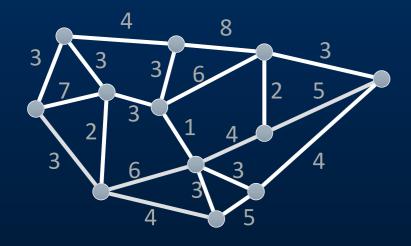
vs.

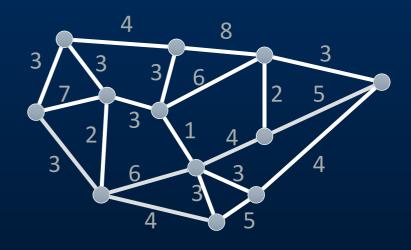
All-Pairs SP

Which is easier to compute?

APMF: $\forall s, t \in V$: Max-Flow(s, t) = ?

APSP: $\forall s, t \in V$: Shortest-Path(s, t) = ?





Trivial: $n^2 \cdot MF(n) = \tilde{O}(n^4)$

 $n^2 \cdot SP(n) = \tilde{O}(n^4)$

Trivial 2:

 $n \cdot SSSP(n) = \tilde{O}(n^3)$

Gomory-Hu 1961: Undirected only.

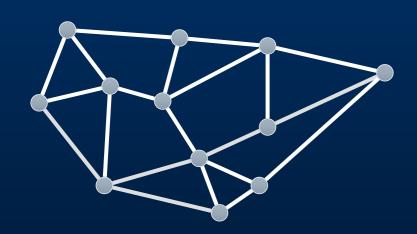
Directed too.

$$(n-1) \cdot MF(n) = \tilde{O}(n^3)$$

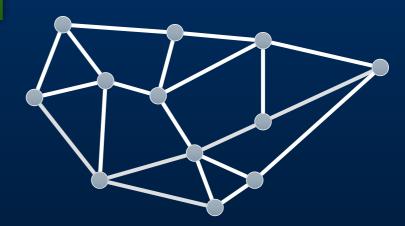
Both $\tilde{O}(n^3)$ but APSP seems easier.

VS.

All-Pairs SP



Unweighted (simple graphs)



Gomory-Hu 1961:

$$(n-1) \cdot MF(n) = \tilde{O}(n^3)$$

Siedel 1995:

$$O(n^{\omega}) = O(n^{2.37})$$

[Bhalgat-Hariharan-Kavitha-Panigrahi '07]

 $\tilde{O}(mn)$ (without MF)

APSP is subcubic, APMF is not: a separation, finally?

APMF vs. APSP

	APMF	APSP
General	n^3	n^3
Unweighted	n^3	$n^{2.37}$

It feels like **APMF** \geq **APSP**... Is it so?

Enter: Fine-Grained Complexity

A small set of "conjectures"

(APSP, 3SUM, SETH, ...)

fine-grained reductions

Tight lower bounds for lots of natural and important problems

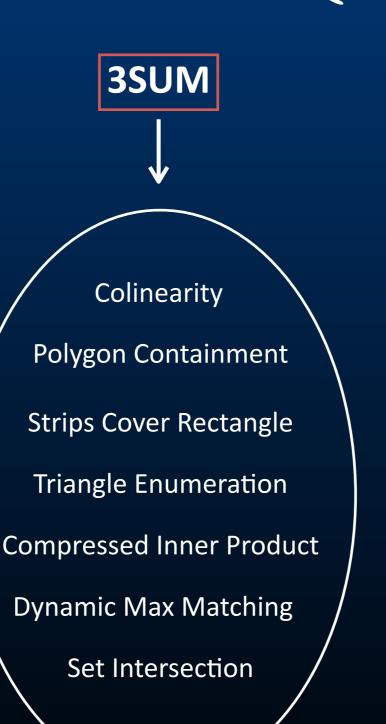
 $\Omega(n^3), \Omega(n^{2.5}), \Omega(n^2), \dots$

The Class P (before)

k-clique Radius RNA folding LCS Maximum Matching Diameter Orthogonal Vectors **Edit-Distance** Linear Programming Local Alignment CFG Parsing All Pairs Shortest Paths Polygon containment All Pairs Max Flow 3SUM Frechet distance Dynamic reachability

The Class P (after)

k-SAT Diameter **Closest Pair** Local Alignment **Dynamic Reachability** Single-Source Max-Flow Subtree Isomorphism **Stable Matching Edit-Distance** Frechet LCS



APSP-Hard Problems

Conjecture:

APSP in undirected weighted graphs cannot be solved in $O(n^{3-\varepsilon})$ time.

[Vassilevska Williams - Williams '10]

APMF?



It feels like **APMF** \geq **APSP**... Is it so?

APMF > APSP in directed graphs

Assuming **SETH**:

 $\Omega(n^{2-\varepsilon})$ for Single-Source MF in sparse graphs [A.- Vassilevska W. - Yu '15] vs. $\tilde{O}(n)$ for Single-Source SP in sparse graphs

 $\Omega(n^{3-\varepsilon})$ for **APMF** in sparse graphs vs. $\tilde{O}(n^2)$ for APSP in sparse graphs

[Krauthgamer-Trablesi '17]

Assuming the 4-Clique Conjecture:

 $\Omega(n^{\omega+1-\varepsilon}) = \Omega(n^{3.37})$ for **APMF** in dense graphs [AGIKPTUW '19] vs. $\tilde{O}(n^3)$ for APSP in dense graphs

APMF is indeed harder than APSP... in directed graphs.

APMF > APSP in directed graphs

Assuming SETH:

 $\Omega(n^{2-\varepsilon})$ for Single-Source MF in sparse graphs [A.- Vassilevska W. - Yu '15] vs. $\tilde{O}(n)$ for Single-Source SP in sparse graphs

 $\Omega(n^{3-\varepsilon})$ for **APMF** in sparse graphs vs. $\tilde{O}(n^2)$ for APSP in sparse graphs

[Krauthgamer-Trablesi '17]

Assuming the 4-Clique Conjecture:

 $\Omega(n^{\omega+1-\varepsilon}) = \Omega(n^{3.37})$ for **APMF** in dense graphs [AGIKPTUW '19] vs. $\tilde{O}(n^3)$ for APSP in dense graphs

[A.- Krauthgamer - Trabelsi SODA'20]:

Same lower bounds for undirected graphs with *node capacities*.

APMF > APSP ?

APMF is indeed harder than APSP...

Undirected Graphs	APMF	APSP
General	n^3	n^3
Unweighted	n^3	$n^{2.37}$

Other settings	APMF	APSP
Directed	$\Omega(n^{3.37}), O(n^4)$	n^3
Node-capacities	$\Omega(n^{3.37}), O(n^4)$	n^3

...But only where the Gomory-Hu result does not apply!

[Mayeda'62,Jelinek'63,Hassin-Levine'07]

GH Trees are impossible in these settings.

(Because there are $\Omega(n^2)$ answers.)

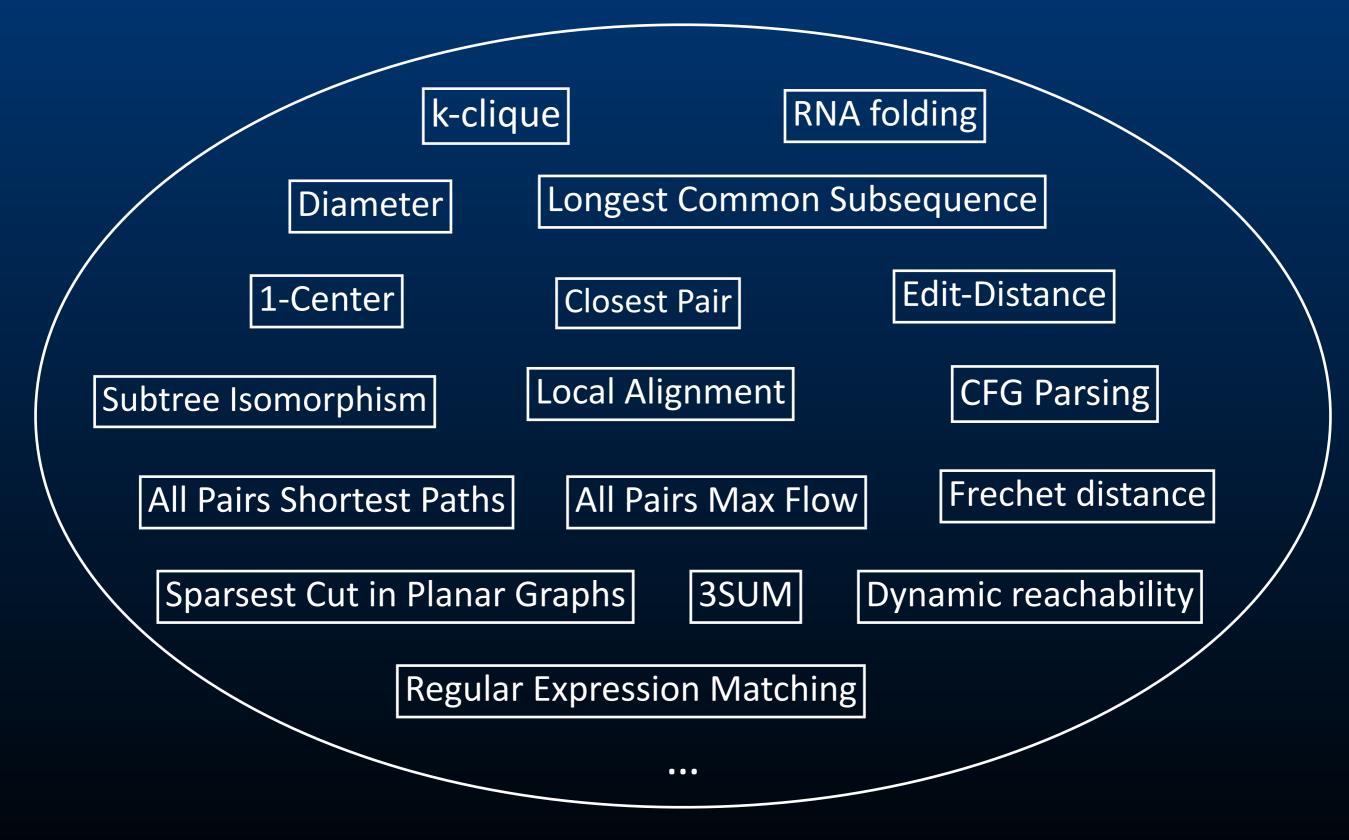
APMF > APSP ?

