
Approximation and Fixed Parameter Subquadratic Algorithms for

Radius and Diameter in Sparse Graphs ∗

Amir Abboud

Stanford University

abboud@cs.stanford.edu

Virginia Vassilevska Williams

Stanford University

virgi@cs.stanford.edu

Joshua Wang

Stanford University

joshua.wang@cs.stanford.edu

Abstract

The radius and diameter are fundamental graph param-

eters, with several natural definitions for directed graphs.

Each definition is well-motivated in a variety of applications.

All versions of diameter and radius can be solved via solv-

ing all-pairs shortest paths (APSP), followed by a fast post-

processing step. However, solving APSP on n-node graphs

requires Ω(n2) time even in sparse graphs.

We study the question: when can diameter and radius in

sparse graphs be solved in truly subquadratic time, and when

is such an algorithm unlikely? Motivated by our conditional

lower bounds on computing these measures exactly in truly

subquadratic time, we search for approximation and fixed

parameter subquadratic algorithms, and alternatively, for

reasons why they do not exist.

We find that:

• Most versions of Diameter and Radius can be solved

in truly subquadratic time with optimal approximation

guarantees, under plausible assumptions. For example,

there is a 2-approximation algorithm for directed Ra-

dius with one-way distances that runs in Õ(m
√
n) time,

while a (2 − δ)-approximation algorithm in O(n2−ε)
time is considered unlikely.

• On graphs with treewidth k, we can solve all versions in

2O(k log k)n1+o(1) time. We show that these algorithms

are near optimal since even a (3/2− δ)-approximation

algorithm that runs in time 2o(k)n2−ε would refute

plausible assumptions.

Two conceptual contributions of this work that we hope

will incite future work are: the introduction of a Fixed

Parameter Tractability in P framework, and the statement

of a differently-quantified variant of the Orthogonal Vectors

Conjecture, which we call the Hitting Set Conjecture.

∗The full version of the paper can be found at: http://arxiv.org/abs/1506.

01799. A.A and V.V.W were supported by NSF Grants CCF-1417238

and CCF-1514339, and BSF Grant BSF:2012338. J.W was supported by

Stanford Graduate Fellowship.

1 Introduction

1.1 Overview. A successful and exciting line of research

in recent years attempts to understand the computational

complexity of fundamental problems by relating them to

each others via reductions. Certain plausible conjectured

lower bounds for fundamental key problems are shown to

imply that the current algorithms for many other important

problems are essentially optimal. One example of a pop-

ular conjecture is the Strong Exponential Time Hypothe-

sis (SETH) asserting that for CNF-SAT on constant width

clauses, there is essentially no faster algorithm than the one

that brute-forces over all possible variable assignments. Ex-

citing consequences of SETH include a tight n2−o(1) lower

bound for computing the diameter of a sparse n-node graph

[47], the Edit Distance of two n-length sequences [8], and

a tight m1−o(1) bound per update for maintaining single

source reachability in dynamic graphs m-edge graphs [4].

This research is motivated both by the desire for a better

understanding of (polynomial time) computation and by the

search for practical algorithms. While classically, any poly-

nomial time problem was considered tractable, this is no

longer the case with today’s enormous inputs where even

quadratic time might be considered intractable.

In this work, we study three general directions for this

line of work. We demonstrate their effectiveness on the

fundamental problems of computing the radius and diameter

of a graph, and more generally, all eccentricities.

• The first framework we introduce is Fixed Parameter

Tractability in P. One of the most active areas of research

in theoretical computer science in the past decade is

parameterized or multivariate complexity [34, 37, 44].

The central idea is to study the complexity of an NP-hard

problem not only in terms of the input size n but also in

terms of an additional natural parameter k. This led to the

development of fixed parameter algorithms, with running

times of the form f(k) · nO(1), for many fundamental

problems. Such problems are then called fixed parameter

tractable (FPT).

When considering problems that already have polyno-

377 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

03
/2

1/
21

 to
 1

32
.7

6.
61

.5
1.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

mial time algorithms, the usual FPT definition is not

very interesting since all problems in P are fixed param-

eter tractable with respect to any parameter. We pro-

pose a more fine-grained approach: Since quadratic time

is a bottleneck in many applications, we propose to treat

it as intractable, just as super-polynomial time is tradi-

tionally treated. We seek interesting Fixed Parameter

Subquadratic algorithms, with running time of the form

O(f(k) · n2−ε) for some ε > 0. For example, we will

consider natural parameterizations of Radius and Diam-

eter such as the treewidth tw of the input graph, and ask

whether there is an O(f(tw)·n2−ε) time algorithm for the

problems, and if so, for what functions f . The more gen-

eral approach is, given a problem that is in O(nc) time for

some c but is believed to also require nc−o(1) time, study

for which parameters k and functions f , the problem has

an O(f(k)nc−ε) time algorithm for some ε > 0, and if

possible, also prove matching (conditional) lower bounds

on f .

• The second direction we follow is that of faster approx-

imability in P, which had already been studied in previ-

ous works [47, 25, 20]. We consider problems that can

be solved exactly in polynomial time, say O(n2) time, for

which a conditional n2−o(1) lower bound is known, and

we ask: can we solve the problem approximately in truly

subqudratic time? If so, what is the best approximation

ratio we can obtain in O(n2−ε) time for constant ε > 0
(“truly subquadratic”) time? More generally, these ques-

tions can be asked for problems regardless of whether they

are in P or not: suppose that a problem A can be solved

exactly in a(n) time; for what values of α, is there an

α-approximation algorithm that runs in a(n)1−ε time for

ε > 0?

• The third approach we propose is to look at different

quantifications of conjectured-to-be-hard problems. For

example, a problem that requires n2−o(1) under SETH

is the orthogonal vectors (OV) problem: given two lists

A and B, each containing n d-dimensional vectors each

(for d = ω(log n)), does there exist a pair of vectors

a ∈ A, b ∈ B such that a · b = 0? This OV problem is the

basis for almost all hardness reductions for problems in

P . The quantifiers in the OV problem are ∃ ∃ (i.e. ∃a∃b).
A different quantification of the problem is ∀ ∃, giving the

Hitting Set Existence problem: is it true that for all vectors

a in A, there exists a vector in B that is orthogonal to a?

These new quantified versions could be: (1) intuitively

as hard as the original problem, and (2) much more

appropriate for proving hardness for other problems for

which it seems very hard or even provably unlikely to

prove hardness by reduction from the original problem

(because of type mismatch).