Undirected Graphs	APMF	APSP
General	n^3	n^3
Unweighted	n^3	$n^{2.37}$

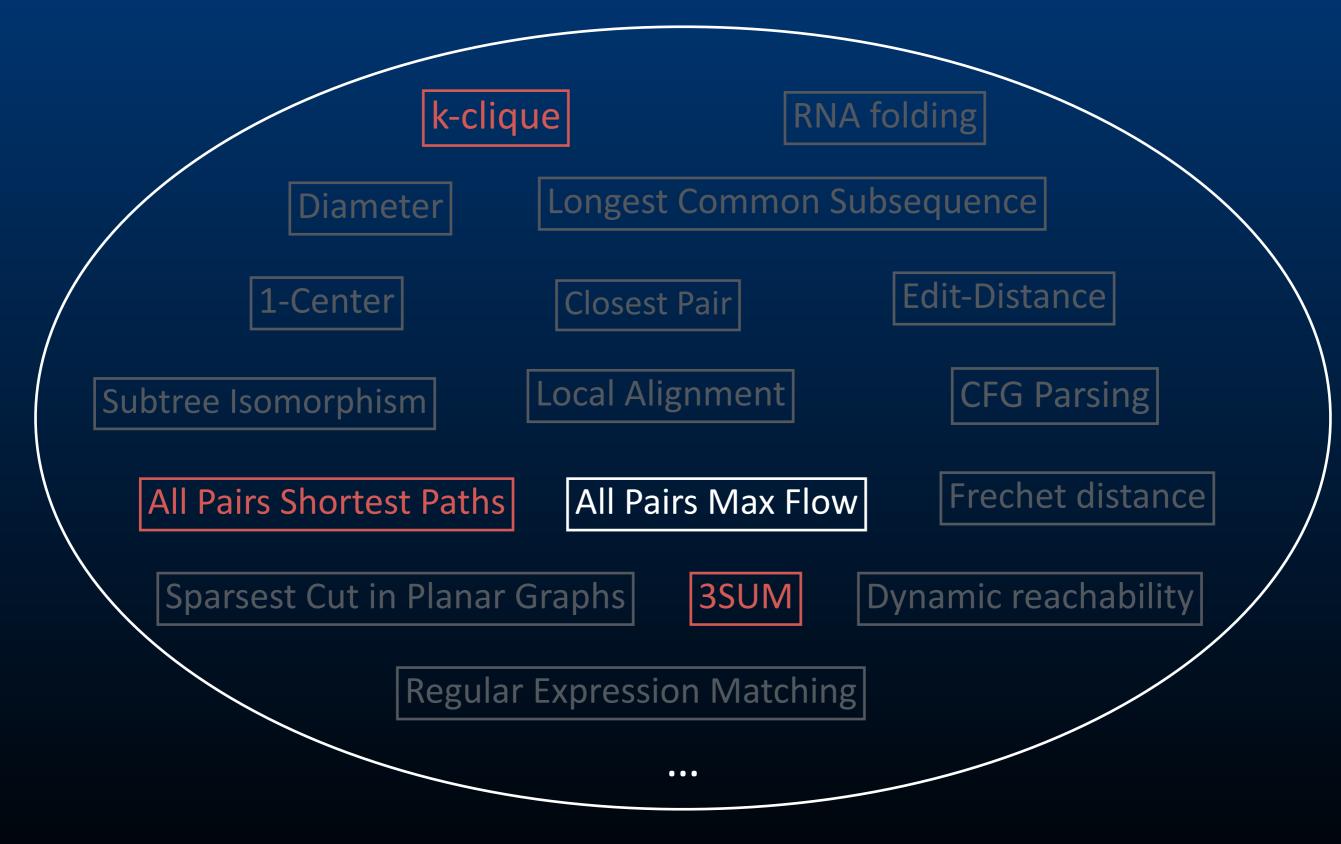
Open Question:

Prove any "fine-grained complexity" lower bounds for APMF.

Me 10-years ago: "why work on APMF vs. any other problem?"



Fine-Grained Complexity: "APMF is really worth studying..."



Non-reducibility?

Open Question:

Prove any "fine-grained complexity" lower bounds for APMF.

[Carmosino - Gao - Impagliazzo - Mikhailin - Paturi - Schneider '16]

"No reduction between problems with different nondeterministic complexity (assuming NSETH)"

Are we failing to prove hardness because APMF is easy nondeterministically?

[A.- Krauthgamer - Trabelsi SODA'20]:

There is a prover-verifier protocol for constructing a GH-Tree of an unweighted graph, where the verifier only takes $\tilde{O}(m)$ time.

Nondeterministic Algorithms

Real algorithms	APMF	APSP
General	n^3	n^3
Unweighted	n^3	$n^{2.37}$

Nondeterministic algorithms	APMF	APSP
General	n^3	$n^{2.94}$
Unweighted	n ² [AKT '20]	$n^{2.37}$

[CGIMPS '16]

Did we really need the nondeterminism?

Towards Faster APMF

Did we really need the nondeterminism?

[A.- Krauthgamer - Trabelsi FOCS'20]:

1. **GHT** and **APMF** reduce to *Single-Source* Max-Flow. * SS values suffice.

2.
$$(1 + \varepsilon)$$
-**APMF** in $\tilde{O}(n^2)$ time. * Also $(1 + \varepsilon)$ -**GHT** in $\tilde{O}(MF(n))$.

3. "Cut-Equivalent Trees are Optimal for Min-Cut Queries"

* [Li-Panigrahi STOC'21]

APIMF vs. APSP

Exact	APMF	APSP
General	n^3	n^3
Unweighted	n^3	$n^{2.37}$

Approximation	APMF	APSP	
3		n^2 [Dor-Halpe	erin-Zwick'00]
$poly \log n$	n^2 [Racke'04]		
$(1+\varepsilon)$	$n^2_{[\mathbf{A}KT'20,LP'2]}$	$_{ m 1]}$ $n^{2.37}$ [Zwick'	02]

Towards Faster APMF

All we have to do is solve Single-Source Max-Flow...

[A.- Krauthgamer - Trabelsi FOCS'20]:

1. **GHT** and **APMF** reduce to *Single-Source* Max-Flow. * SS values suffice.

2.
$$(1 + \varepsilon)$$
-**APMF** in $\tilde{O}(n^2)$ time. * Also $(1 + \varepsilon)$ -**GHT** in $\tilde{O}(MF(n))$.

3. "Cut-Equivalent Trees are Optimal for Min-Cut Queries"

* [Li-Panigrahi STOC'21]

Breaking the Cubic Barrier

[A.- Krauthgamer - Trabelsi STOC'21]:

GH Tree in $\tilde{O}(n^{2.5})$ time for simple graphs.

	APMF	APSP
General	n^3	n^3
Unweighted	$n^{2.5}$ [AKT '21]	$n^{2.37}$ [Siedel '95]

<u>Main tools:</u>

- Expander-decomposition- "Isolating Cuts"

Still APMF > APSP but we are not so sure anymore...

APMF < APSP for simple graphs?

[A.- Krauthgamer - Trabelsi FOCS'21, Li-Panigrahi-Saranurak FOCS'21] (see also [Zhang '21]):

GH Tree in $n^{2+o(1)}$ time for simple graphs.

	APMF	APSP
General	n^3	n^3
Unweighted	n^2	$n^{2.37}$ [Siedel '95]

Main tool:
Expander-decomposition
with vertex demands

✓ Optimal for APMF.

[AKT '21, LPS'21, Zhang'21]

- ✓ All-Pairs in single-pair time!
- √ Can be derandomized [AKT'21]

GH Tree in Linear Time?

Still open: GH Tree in $\tilde{O}(Max\text{-}Flow\text{-}Time)$?

$$n^{2+o(1)} \rightarrow m^{1+o(1)}$$

So far only known for bounded genus, and bounded tree width graphs.

[A.- Krauthgamer - Trabelsi FOCS'21]

 $\Omega(m+n^{1.5})$ for **GH Tree** in <u>simple</u> graphs,

assuming $\Omega(n^3)$ for multigraphs.

[A.- Krauthgamer - Trabelsi SODA'22]

 $(m + n^{1.9})^{1+o(1)}$ for **GH Tree** in simple graphs, via new "Friendly Cut Sparsifiers".

Main Open Question:

APMF in subcubic time for general graphs?

APMF < APSP?

No separation when $\omega = 2...$

	APMF	APSP
General	n^3	n^3
Unweighted	n^2	n^{ω} [Siedel '95]

[AKT '21, LPS'21, Zhang'21]

Main Open Question:

APMF in subcubic time for general graphs?

Would imply a true separation under the APSP Conjecture.

Gomory-Hu's 1961 algorithm remains the only solution for the general case... Even nondeterministically.

APIMF in Subcubic Time

[A.- Krauthgamer - Li - Panigrahi - Saranurak - Trabelsi (new!)]:

GH Tree in $\tilde{O}(n^{2.875})$ time.

Exact	APMF	APSP
General	$n^{2+7/8}$	n^3
Unweighted	n^2	n^{ω}

<u>Assuming the APSP Conjecture:</u> **APMF < APSP!**

So maybe the APSP Conjecture is false...?

APMF in Quadratic Time! 21 days later...

[A.- Krauthgamer - Li - Panigrahi - Saranurak - Trabelsi (v2), and independently Zhang'21]:

GH Tree in $\tilde{O}(n^2)$ time.

Exact	APMF	APSP
General	n^2	n^3
Unweighted	n^2	n^{ω}

Assuming (a very weak) APSP Conjecture: APMF < APSP!

Gomory-Hu Tree in Max-Flow Time?

[A.- Krauthgamer - Li - Panigrahi - Saranurak - Trabelsi (v2), and independently Zhang'21]:

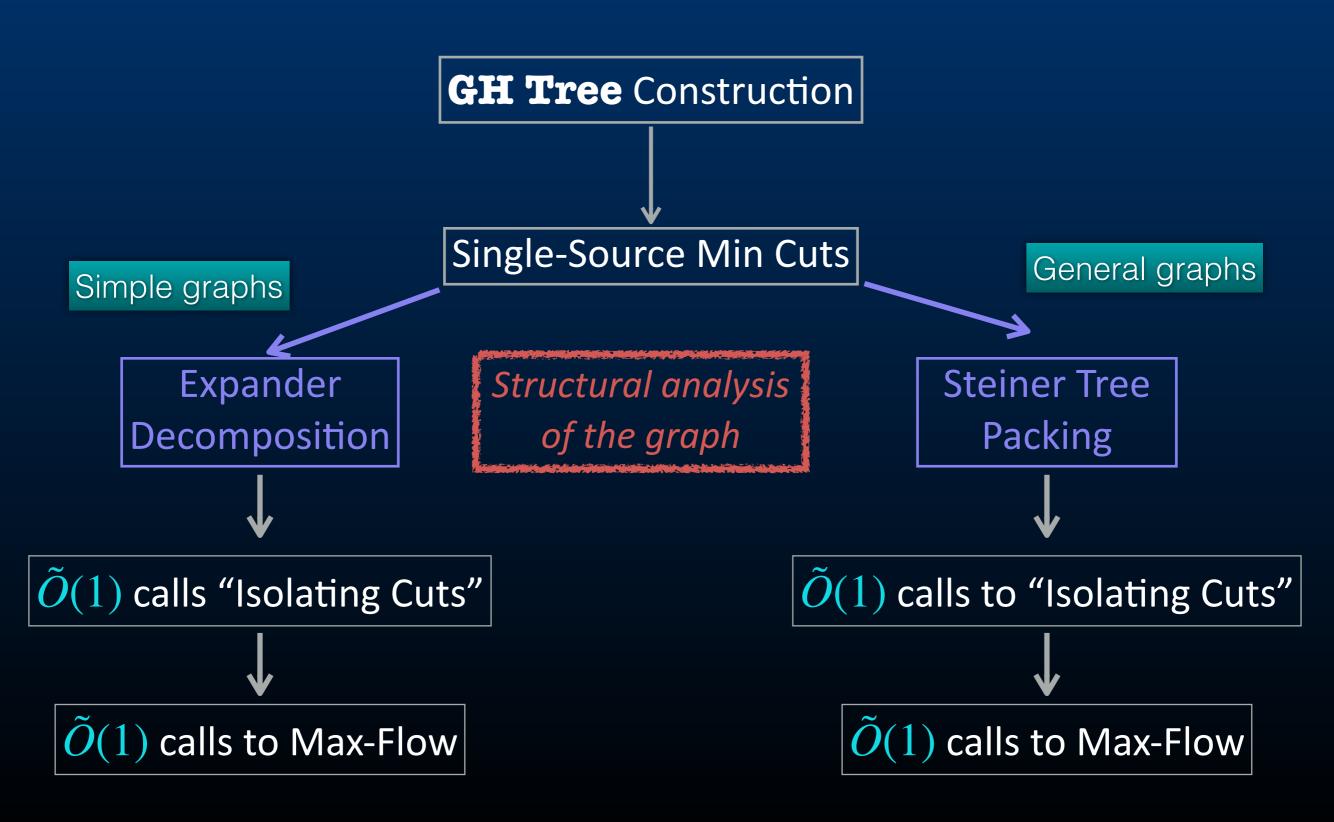
GH Tree in time:

- $\tilde{O}(n^2) + \tilde{O}(\text{Max-Flow}(n, m))$ for weighted graphs,
- $m^{1+o(1)} + \tilde{O}(\text{Max-Flow}(n,m))$ for unweighted graphs.

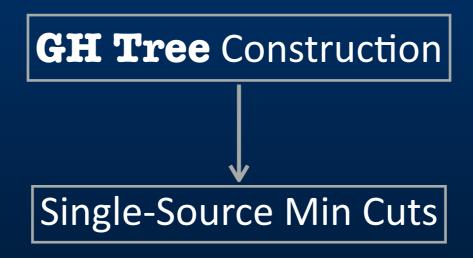
We can compute a succinct <u>all-pairs</u> max-flow oracle in the time to compute a <u>single-pair</u> max-flow!

Technical Overview

How to construct a GH Tree in subcubic time

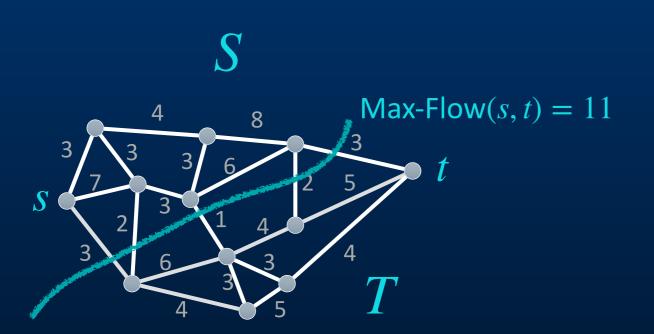


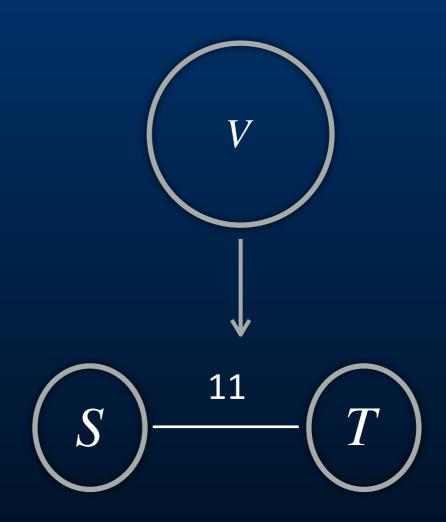
Technical Overview



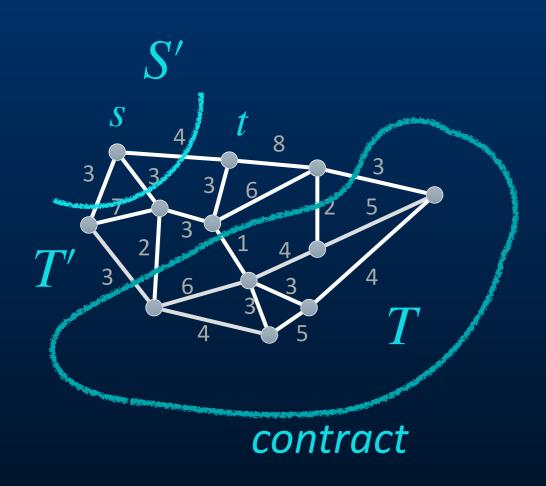
Let's start with the GH algorithm and optimize it with single-source cuts

The Gomory-Hu Algorithm



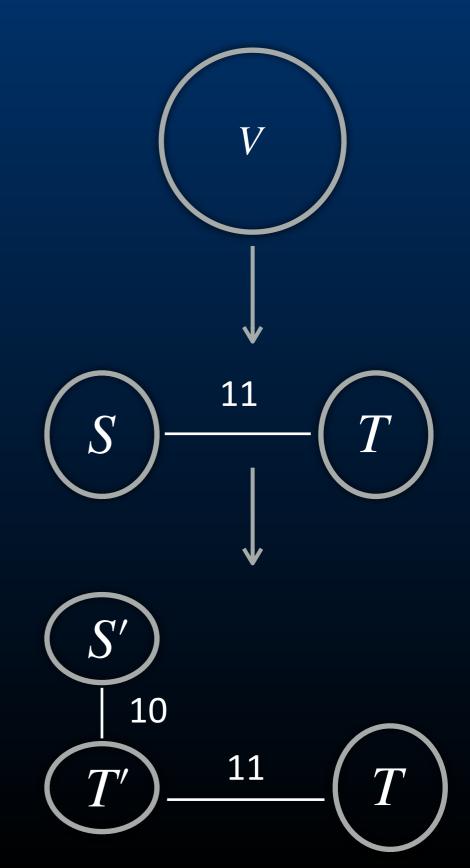


The Gomory-Hu Algorithm

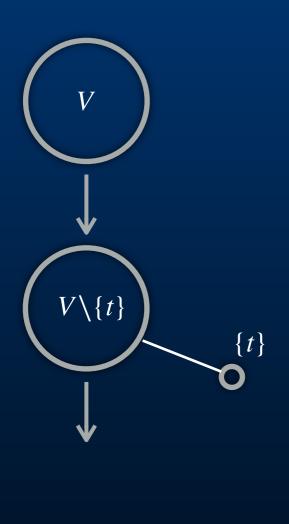


Lemma [Gomory-Hu]:

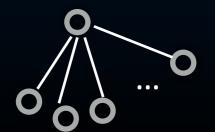
The min s,t-cut in the contracted graph is a min s,t-cut in the original graph.



The Gomory-Hu Algorithm



• • •

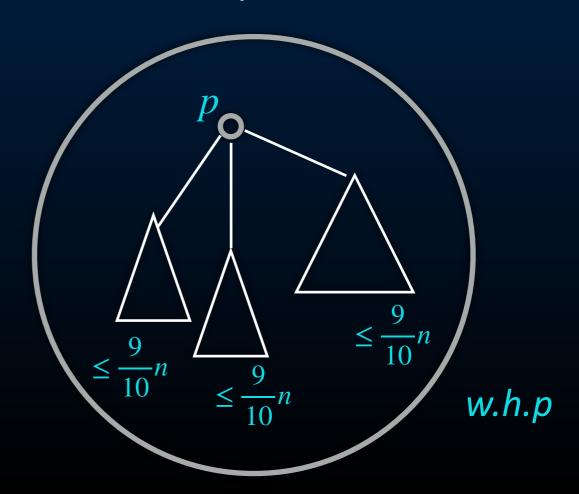


Always makes n-1 calls to Max-Flow, but the graphs get smaller...