This approach allows us to prove tight conditional lower

bounds for approximating the Radius of a sparse graph,

a task that has been elusive despite many efforts, even

though such a lower bound for the very similar Diameter

problem was proven a few years back [47]. To achieve

this, we introduce a new natural and plausible variant of

the OV conjecture that OV requires n2−o(1) time. This

new Hitting Set Conjecture asserts that the Hitting Set

problem also requires n2−o(1) time.

1.2 Case study: Diameter and Radius. We study two of

the most basic graph parameters: radius and diameter. The

diameter of an undirected graph is the longest distance, and

the radius is the shortest distance from a node to the furthest

node from it. Intuitively, the node that achieves the radius,

the so-called center of the graph, is “close” to all other nodes.

In directed graphs, depending on the application, there may

be multiple definitions for “closeness”: a node can be close

in the sense that it has short paths to other nodes (“source”),

from other nodes (“target”), or even to and then back from

other nodes (“roundtrip”). That is, there are several natural

definitions of both radius and diameter for directed graphs;

all of them are well-studied [28, 40, 27, 36, 6, 30, 26, 35, 11,

12, 57, 58, 23, 38, 54, 47, 25, 2, 17] (and many others). Even

estimating the diameter and radius of a network efficiently

is useful in practical applications (e.g. the analysis of social

networks) and serves as a basic primitive.

Although the problems are very well-studied, theoret-

ically the fastest known exact algorithms for both Diame-

ter and Radius compute all pairs shortest paths (APSP) and

then run a fast postprocessing procedure. Unfortunately,

any algorithm for APSP necessarily takes Ω(n2) time in n-

node graphs regardless of the sparsity, since the output is

quadratic. However the output for both Radius and Diameter

is a single integer, and it is far from obvious why Ω(n2) time

in sparse graphs (say with, O(n) edges) would be necessary.

In this paper we address the question below, providing both

algorithms and lower bounds.

When can Diameter and Radius in sparse graphs be solved

in O(n2−ε) time for ε > 0?

The study of the above question has a clear practical mo-

tivation: quadratic time on real-world graphs is infeasible, so

that the boundary between the tractable and intractable is re-

ally in the low-polynomial regime.

In the rest of this paper, we say that a bound is sub-

quadratic if it can be bounded by O(n2−ε) for some ε > 0,

while upper bounds of the form n2−o(1) are only mildly sub-

quadratic.

Barriers. Recent work has revealed convincing evi-

dence that solving Diameter in subquadratic time might not

be possible, even in undirected graphs. Roditty and Vas-

silevska W. [47] showed that an algorithm that can distin-

378 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

03
/2

1/
21

 to
 1

32
.7

6.
61

.5
1.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

guish between diameter 2 and 3 in an undirected sparse graph

in subquadratic time refutes the following widely believed

conjecture.

The Orthogonal Vectors Conjecture: There is no ε >
0 such that for all c ≥ 1, there is an algorithm that given two

lists of n boolean vectors A,B ⊆ {0, 1}d where d = c log n
can determine if there is an orthogonal pair a ∈ A, b ∈ B, in

O(n2−ε) time.

The problem in the above conjecture is called the Or-

thogonal Vectors (OV) problem. The best known algo-

rithm for it runs in mildly subquadratic n2−1/O(log (d/ logn))

time [3]. Williams [55] showed that the OV conjecture is im-

plied by the well-known Strong Exponential Time Hypothe-

sis (SETH) of Impagliazzo, Paturi and Zane [42, 41]. Nowa-

days many papers base the hardness of problems on SETH

and the OV conjecture. This holds both for NP-hard prob-

lems (e.g. [33]), as well as problems in P [46, 4, 5, 18, 8, 1,

19].

For the Radius problem, the only known barriers to

solving the problem exactly are based on other conjectures.

Recent work [2] shows that if the radius of a possibly dense

graph can be computed in truly subcubic time, O(n3−ε) for

ε > 0, then APSP also admits a truly subcubic algorithm.

Such an algorithm for APSP has long eluded researchers,

and it is often conjectured that it does not exist (e.g. [56,

4, 49, 51]). For dense graphs the latter result essentially

settles the question of computing Radius exactly. For sparse

graphs, however, only a much weaker result is known: any

T (m) time algorithm for the radius of an m-edge graph can

be used to find a triangle in an m-edge graph in O(T (m))
time [2]. The limit of current techniques for triangle finding

is O(m4/3) [7] (if the matrix multiplication exponent is

2), and hence this result gives some reason to believe that

obtaining a very fast algorithm for Radius in sparse graphs

would be hard. Nevertheless, this result says nothing about

the existence of an O(n2−ε) time algorithm.

A natural approach to prove Radius limitations in sparse

graphs is to base them on the OV conjecture. However, such

a lower bound has remained elusive [2, 16]. This is due to

the following type mismatch. The OV problem asks for the

existence of a pair of vectors with a certain property, just as

Diameter asks for the existence of a pair of nodes that are far,

i.e. both are of type ∃x∃y. Meanwhile, Radius asks for the

existence of a node such that all nodes are close, i.e. ∃x∀y.

This quantifier disagreement is the difficulty of proving a

lower bound based on OV, and suggests the following natural

and plausible variant of the OV conjecture.

The Hitting Set Conjecture: There is no ε > 0 such

that for all c ≥ 1, there is an algorithm that given two lists

A,B of n subsets of a universe U of size c log n, can decide

in O(n2−ε) time if there is a set in the first list that intersects

every set in the second list, i.e. a “hitting set”.

We call the problem in this conjecture the Hitting Set

Existence (HSE) problem. An equivalent version of the HSE

problem is as follows: given two lists A,B ⊆ {0, 1}d,

determine whether there is a vector a ∈ A that is not

orthogonal to any vector b ∈ B. The HSE problem can

also be solved in mildly subquadratic n2−1/O(log (d/ logn))

time [3], where d = |U |. The HS conjecture is an offline

version of folklore conjectured lower bounds on the hardness

of classic online problems such as set intersection and partial

match studied for instance by Patrascu [45].

We discuss these conjectures in full version and also

show that the OV conjecture is implied by the HS conjecture.

With the following theorem, we complete the picture (at

least conditionally) for the exact computation of Radius and

Diameter in undirected sparse graphs.