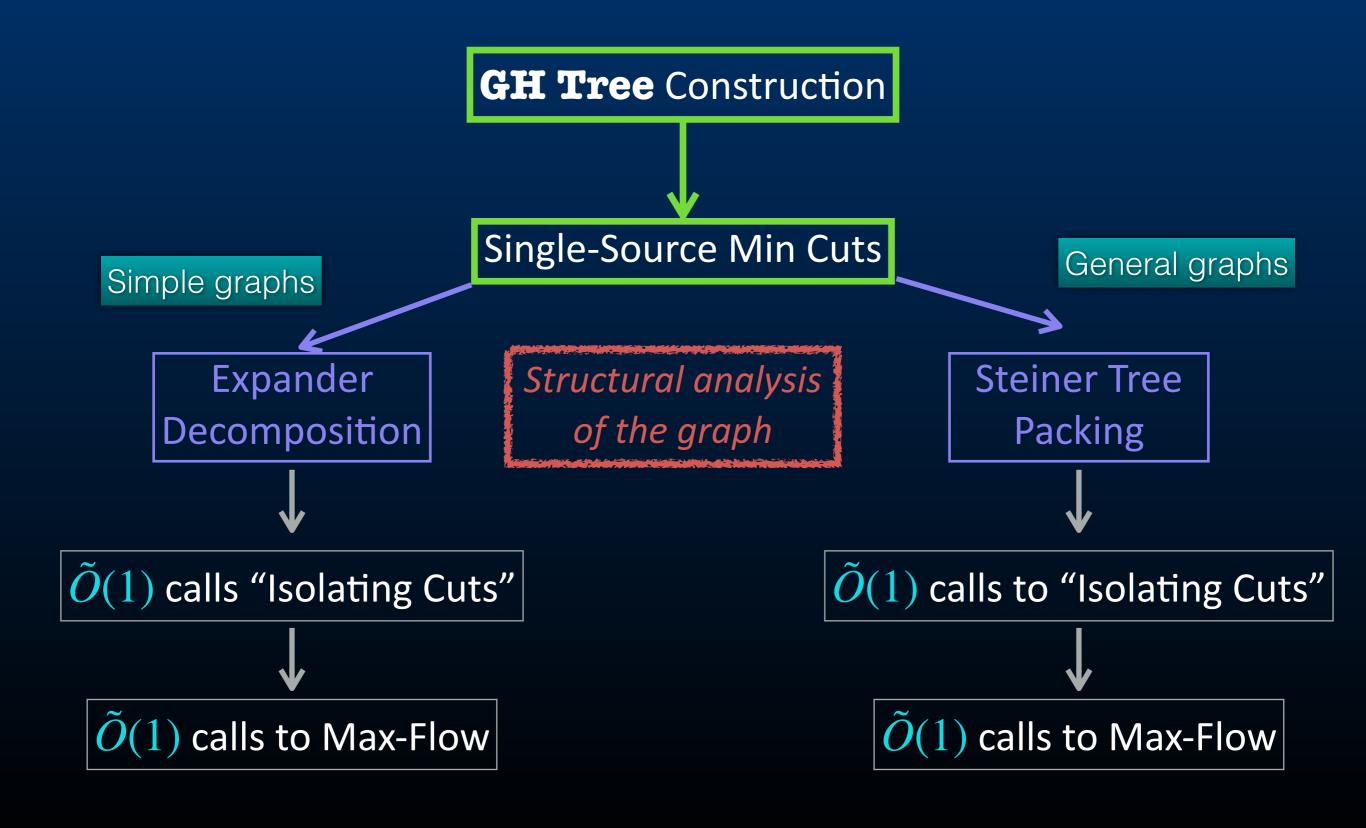
Worst case: Recursion depth $\Omega(n)$.

$$\Omega(n) \cdot MF(n)$$

<u>Speedup idea:</u> Use single-source cuts, from a random pivot.

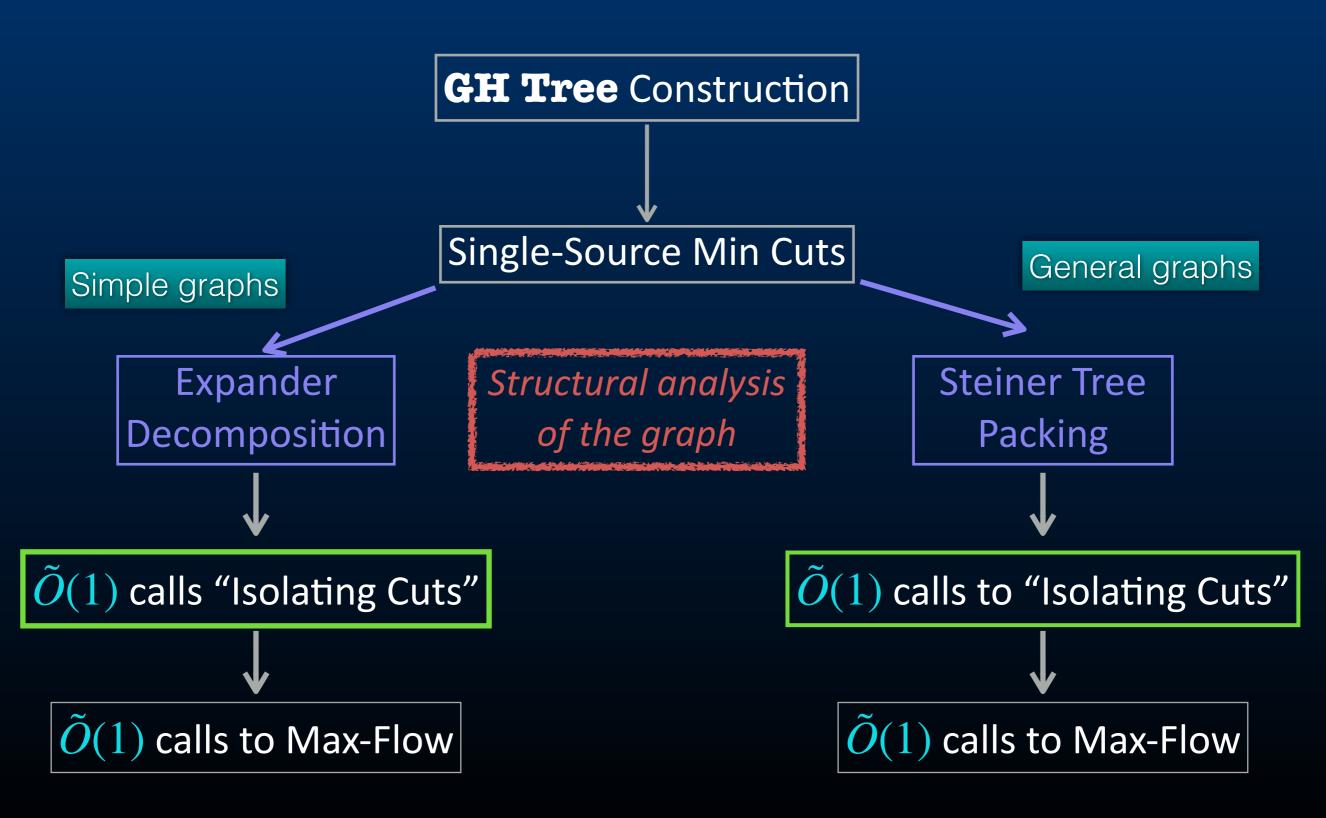


Technical Overview



The Isolating Cuts Procedure

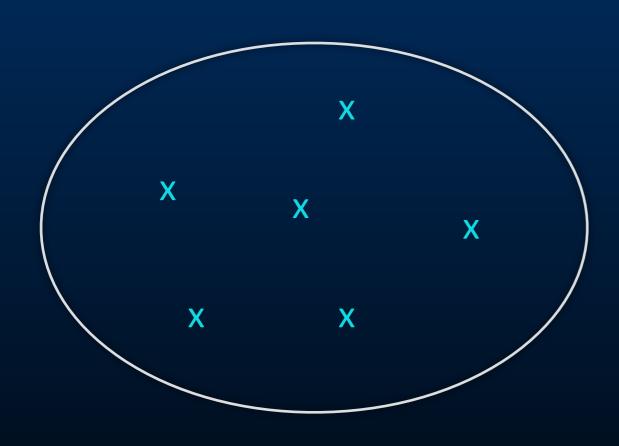
Discovered independently by [LP'20,AKT'21]



The Isolating Cuts Procedure

Discovered independently by [LP'20,AKT'21] and quickly found many applications

[LP21, CQ21, MN21, LNPSY21, AKT21a, LPS21, Zha21, AKT22, CLP22]



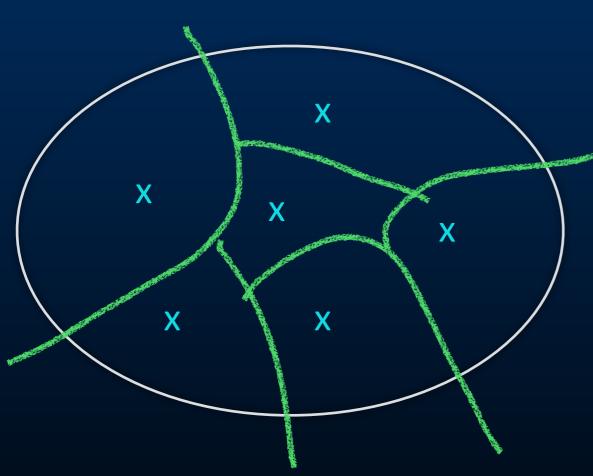
Given a set of terminals $U = \{u_1, ..., u_k\}$

return $\forall u_i \in U : \min(u_i, U \setminus \{u_i\})$ -cut

The Isolating Cuts Procedure

Discovered independently by [LP'20,AKT'21] and quickly found many applications

[LP21, CQ21, MN21, LNPSY21, AKT21a, LPS21, Zha21, AKT22, CLP22]



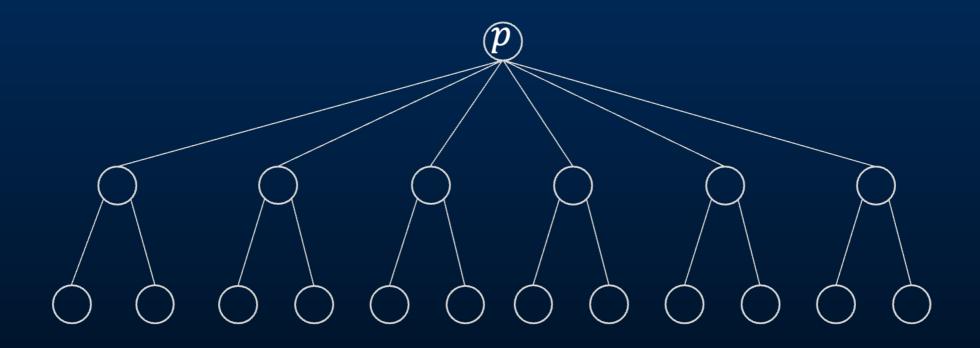
Given a set of terminals $U = \{u_1, ..., u_k\}$

return $\forall u_i \in U : \min(u_i, U \setminus \{u_i\})$ -cut "Isolating cuts"

Only takes $\tilde{O}(MF(n, m))$ time.

Not $k \cdot MF(n, m)$...

A hard case: suppose that this is the GHT.

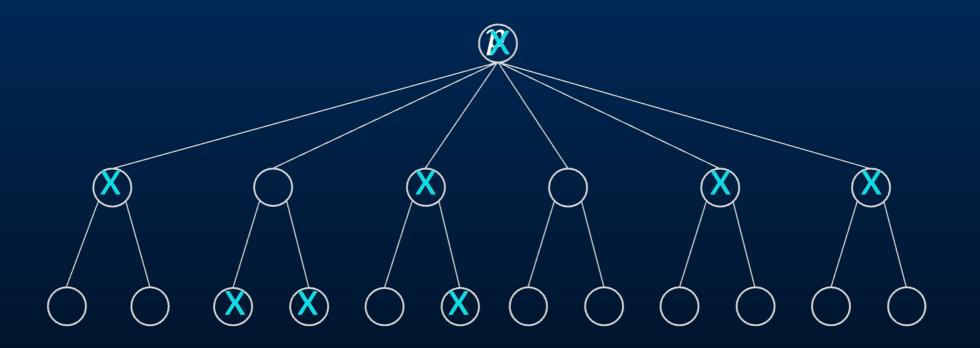


<u>Challenge:</u> Find the triples (well-connected triangles).

Reminds of the max-triangle problem (APSP-equivalent)...

Solution: Use Isolating Cuts with random terminals.

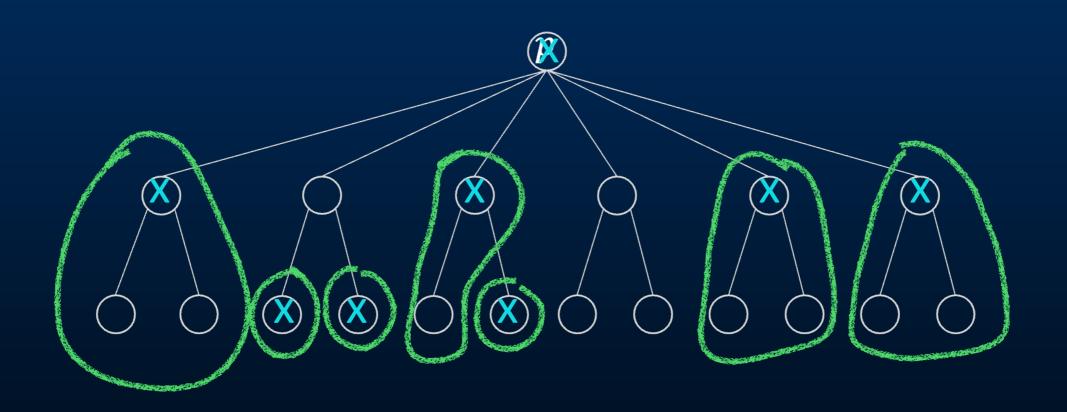
A hard case: suppose that this is the GHT.



<u>Challenge:</u> Find the triples (well-connected triangles).

Solution: Use Isolating Cuts with random terminals.

A hard case: suppose that this is the GHT.

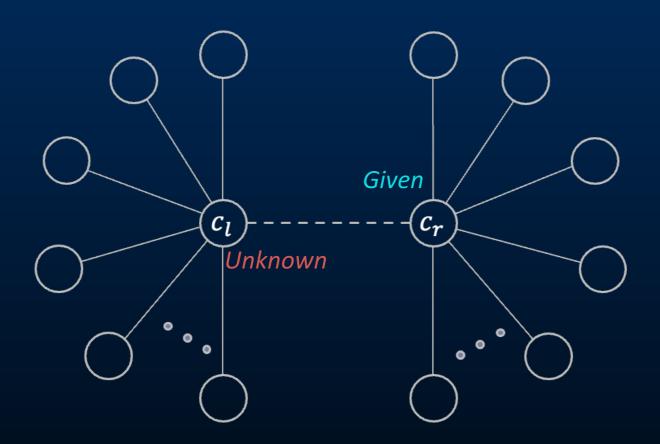


Challenge: Find the triples (well-connected triangles).

Works well for finding unbalanced cuts...

Solution: Use Isolating Cuts with random terminals.

The hardest case: suppose that this is the GHT.

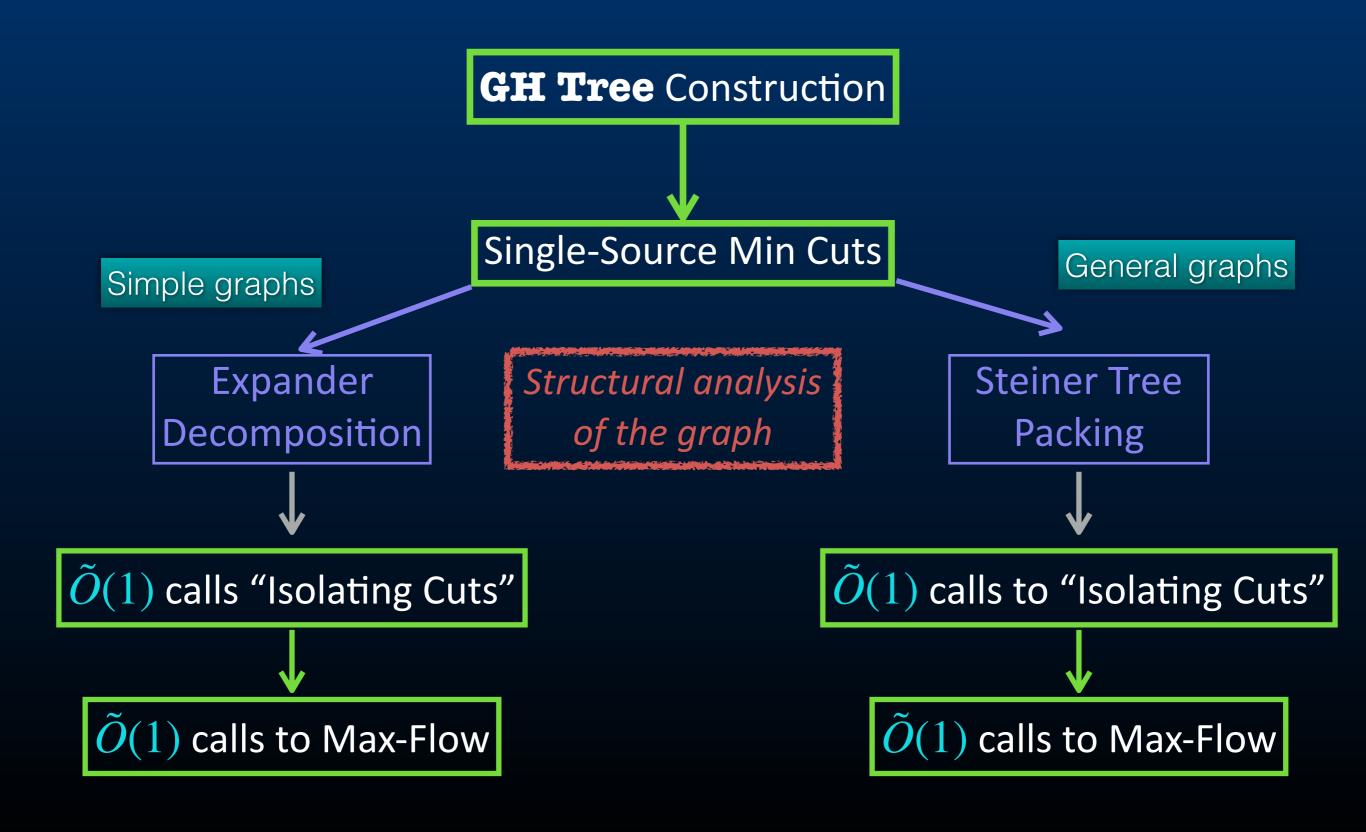


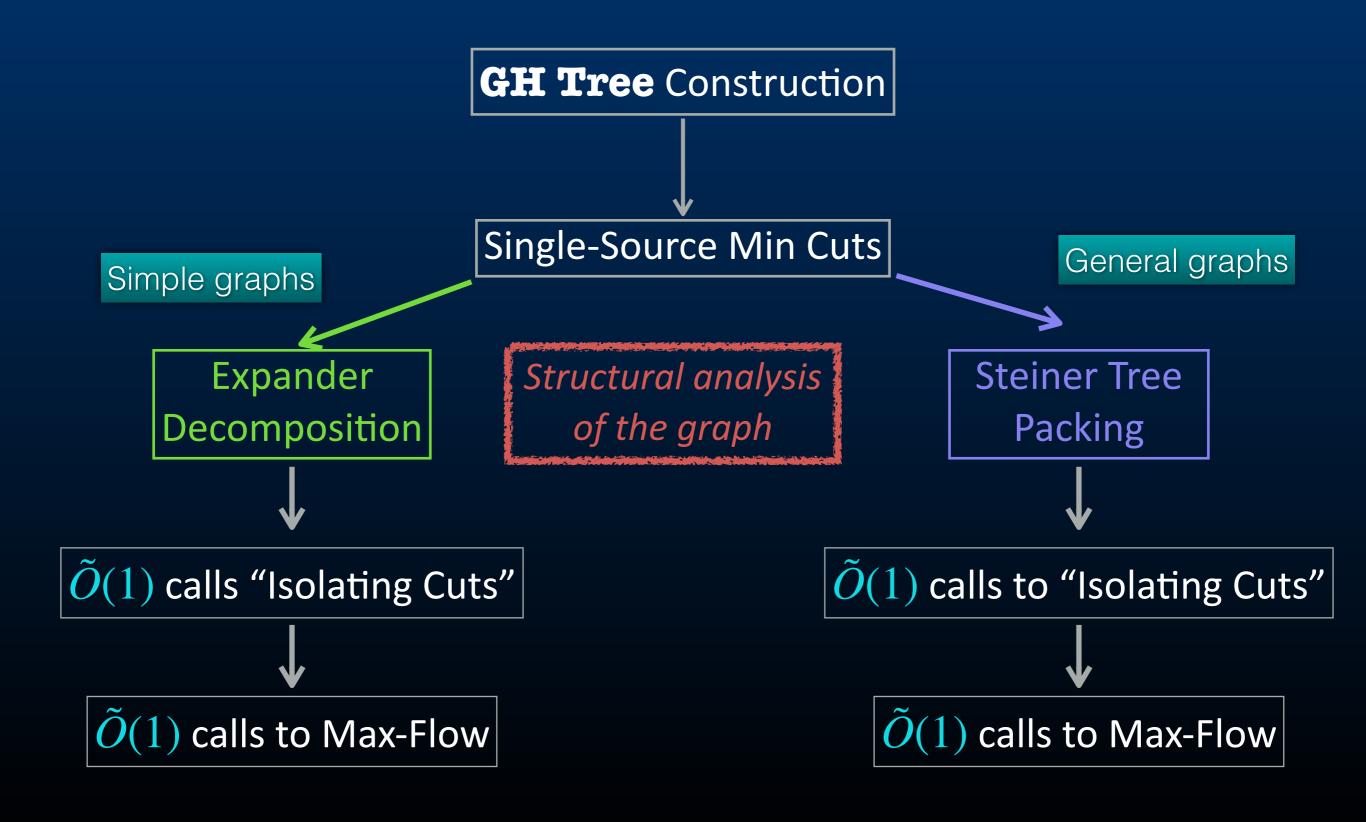
One non-trivial large cut; how to find it?