THEOREM 1.1. If for some ε > 0, there is an algorithm that

can determine if a given undirected, unweighted graph with

n nodes and O(n) edges has radius 2 or 3 in O(n2−ε) time,

then the HS Conjecture is false.

Subsequent work of Carmoniso et al [22] gave evidence

that basing the HS conjecture on SETH is unlikely. Using

their framework one can show that SETH-hardness for Ra-

dius is similarly unlikely. This can be viewed as justification

for the introduction of a new conjecture into the web of re-

ductions in P.

Overcoming the barriers. The rest of the paper tries to

obtain meaningful positive results that overcome the barriers

above. We consider two of the most successful approaches

for coping with NP-hard problems: approximation and pa-

rameterization. In the first approach, we will address ques-

tions of the form: what is the smallest constant c such that we

can get a c-approximation algorithm for Diameter and Ra-

dius in directed and undirected graphs in O(n2−ε) time? In

the second approach, we will consider natural parameteriza-

tions of Radius and Diameter such as the treewidth of the in-

put graph, and ask whether there is an O(f(tw) ·n2−ε) time,

or fixed parameter subquadratic, algorithm for the problems,

and if so, for what functions f .

The positive results we obtain in the two parts of our

work (corresponding to the two approaches) will use a

disjoint set of tools. However, in both approaches, the upper

bounds will be matched (or nearly matched) by lower bounds

that are obtained from similar constructions.

1.3 Approximation algorithms In undirected graphs,

both Diameter and Radius can be 2-approximated by a sim-

ple linear time algorithm: pick any node and report the

largest distance from it. Aingworth et al. [6] obtained an

Õ(n2 + m
√
n) time almost-3/2-approximation algorithm

for Diameter and Radius in undirected graphs. Roditty

and Vassilevska W. [47] obtained a randomized almost-

3/2-approximation algorithm with runtime Õ(m
√
n), and

379 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

03
/2

1/
21

 to
 1

32
.7

6.
61

.5
1.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Chechik et al. [25] derandomized the algorithm and obtained

a genuine 3/2-approximation algorithm running in time

Õ(mn2/3). As previously mentioned, [47] also showed that

any O(n2−ε) time algorithm that (3/2−δ)-approximates the

diameter (for ε, δ > 0) breaks the OV conjecture (as it would

distinguish between graphs of diameter 2 and 3). We show

that the known approximation algorithms for Radius are also

likely tight. An immediate corollary of Theorem 1.1 is:

COROLLARY 1.1. A subquadratic (3/2−δ)-approximation

algorithm for UNDIRECTEDRADIUS, for some δ > 0,

refutes the Hitting Set conjecture.

The eccentricity of a node is the largest distance out

of it. Diameter is the maximum eccentricity, and radius

is the minimum. Even though both undirected Diameter

and Radius can be 3/2-approximated in subquadratic time,

the best known subquadratic algorithm for estimating all

the eccentricities, by Chechik et al. [25], only gives a 5/3
approximation. We show that this result is tight conditioned

on the OV conjecture1.

THEOREM 1.2. A (5/3−δ) approximation algorithm for the

eccentricities of all nodes in undirected sparse graphs that

runs in subquadratic time refutes the Orthogonal Vectors

Conjecture.

This completes the picture for undirected graphs and we

now turn our attention to directed graphs, where much less

was known before our work. To better highlight the novelty

of this work, we will only present our results for Radius on

directed graphs (see Table 1). Our results for Diameter can

be found in Table 2.

One-way distances. The first definition of Radius on

directed graphs, Source Radius, is the natural extension of

the undirected Radius definition: minx maxv d(x, v). While

in undirected graphs a 2-approximation is trivial, this is no

longer the case for directed graphs. In undirected graphs,

we can claim for any center v∗, arbitrary u, and for all x,

by the triangle inequality, d(u, x) ≤ d(u, v∗) + d(v∗, x) =
d(v∗, u) + d(v∗, x) ≤ 2R. Since in directed graphs d(u, v∗)
is unrelated to d(v∗, u), no approximation is guaranteed.

Even the known 3/2-approximation algorithms [47, 25]

do not work since for directed graphs all that they can

guarantee is that they compute the eccentricity of some

node u with either d(u, v∗) ≤ R/2 or d(v∗, u) ≤ R/2,

and in the latter case no approximation can be guaranteed.

Our first algorithmic contribution is a new subquadratic 2-

approximation algorithm for Source Radius overcoming the

above issues with a two level sampling approach.

1Independently, Cairo, Grossi, and Rizzi proved a similar lower bound

under SETH (private communication).

THEOREM 1.3. Given a directed unweighted graph on n
nodes and m edges, there is an algorithm that outputs R∗

such that R ≤ R∗ ≤ 2R, and runs in time O(m
√
n log2 n).

Our algorithm is lightweight and easy to implement.

Theorem 1.1 implies that a subquadratic algorithm for

Source Radius is not likely to have an approximation guar-

antee better than 3/2 and makes one wonder whether a 3/2
guarantee is possible in subquadratic time, as is the case in

undirected graphs. However, using the directed edges we

manage to increase the gap in the lower bound construction

and prove that the approximation factor of our algorithm is

optimal for a subquadratic algorithm under the HS conjec-

ture.

THEOREM 1.4. A (2 − δ)-approximation algorithm for

Source Radius in sparse graphs that runs in subquadratic

time refutes the Hitting Set Conjecture.

Roundtrip and longest distances. The roundtrip dis-

tance between u and v is the distance from u to v plus the

distance from v to u, i.e. the sum of both one-way distances.

The Roundtrip Radius of the graph is minx maxv d(x, v) +
d(v, x). The Max-distance between u and v is the largest of

the two one-way distances. The Max Radius of the graph is

minx maxv max{d(x, v), d(v, x)}.

These definitions are natural ways to turn the distances

in directed graphs into a metric. This means that by picking

any node as the center we obtain a 2-approximation near-

linear time algorithm for Roundtrip Radius and Max Radius.

Moreover, Cowen and Wagner [31, 32] observed that many

of the techniques for approximating distances in undirected

graphs can be adapted to handle roundtrip distances, which

also led to the roundtrip-spanners of Roditty, Thorup, and

Zwick [48]. This seems to suggest that these versions of

Radius should be more like the undirected version where

a 3/2-approximation is possible in subquadratic time, and

not like Source Radius where the 2 factor is tight. Quite

surprisingly, via a delicate reduction, we were able to obtain

a gap of 2 in the lower bound constructions, and show that

anything better than the trivial 2-approximation is unlikely

to run in subquadratic time.

THEOREM 1.5. A (2 − δ)-approximation algorithm for

Roundtrip Radius or Max Radius that runs in O(m2−ε) time

on sparse graphs, for some ε, δ > 0, refutes the Hitting Set

Conjecture.

Min Radius. Finally, we consider a less standard but

quite intriguing variant of Radius where distance is the

shorter of the two directions. Formally, we define the

Min-eccentricity of a node u to be the maximum over

nodes v of min{d(u, v), d(v, u)}. The node with minimum

Min-eccentricity is the Min-Center of the graph and its

380 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

03
/2

1/
21

 to
 1

32
.7

6.
61

.5
1.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Min-eccentricity is the Min-radius. This directed definition

naturally models certain applications. For example, in a

network representing geographic locations, the Min-center

would be the optimal location to place a hospital since it will

allow for the fastest possible medical treatment (either by

driving to the hospital or by having an ambulance drive from

the hospital to the patient) for any location in the graph. This

is the only directed Radius version without a trivial linear

time algorithm on a DAG2.

Although the problem becomes easy once we compute

APSP, it is quite challenging to approximate to within any

constant factor without knowing all the distances. Intuitively,

a node with Min-eccentricity R could be very hard to distin-

guish from nodes that have infinite min-distance to a single

node in the graph. We give a linear time algorithm for this

simpler task.

PROPOSITION 1.1. There is an O(m) time algorithm that

can check if there is a node in a directed graph with m
edges that can reach or be reached from any other node.

Consequently, there is a factor n approximation for Min-

Radius in linear time.

Finally, we consider approximation algorithms for Min-

Radius on a DAG - which, in our opinion, is the most natural

version of the question “what is the center of a DAG”? We

devise a recursive 3-approximation subquadratic algorithm

for the problem and show that a better than 2 factor is

unlikely.

THEOREM 1.6. There is a 3-approximation algorithm for

Min-Radius on n node, m edge DAGs that runs in

O(m
√
n log n) time, and a subquadratic (2 − δ) approxi-

mation algorithm that runs in subquadratic time on sparse

DAGs refutes the Hitting Set Conjecture.

1.4 Fixed Parameter Subquadratic Algorithms

Treewidth. We will illustrate our approach using the

Diameter problem on n-node undirected graphs of treewidth

k. This is one of the most popular parameterizations of graph

problems in the literature on parameterized complexity, and

is usually considered when the problem becomes easy on

trees [13]. Note that a folklore algorithm solves Diameter

in Õ(n) on trees: do Dijkstra’s from an arbitrary node u, and

then Dijkstra’s from the furthest node v from u, report the

largest distance found. Since in arbitrary graphs (where the

treewidth is ≤ n) one can solve Diameter in Õ(n2) time, a

natural conjecture is that the right runtime bound in terms

of treewidth is O(kn). Unfortunately, we observe that the

lower bound construction for Diameter rules out any such

algorithm. In fact, it shows that in any fixed parameter

2The Max and Roundtrip Radius are infinite on a DAG, and the Source

Radius is the eccentricity of the first node in the topological order.

subquadratic running time for Diameter, the dependence on

k, the treewidth, must be exponential!

THEOREM 1.7. If for some ε > 0, there is an algorithm that

can distinguish between diameter 2 and 3 in an undirected

unweighted graph of treewidth k in 2o(k) ·n2−ε time, then the

Orthogonal Vectors Conjecture is false. If such an algorithm

exists for Radius, then the Hitting Set Conjecture would be

false.

This lower bound is quite surprising when contrasted

with the near-linear time (1 + ε)-approximation algorithm

for Diameter in planar graphs of Weimann and Yuster [54],

since it shows that such a result is unlikely on non-planar

graphs of treewidth Θ(log n). Furthermore, our lower bound

also applies to graphs of pathwidth k. On the positive side,

this bound led us to look for a 2O(k)n2−ε time algorithm for

Diameter.

Although computing the treewidth is an NP-hard prob-

lem, Bodlaender et al. [15] obtained a 2O(k)n time algorithm

(fixed parameter linear time) that returns a tree decompo-

sition of bag size O(k). This gives hope that the known

techniques from FPT algorithms will give interesting sub-

quadratic algorithms. For example, we could apply Cour-

celle’s theorem to solve Diameter in f(k) · n time, for some

huge but computable f(k). Instead, we use a technique that,

to our knowledge, was never used for obtaining FPT algo-

rithms for NP-hard problems and obtain a fixed parameter

subquadratic algorithm for Diameter and Radius parameter-

ized by treewidth that almost matches our lower bound.

THEOREM 1.8. There is an algorithm that solves Diameter

and Radius exactly in undirected graphs of treewidth k in

2O(k log k) · n1+o(1) time.

Closing the gap in the dependence on k between the

2O(k log k) · n1+o(1) upper bound and the 2o(k) · n2−ε con-

ditional lower bound is a very interesting open question. In

Section 2 we also obtain exact algorithms with similar up-

per bounds for all versions of directed Radius and Diameter

that we consider in this work. We can also compute all the

eccentricities of the graph in the same time.

Besides utilizing the tree decomposition to find sepa-

rators, the main tool in our algorithms is a reduction to

an orthogonal range query problem and then using known

data structures to answer queries efficiently. This technique

was used by Cabello and Knauer [21] to obtain near-linear

time algorithms for computing the Wiener index of a fixed

treewidth graph3.

The exact running time of our algorithm for Diameter

is O(k2n logk−1 n) and we believe it can be a practical

3The Wiener index of a graph is the sum of distances. It can be computed

in O(mn) time in general graphs using APSP.

381 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

03
/2

1/
21

 to
 1

32
.7

6.
61

.5
1.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

alternative to known Diameter algorithms when a good

bound on the treewidth of the graph is known. It is known

that many real-life networks are tree-like (see [14] and the

surveys therein.)

Other parameters. Perhaps more basic parameteriza-

tions for Diameter would be: D - the diameter of the graph,

and Δ - the maximum degree of a node in the graph. Un-

fortunately, the lower bound constructions show that these

cases are not fixed parameter subquadratic. It hard to solve

Diameter in subquadratic time even when the diameter is 3,

and there is a simple reduction from Diameter on a sparse

graph on n nodes of arbitrary max degree to Diameter on a

constant degree graph on O(n) nodes. The same holds for

Radius under the HS conjecture. Thus, Radius and Diame-

ter are not fixed parameter subquadratic when parameterized

by the degree or the diameter of the input graph, unless our

conjectures fail.