<u>Challenge:</u> The min (c_r, v) -cuts tell us nothing about c_l .

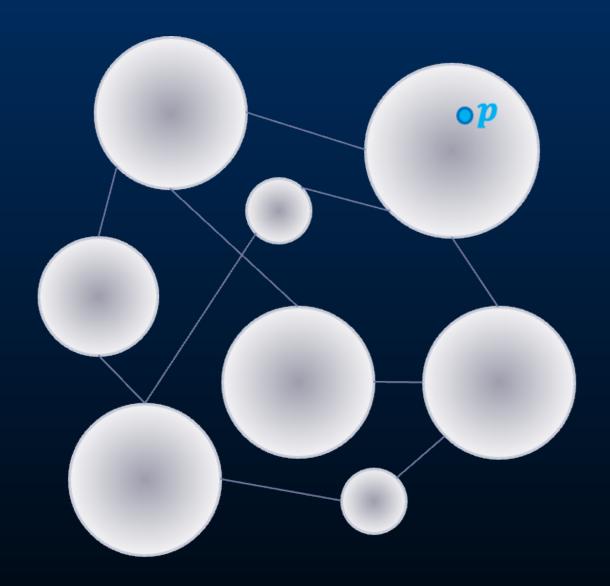
Solution: Use a structural analysis of the graph as a guide.

Technical Overview

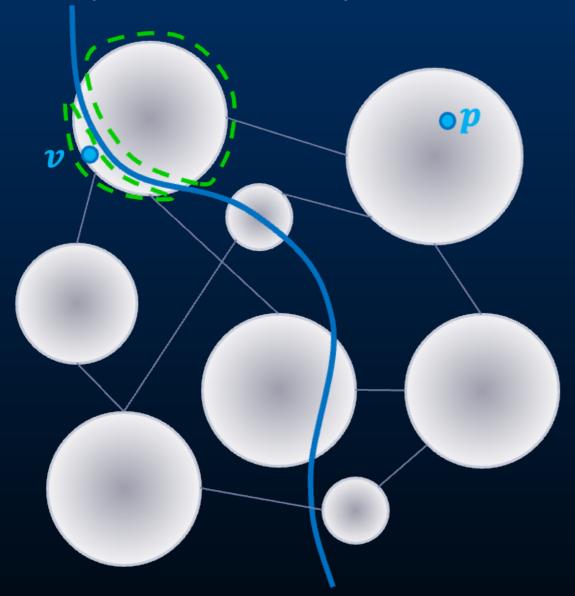




An expander decomposition of G:



An expander decomposition of G:



 $\tilde{O}(n^{2.5})$ for simple graphs: [AKT STOC'21]

Set:
$$\phi = 1/\sqrt{n}$$

1. In any expander:

$$\leq \sqrt{n}$$
 nodes from one side

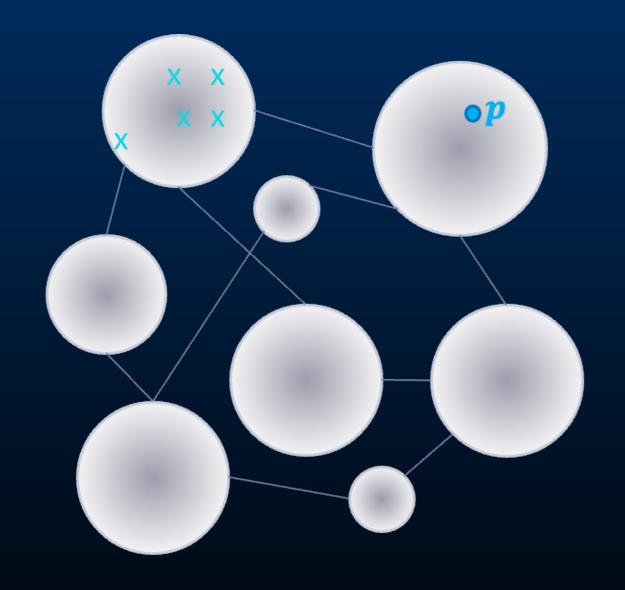
2. $\leq n^{1.5}$ edges outside expanders.

O(1) expanders with $\Omega(n)$ nodes.

Simple graphs only:

 $\leq \sqrt{n}$ nodes in small expanders.

An expander decomposition of G:



For each large expander:

Use Isolating Cuts with random terminals.

 $\tilde{O}(n^{2.5})$ for simple graphs: [AKT STOC'21]

Set:
$$\phi = 1/\sqrt{n}$$

1. In any expander:

$$\leq \sqrt{n}$$
 nodes from one side

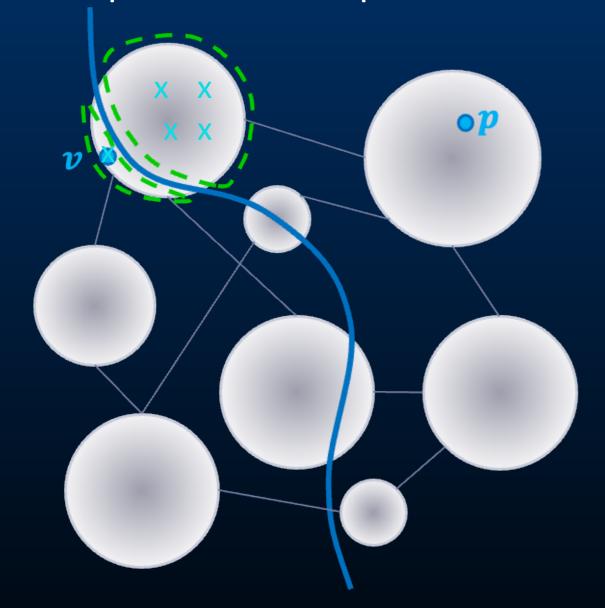
2. $\leq n^{1.5}$ edges outside expanders.

O(1) expanders with $\Omega(n)$ nodes.

Simple graphs only:

 $\leq \sqrt{n}$ nodes in small expanders.

An expander decomposition of G:



For each large expander:

Use Isolating Cuts with random terminals. Repeat \sqrt{n} times.

 $\tilde{O}(n^{2.5})$ for simple graphs: [AKT STOC'21]

Set:
$$\phi = 1/\sqrt{n}$$

1. In any expander:

$$\leq \sqrt{n}$$
 nodes from one side

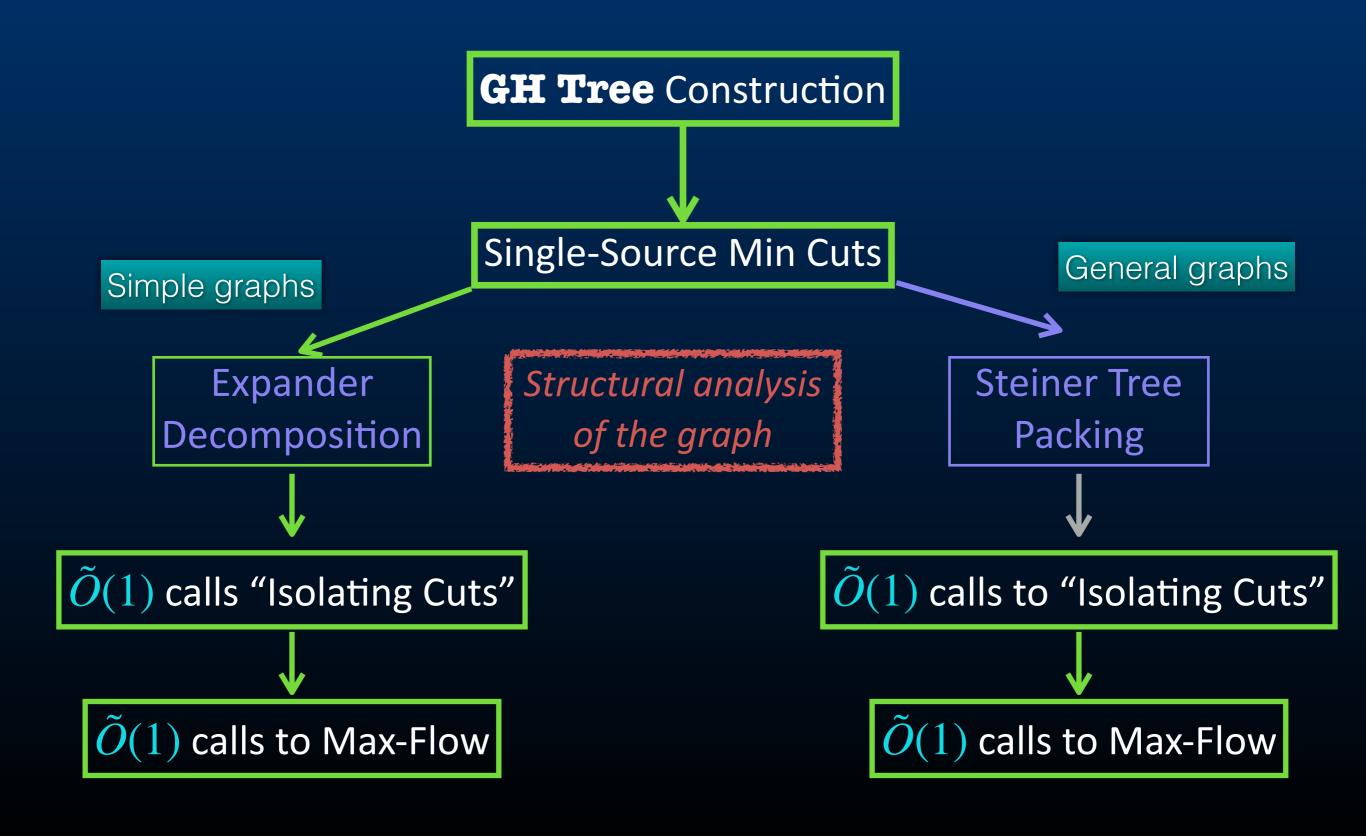
2. $\leq n^{1.5}$ edges outside expanders.