Related work. Most related to our parameterized com-

plexity results are known algorithms for Diameter and Ra-

dius on special classes of graphs, e.g. [40, 27, 36, 30, 26,

35, 11, 12, 57, 54]. Our two dimensional complexity re-

sults, however, show how the complexity changes as the in-

put graph becomes “more complicated”. Independently of

our work, Giannopoulou, Mertzios, and Niedermeier [39]

also propose the study of parameterized complexity for prob-

lems in P. The authors suggest searching for f(k) · nc al-

gorithms for problems for which the best known algorithm

takes O(nd) time, where d is much larger than c. Their case

study is the problem of finding the longest path in an interval

graph, and they improve the known O(n4) time algorithm

to f(k) · n for a certain natural parameter k. We are not

aware of previous negative parameterized complexity results

for problems in P.

1.5 Extensions In the full version of the paper we show

that there is a subquadratic equivalence between the OV

problem and the problem of distinguishing between diameter

2 and 3 in sparse graphs, in the sense that a subquadratic

algorithm for one implies a subquadratic algorithm for the

other. Similarly, there is a subquadratic equivalnce between

the HS problem and distinguishing between radius 2 and 3
in sparse graphs. To prove the equivalence we devise new

reductions from the graph problems to OV and HS, via a low-

degree high-degree analysis and a hashing trick. From the

mildly subquadratic algorithms for OV and HS [3], we obtain

new mildly subquadratic algorithms for radius and diameter.

THEOREM 1.9. There is an algorithm that can decide

whether the diameter (or radius) of a given sparse graph is

2 or 3, in n2/2Ω(
√
logn) time.

This result shows that on sparse 3-layered graphs, there

is a superpolylogarithmic gap between the complexities of

diameter and APSP, since there is an unconditional Ω(n2)
lower bound for APSP. Such gaps were only known for

special classes of graphs (like bounded treewidth graphs),

while it is known that the 3-layered case is typically the

hardest for APSP.

Finally, we demonstrate the potential of the HS conjec-

ture for explaining the hardness of other problems by prov-

ing a new conditional lower bound for computing the median

of the graph. In undirected graphs, the median is the node

v that minimizes the sum of distance to all the other nodes∑
u d(v, u). Finding the median is equivalent to finding the

node with largest closeness centrality in the graph [9, 10, 50]

- a very important task in network analysis [40, 52]. Like

Radius, it was known that computing the median of dense

weighted graphs in subcubic time refutes the APSP conjec-

ture [2] while no consequences of a subquadratic algorithm

in sparse graphs were known. In stark contrast to Radius,

however, Median is known to have a near-linear time (1+ ε)
approximation [43, 53, 29]. It turns out that the HS conjec-

ture implies that this subquadratic running is impossible if

we want to know the median exactly.

THEOREM 1.10. A subquadratic algorithm for finding the

median of a sparse unweighted undirected graph refutes the

Hitting Set Conjecture.

2 Subquadratic Approximation Algorithms

In this section, we cover our approximation algorithms

for SOURCERADIUS, MINDIAMETER, and MINRADIUS.

Source Radius Although it was trivial to find

a 2-approximation in the UNDIRECTEDRADIUS,

ROUNDTRIPRADIUS, and MAXRADIUS problems, the

nonsymmetric nature of SOURCERADIUS makes it non-

trivial to achieve a 2-approximation. Choosing an arbitrary

vertex as before may yield an infinitely bad approximation

factor, if it cannot reach the rest of the graph.

Arbitrary vertices worked before since we could reach a

center v∗ within R and then any other node within another

R. Hence a natural attempt is to try to find a vertex that can

reach the center within R. Let Pre(v, �) be the set of nodes

that can reach v within �. If Pre(v∗, R) was large, we could

use a standard hitting set argument to find a member. This

observation reduces the problem to one where Pre(v∗, R) is

small.

We next make the observation that the center must show

up in every Pre(v,R). Hence, if we could find any small

Pre(v,R), we could run forward Dijkstra’s from its nodes.

One way of figuring out which Pre(v,R) are small is to use

the fact that searching for the closest k nodes from a starting

node can be done with a modified Dijkstra in O(k2 log n)
time, given that edge costs at each node are already sorted

(for each of at most k searched nodes, we only need to

382 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

03
/2

1/
21

 to
 1

32
.7

6.
61

.5
1.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

enqueue the cheapest edge which does not go to a searched

node, which can be done in k2 updates).

However, these short Dijkstra’s from every node will

incur a Õ(n2) cost (all of our thresholds are roughly
√
n).

Instead, we can be more clever with how we use our hitting

set. With high probability, the hitting set hits every large

Pre(v,R). Hence any Pre(v,R) not hit must be small.

At least one of them must not be hit, since we assumed

Pre(v∗, R) was not.

If we knew the radius, these ideas would give us a

running time of O(m
√
n log n). However, doing a binary

search for the radius incurs an additional (logMn) factor. To

avoid this, we use an idea from the Aingworth et al. seminal

algorithm for a 2
3 -approximation of undirected diameter;

choosing the furthest node from the hitting set simulates

locating a small Pre(v∗, R) for every R simultaneously.

THEOREM 2.1. There is a O(m
√
n log2 n)-time Monte

Carlo algorithm that approximates SOURCERADIUS on a

graph G within a factor of 2.

Proof. We claim that algorithm 1 has the desired properties:

Algorithm 1: ApproximateSourceRadius(G,R)

Sample a hitting set S1 of O(
√
n log n) nodes;

Run forward Dijkstra’s from all s ∈ S1;

Let w ∈ V maximize mins∈S1
d(s, w). Run a reverse

Dijkstra from w;

Let S2 be the
√
n closest nodes to w. Run forward

Dijkstra’s from all s ∈ S2;

return the best source-eccentricity of all nodes in

S1 ∪ S2;

This algorithm relies on the fact that with high probabil-

ity, for any set X of the closest
√
n nodes to a given node in

the graph, our randomly-chosen hitting set S1 will intersect

X (note that there are only O(n) possible such X given our

graph). This follows from a standard argument.

Now we can prove the claimed approximation guarantee

of our algorithm. If some s ∈ S1 can reach the center within

R, we are done. Otherwise, v∗ is more than R away from S1,

and hence w is as well. Since S2 has
√
n nodes, it intersects

S1 w.h.p. since S1 is a hitting set (we want it to hit, for each

node, the closest
√
n nodes going backwards). Suppose v is

in this intersection, then d(v, w) > R. But then S2 is defined

by how close nodes are to w, it must contain all nodes that

can reach w in less than R. This includes v∗, so we are done.

Now we compute the running time of this algo-

rithm. Running Dijkstras from every node in S1 takes

O(m
√
n log2 n) time. Running Dijkstra from w takes

O(m log n) time. Finally, running Dijkstras from S2 which

has
√
n nodes takes O(m

√
n log n) time. This completes the

proof.

MINDIAMETER We next present an algorithm for MINDI-

AMETER on general graphs.

LEMMA 2.1. Given ε ≥ 0, there is a Õ(mn1−ε)-time

algorithm that approximates MINDIAMETER on directed

graphs within a factor of nε.

Proof. Suppose that the diameter is realized by the pair of

points (u∗, v∗) where d(u∗, v∗) = D and d(v∗, u∗) ≥ D. If

D is at most nε, then any edge is a sufficient approximation.

Consider the case where D is larger than nε. We choose

a hitting set S of Õ(n1−ε) nodes that, with high probability,

hits the middle third of any shortest path longer than nε. In

particular it hits the middle third of the shortest path from u∗

to v∗ at vertex w, so that d(u∗, w) ≥ D
3 and d(w, v∗) ≥ D

3 .

Notice that one of d(v∗, w) or d(w, u∗) must also be at least
D
3 long, otherwise d(v∗, u∗) < D.

Hence if we Dijkstra from all nodes in S and re-

turn maxs∈S,v∈V min{d(s, v), d(v, s)}, this yields a nε-

approximation. But this takes only Õ(mn1−ε) time, which

completes the proof.

We get a much better algorithm for MINDIAMETER on

DAGs, since we can use the topological order of the graph to

run a divide-and-conquer.

THEOREM 2.2. There is a O(m log n)-time algorithm that

approximates MINDIAMETER on a DAG G within a factor

of 2.

Proof. Since G is a DAG, we can run a topological sort

in O(m) time and use this order to relabel the vertices as

{0, 1, 2, . . . , n− 1} so that edges run from lower- numbered

nodes to higher-numbered nodes. Suppose that the diameter

is realized by the pair of points (u∗, v∗), u∗ < v∗. There are

three possible cases:

1. u∗, v∗ < n
2 ;

2. n
2 ≤ u∗, v∗;

3. u∗ < n
2 ≤ v∗.

In case (3), consider node n
2 , which we denote as w.

d(u∗, v∗) ≤ d(u∗, w)+d(w, v∗) and so either d(u∗, w) ≥ D
2

or d(w, u∗) ≥ D
2 . Moreover, since u∗ ≤ w ≤ v∗, returning

max{maxv≤w d(v, w),maxw≤v d(w, v)} definitely yields a

2-approximation for the diameter. Note that d(v, w) and

d(w, v) can be computed for all v with a DP in O(m) time.

Otherwise, if case (3) does not hold, run the algorithm

recursively on the subgraphs of G induced by the first and

last n
2 nodes in topological order. Building these induced

graphs takes O(m) time. There are log n levels of recursion,

and each level takes O(m) time: 2i DPs on n
2i nodes each

where the total number of edges is at most m. The total time

is hence O(m log n).

383 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

03
/2

1/
21

 to
 1

32
.7

6.
61

.5
1.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

MINRADIUS MINRADIUS is a difficult problem on general

graphs, but it turns out that we can quickly determine which

vertices have a finite min-eccentricity:

LEMMA 2.2. There is a O(m + n)-time algorithm that

determines which vertices in a directed graph G have a finite

min-eccentricity.

Proof. In linear time, we can compute the strongly con-

nected components of G. Notice that a vertex has a fi-

nite min-eccentricity iff its corresponding vertex in the SCC

graph has a finite min-eccentricity. Hence it suffices to con-

sider the problem on DAGs.

We next compute a topological order of the vertices,

which can be done in linear time. It suffices to determine

which nodes can be reached by all nodes before them in the

topological order, since then we could also determine which

nodes can reach all nodes after them in the topological order

by symmetry.

In order to do this, we precompute for each node, the

first node in the topological order it has an edge to. This can

be done in linear time by taking a minimum over all edges

coming out of a node, and noting each edge is used only

once.

Fix some node v. Suppose that every node before v has

an edge to a node which is before v or is v. Then every

node before v can reach it, since we can keep taking edges

that do not take us past v, and each edge moves us forward

in the DAG. On the other hand, if some node before v only

has edges to nodes after v, then not every node before v can

reach it, since we have a counterexample.

We will check this property by counting, for each node

v, the number of nodes before v that have an edge to a

node before v or to v. However, this is easy to do with our

precomputation. The count is zero for the first node, and the

count for the ith node is the count for the previous node, plus

the number of nodes whose earliest neighbor is the current

node. We can use our precomputation to generate the latter

values in linear time, and then compute the counts for each

node in order in linear time again.

All of our computations took O(m+n) time, as desired.

This completes the proof.

Like MINDIAMETER, MINRADIUS turns out to be eas-

ier on DAGs since we can run a divide-and-conquer:

THEOREM 2.3. There is a O(m
√
n(logMn))-time algo-

rithm that approximates MINRADIUS on a DAG G within

a factor of 3.

Proof. First we show that there is an algorithm that, given

the radius R, finds a vertex with eccentricity at most 3R
or guarantees all vertices have eccentricity strictly greater

than R. This algorithm will run in O(m
√
n) time. From

this claim, we can binary search for R in the range [0,Mn],
yielding the desired result.

Since G is a DAG, we can run a topological sort and use

this order to relabel the vertices as {0, 1, 2, . . . , n−1} so that

edges run from lower- numbered nodes to higher-numbered

nodes. Notice that since G is a DAG, if we choose u, v ∈ V
with u < v, d(v, u) = ∞ so we are only concerned with

d(u, v). Furthermore, suppose that d(u, v) > 2R. We claim

that the center cannot be in the interval [u, v], since then there

is a path from u to v through the center with length at most

2R.