O(1) expanders with $\Omega(n)$ nodes.

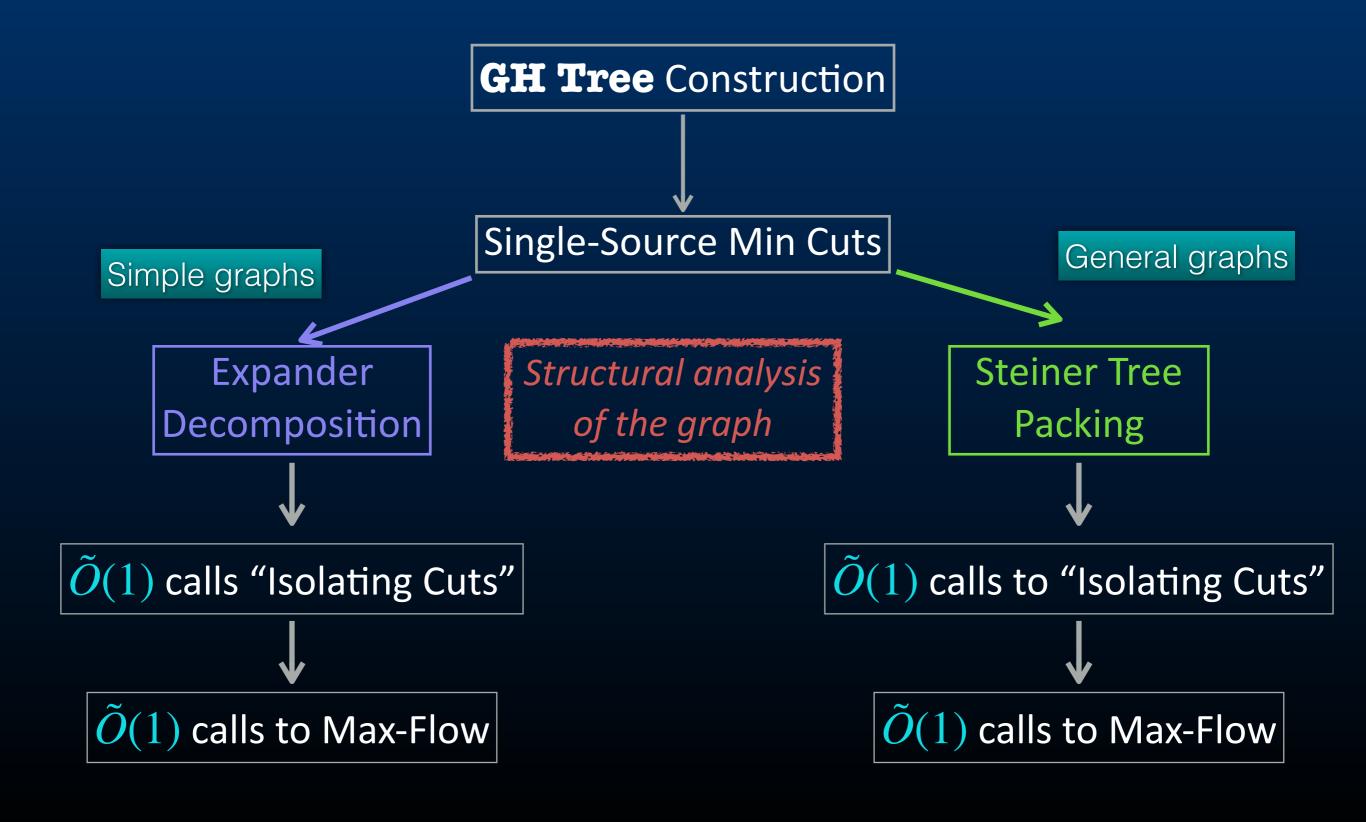
Simple graphs only:

 $\leq \sqrt{n}$ nodes in small expanders.

Technical Overview



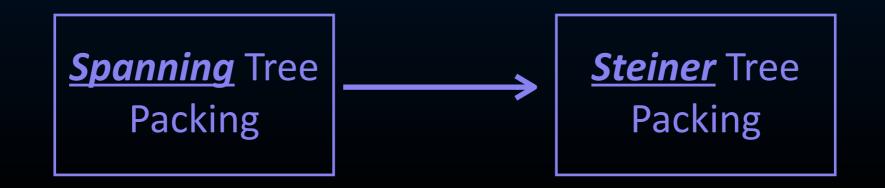
Technical Overview



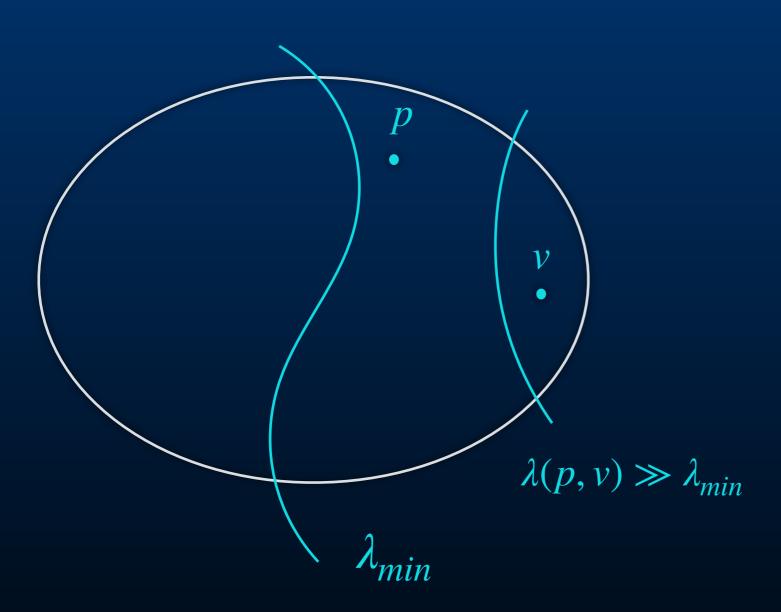
Comparison with Global Min-Cut

We generalize both techniques to single-source min-cuts...

Main challenge: existence of low degree nodes.

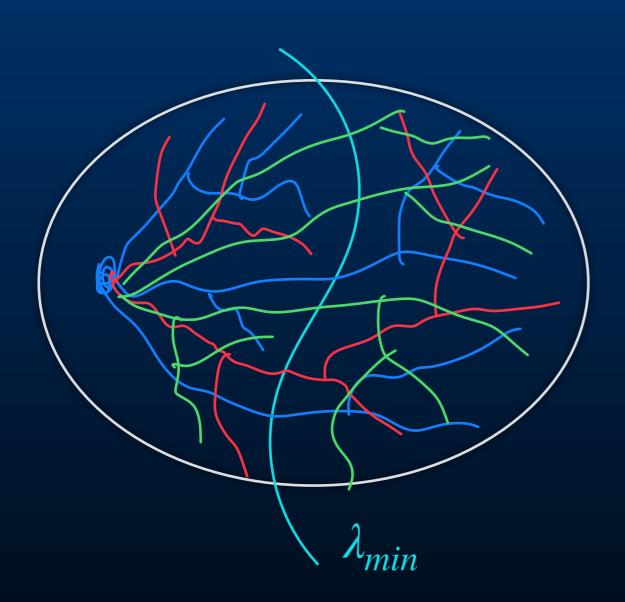


From Tree Packings to k-Respecting Trees



Main challenge: existence of low degree nodes.

From Tree Packings to k-Respecting Trees



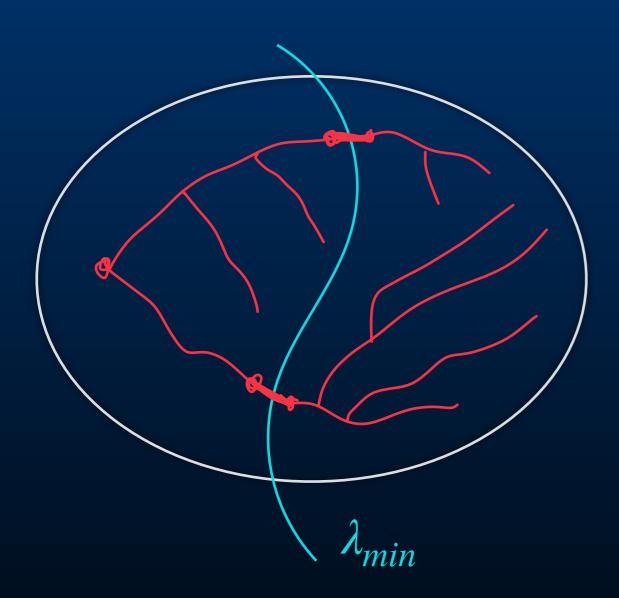
Thm [Nash-Williams and Tutte 1961]:

There are $\lambda_{min}/2$ disjoint spanning trees.

Karger's Algorithm:

- 1. Pack $\sim \lambda_{min}/2$ spanning trees.
- 2. Pick one at random, it is 2-respecting.
- 3. Solve min-cut with 2-respecting tree.