Algorithm 2 uses this observation to return a vertex

with eccentricity at most 3R or guarantees all vertices have

eccentricity strictly more than R.

Algorithm 2: ApproximateCenter(G,R)

Initialize a vector A with
√
n evenly-spaced vertices,

i.e. A[i] = i n−1√
n−1

;

for i = 0, 1, . . . ,
√
n− 1 do

Use a DP to compute d(v,A[i]) and d(A[i], v)
for all v ∈ V ;

if ∀v ∈ V , min(d(v,A[i]), d(A[i], v)) ≤ 2R
then

return A[i];

Let S be a stack of vertex intervals, intially empty;

for i = 0, 1, . . . ,
√
n− 1 do

Let � be the topologically-first vertex v such that

d(v,A[i]) > 2R, or A[i] if no vertex satisfies this

condition;

Let r be the topologically-last vertex v such that

d(A[i], v) > 2R, or A[i] if no vertex satisfies this

condition;

Suppose the top interval of S is [a, b]. If

� ≤ b+ 1, then pop [a, b] and push [a, r].
Otherwise, just push [�, r].

for adjacent vertex intervals [a, b] and [c, d] in S do

for u ∈ [b+ 1, c− 1] do
Use a DP to compute d(v, u) and d(u, v) for

all v ∈ [a, d];
if ∀v ∈ [a, d], min(d(v, u), d(u, v)) ≤ R
then

return u;

return all vertices have eccentricity strictly greater

than R;

First, we will show that Algorithm 2 is correct. If it

returns some node A[i], then every node was within 2R
of that node and hence it does have eccentricity at most

3R. Otherwise, each node A[i] has some node ui that is

strictly more than 2R away (in the appropriate, non-infinite

direction). If ui < A[i], then [ui, A[i]] cannot contain a

384 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

03
/2

1/
21

 to
 1

32
.7

6.
61

.5
1.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

vertex of eccentricity at most R. Similarly, if A[i] < ui,

then [A[i], ui] cannot contain a vertex of eccentricity at most

R. Hence every interval of S cannot contain a vertex of

eccentricity at most R.

The next phase of the algorithm searches the regions

between adjacent intervals of S (note that since the first node

is in an interval of S, as well as the last node, all remaining

nodes fall between two intervals of S). Suppose that some

u ∈ [b + 1, c − 1] can reach all v ∈ [a, d] in at most R
distance, either forward or backwards. Then consider the

node of A immediately to its left, A[i]. u can reach A[i]
(backward) in at most R distance. By construction a is either

the topologically-first vertex v that cannot be reached by A[i]
(backwards) in 2R distance, or lies before that (due to a

union with an even earlier region). Hence u can reach all

nodes (backwards) to the left of a with at most 3R distance

by going through A[i]. Hence u can reach all nodes before it

(backwards) using only 3R distance. Similarly, it can reach

all nodes after it (forwards) using only 3R distance. Hence

u has eccentricity at most 3R, and is valid to return.

Otherwise, all vertices outside of intervals of S have

eccentricity strictly more than R. But then every vertex has

eccentricity more than R. Hence the final return statement is

also correct.

Next, we analyze the running time of Algorithm 2. The

first phase of our algorithm computes
√
n DPs, which take

O(m) time each. Computing S takes O(n
√
n) time.

Next, we compute distances for every node not in one

of S’s intervals. In order to bound the running time of

this phase, we note two things. Firstly, no region between

intervals can contain more than O(
√
n) points since our

inital points are all in intervals of S and we chose them to

be not too far apart. Secondly, any edge only needs to be

considered for at most two regions between intervals (and

only then if it lies in some interval of S). Since the running

time of our DPs is linear in the number of edges the DP

must consider, our running total running time is bounded by

O(m
√
n).

The total running time is hence O(m
√
n), as claimed.

This completes the proof.

3 Fixed Parameter Subquadratic Algorithms

In this section, we present algorithms for diameter and

radius on graphs of small treewidth. We begin with the undi-

rected case, which illustrates the technique, and then ex-

tend the results to the directed case. Throughout this sec-

tion, although treewidth is typically defined for undirected

graphs, we will use treewidth of a directed graph to mean the

trewewidth of the underlying undirected graph.

Undirected Graphs with Small Treewidth We begin by

giving some intuition concerning our algorithmic strategy.

Our algorithm will actually compute the eccentricity of

every node in the graph. Since diameter is the maximum

eccentricity and radius the minimum eccentricity, we can

compute these with only linear postprocessing.

Like many other algorithms, we make use of portals: the

portals of a vertex subset A are those nodes of A that have

edges going to outside A. Intuitively, finding a vertex subset

A which has few portals allows us to divide the graph into

relatively independent pieces. Specifically, if we compute

single source shortest paths from all portals of A, we can

augment the graph with weighted edges between portals to

account for shortest paths that exit and re-enter A (or V \A).

Recursing on augmented graphs yields, for each node in A,

the furthest node from it which is also in A (similarly for

V \A). If we could compute, for each node in A, the furthest

node from it in V \A (and vice versa), we would be done.

But all of these paths pass through some portal. We

know the distances from each node in A to each portal, and

from each portal to each node in V \A. We can think of the

non-portals of A, the portals of A, and the nodes in V \ A
as forming a three-layered graph. We want to compute, for

every node in the first layer, the furthest node in the third

layer (using only two-hop paths). Note that the second layer

only has as many nodes as there were portals.

As it turns out, this three-layered problem can be written

as several max orthogonal range searching queries. To see

this, consider a particular portal b in the middle layer. When

is it the best portal to use to get to a node in the third layer?

If a is a node in the first layer and c a node in the third,

this happens when d(a, b) + d(b, c) ≤ d(a, b′) + d(b′, c) for

every other portal b′. Using a standard inequality trick, we

rearrange to get that d(a, b) − d(a, b′) ≤ d(b′, c) − d(b, c).
If we think of each b′ as a coordinate, we can use the right-

hand side to transform each vertex c into a high-dimensional

point. The set of c for which b is the best portal, given an

a, are exactly those that fall into some orthogonal range.

Furthermore, weighting each vertex by its distance from b
allows us to recover the furthest one when we do a max

query. Since these queries can be solved efficiently using

a data structure of Chazelle [24], we can solve the three-

layered problem efficiently:

THEOREM 3.1. ([24]) Consider the range searching for

maximum problem: we are given a set V of n points in d
dimensions and a value function v : V → R. We want

to answer queries of the form: given a range of the form

q = [a1, b1]× [a2, b2]× . . .× [ad, bd], what is maxp∈q v(p)?
On a word RAM, there is a data structure that

solves this problem with O(n logd−1 n) preprocessing time,

O(n log(d−1+ε) n) space usage, and O(logd−1 n) query

time.