From Tree Packings to k-Respecting Trees



Thm [Nash-Williams and Tutte 1961]:

There are $\lambda_{min}/2$ disjoint spanning trees.

Karger's Algorithm:

- 1. Pack $\sim \lambda_{min}/2$ spanning trees.
- 2. Pick one at random, it is 2-respecting.
- 3. Solve min-cut with 2-respecting tree.

2-respecting spanning tree:

Up to 2 tree edges cut by min-cut.

Low degree nodes prevent us from packing so many **spanning** trees, but **Steiner** trees are OK.

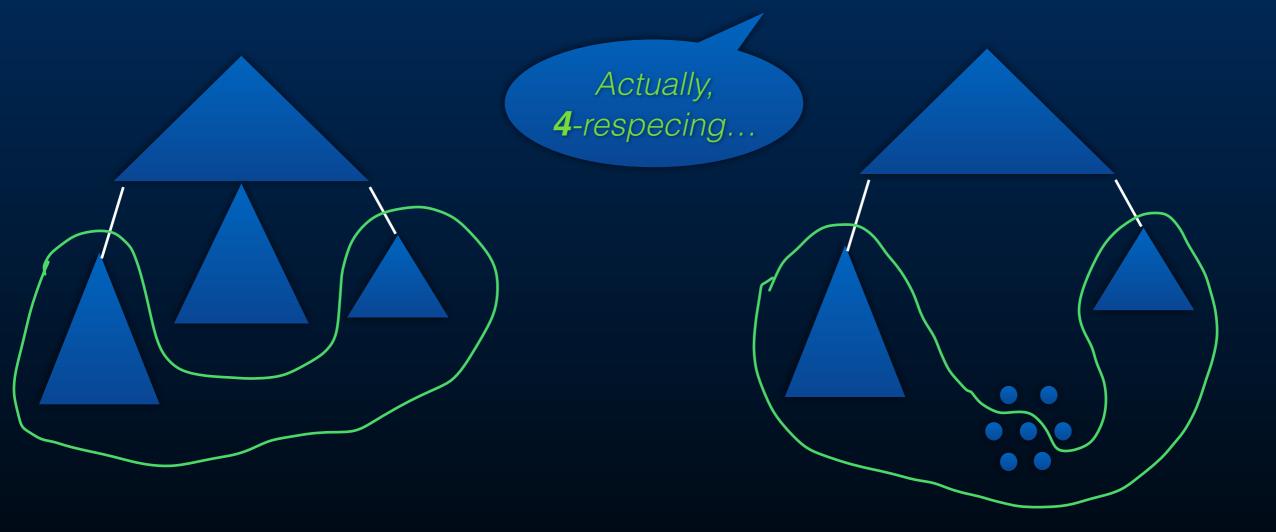
Spanning Trees vs. Steiner Trees

2-respecting spanning tree [Karger'96]:

 ≤ 2 tree edges cut by global min-cut.

2-respecting <a>Steiner tree <a>[AKLPST'21]:

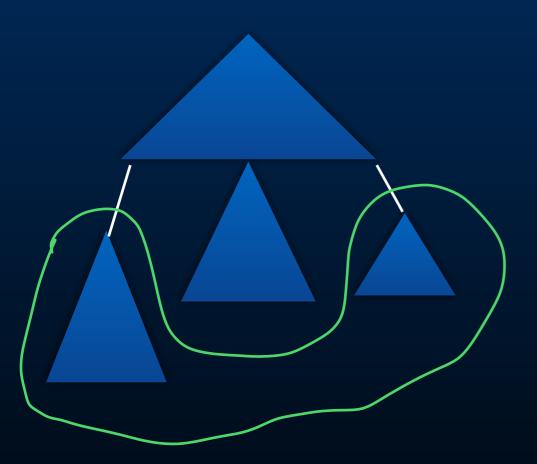
 ≤ 2 tree edges cut by SS min-cuts.



Spanning Trees vs. Steiner Trees

2-respecting spanning tree [Karger'96]:

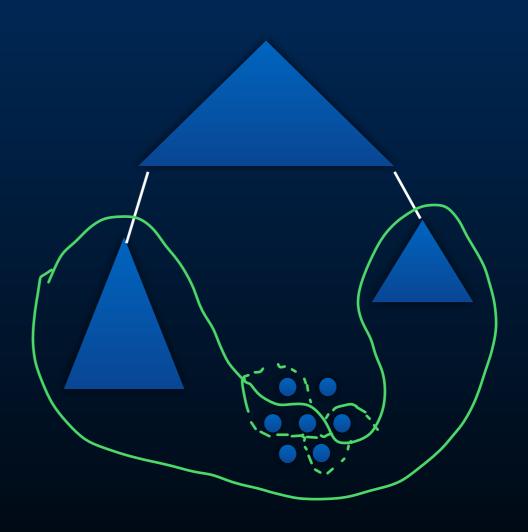
 ≤ 2 tree edges cut by global min-cut.



Cut fully determined by the 2 tree edges

2-respecting <a>Steiner tree <a>[AKLPST'21]:

 ≤ 2 tree edges cut by SS min-cuts.



Exponentially many options given the tree edges

SS Cuts via 4-respecting Steiner Trees

Our Algorithm:

There are $\lambda_{Steiner}/2$ disjoint Steiner trees.

Pack $\sim \lambda_{Steiner}/4$ Steiner trees, via MWU and Mehlhorn's 2-approximate

Min-Steiner Tree Alg.

Sample a 4-respecting Steiner Tree.

Thm [Nash-Williams and Tutte 1961]:

There are $\lambda_{min}/2$ disjoint spanning trees.

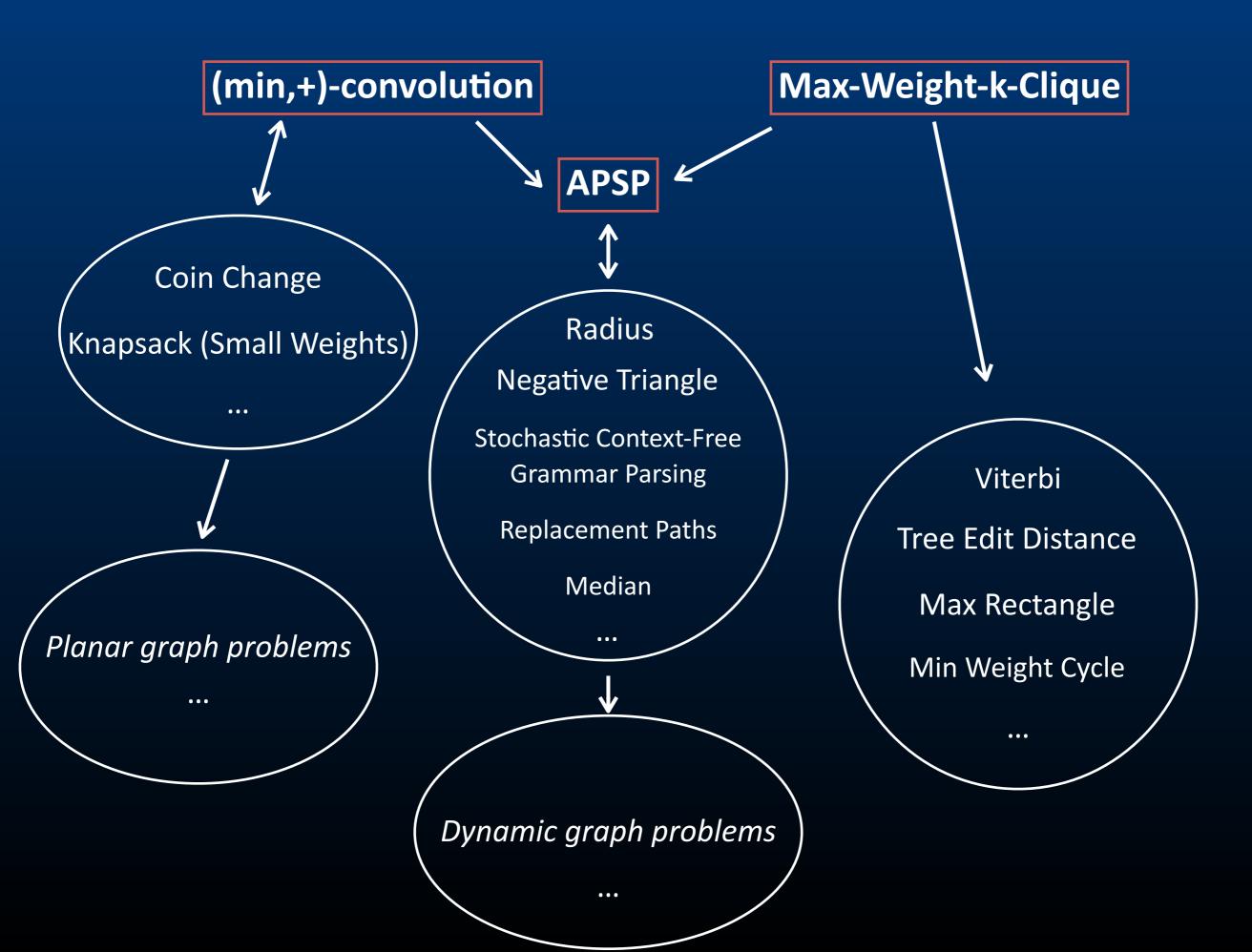
Karger's Algorithm:

- 1. Pack $\sim \lambda_{min}/2$ spanning trees.
- 2. Pick one at random, it is 2-respecting.
- 3. Solve min-cut with 2-respecting tree.

Solve **SS-Min-Cuts** using 4-respecting Steiner tree, via **Isolating Cuts**.

Open Questions

1. Refute the APSP Conjecture, or prove it. e.g. under SETH/3SUM.



Open Questions

- 1. Refute the APSP Conjecture, or prove it. e.g. under SETH/3SUM.
- 2. More applications of the techniques (Steiner Tree Packing, Isolating Cuts, Expander Decompositions with vertex demands) e.g. for k-cuts, vertex cuts, directed cuts, hypergraphs, etc.
- 3. **GH Tree** in $\tilde{O}(\text{Max-Flow-Time})$ for general graphs too?
- 4. Subcubic time deterministically for general graphs?

Thanks for your attention!