Since the algorithm’s running time is highly dependent

on the number of portals, we use a result of Cabello and

385 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

03
/2

1/
21

 to
 1

32
.7

6.
61

.5
1.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Knauer [21] which finds a vertex subset with only k portals,

but is unbalanced (one side may have k times as many nodes

as the other):

LEMMA 3.1. ([21]) Let k ≥ 1 be a constant. Given

a graph G = (V,E) with n > k + 1 vertices and a

tree decomposition of width at most k, we can find in

O(poly(k)n) time a subset of vertices S ⊆ V such that S
has between n

k+1 and nk
k+1 nodes and at most k portals.

More formally, we call a directed graph G = (V,E) a

three-layered graph if there is a partition of V into A,B,C
such that E ⊆ A × B ∪ B × C, i.e. all edges go from

A to B or from B to C. If G is a three-layered graph,

we can also write G as (A,B,C,E). Using the orthogonal

range searching data structure in Theorem 3.1, we are able to

compute important distances in a three-layered graph. This

serves as the key subroutine for solving diameter and radius

on graphs of small treewidth:

THEOREM 3.2. Suppose we have a weighted three-layered

graph G = (A,B,C,E). Furthermore, suppose that A and

C have O(n) nodes while B has only k nodes. Then we can

compute

maxc∈C minb∈B d(a, b) + d(b, c) for all a ∈ A in

O(kn logk−2 n) time.

Proof. The key idea is as follows. Focus on some b ∈ B.

We will preprocess all of the distances between B and C so

that when given some a ∈ A, we can use its distances to

the nodes of B to compute the subset of C whose shortest

two-hop paths to a go through b. However, we don’t

actually compute this set; we instead use our orthogonal

range searching data structure to return the furthest point in

the set. This allows us to compute the furthest distance any

node is from a, among nodes that use b as part of the shortest

path. Looping over all b ∈ B will then allow us to compute

the desired quantity.

Fix b ∈ B. For each c ∈ C and b′ ∈ B, b′
= b, we

compute d(b′, c) − d(b, c). If we impose an ordering on

B, this associates a (k − 1)-dimensional vector with every

c ∈ C. Suppose we have some a ∈ A and c ∈ C where b
is the middle vertex in the shortest two-hop path from a to

c. This means that d(a, b) + d(b, c) ≤ d(a, b′) + d(b′, c) for

all other b′ ∈ B. We can rewrite this as d(a, b) − d(a, b′) ≤
d(b′, c) − d(b, c) for all other b′ ∈ B. In other words, given

a ∈ A, the set of c ∈ C for which b is the middle vertex with

the shortest two-hop path from a to c are those c with vectors

that fall in the axis-aligned box given by d(a, b)− d(a, b′).
However, by Theorem 3.1, there is a data structure that

does this with only O(n logk−2) preprocessing time and

O(logk−2 n) time per query. Note that the value function we

use maps the point corresponding to c to d(b, c). Hence the

largest weight corresponds to the furthest point, and we can

compute the distance from a to the furthest point by adding

d(a, b) to the weight returned.

We keep one data structure per b ∈ B, and now simply

iterate over a ∈ A and b ∈ B. For each a ∈ A, we select the

furthest c over the two-hop distances computed. This takes

O(kn logk−2 n) time.

We can now present the main algorithm:

THEOREM 3.3. There is an algorithm that, given a tree

decomposition of width at most k of an undirected weighted

graph G, computes the eccentricity of every vertex in time

O(k2n logk−1 n).

Proof. By Lemma 3.1, we can find S ⊆ V such that S has

between n
k+1 and nk

k+1 vertices, at most k portals, and adding

edges between portals of S does not change the treewidth of

G. Finding S takes O(poly(k)n) time.

We run Dijkstra from every portal of S. Since there are

at most k portals, this takes O(k2n + kn log n) time. This

yields the eccentricity of every portal. It remains to compute

the eccentricity of non-portals of S and vertices in V \ S.

The eccentricity of a non-portal of S is either realized

by a node in S or in V \ S. For the first case, we recurse

on S augmented with weighted edges between portals cor-

responding to the distances between them that we computed

via Dijkstra’s. Any shortest path between nodes of S can be

realized by taking a path in this graph; if it goes through at

least two portals then our added portal-portal edge gives the

correct distance. We note that Lemma 3.1 actually picks S
such that its portals are a subset of a bag, and hence adding

edges between portals does not alter the tree decomposition.

Furthermore, we note that the algorithm can use the same

tree decomposition when running on a subgraph with these

additional portal-portal edges, since removing nodes only

decreases the bag size (there will need to be additional pre-

processing, but this is included in the O(poly(k)n)).
To cover the second case, we construct a three-layered

graph where A consists of non-portal nodes of S, B consists

of portals, and C is V \S. We add edges from A to B and B
to C weighted by the Dijkstra distances we computed for the

portals. Any shortest path between a node in A and a node

in C matches the cost of a two-hop path. Hence we can use

Theorem 3.2 to compute, for each a ∈ A, the furthest c ∈ C.

Now, given a ∈ A, we have the furthest distance to any

other node in S and the furthest distance to any node in V \S.

Hence we can compute the eccentricity of a (the max of these

two).

Computing the eccentricities for every node of V \ S is

identical. We recurse on V \ A augmented with the portals

and weighted edges between portals. We also construct a

three-layered graph where A is V \ S, B consists of portals,

and C consists of non-portal nodes of S. We again invoke

Theorem 3.2 on it, and take the max of the two computed

furthest distances (for each node).

386 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

03
/2

1/
21

 to
 1

32
.7

6.
61

.5
1.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

We now analyze the running time. Invoking Theo-

rem 3.2 twice takes O(kn logk−2 n) time. Combining re-

sults and constructing graphs can be done in O(k2 + kn)
time, which is dominated by O(kn logk−2 n).

We will stop recursing when we have k3 nodes or

fewer, which can be solved in O(k9) time by computing

all-pairs shortest-paths. We guess that the algorithm runs

in time T ′(n) = 4k(k + 1)n logk−1 n, and we check this

inductively. Notice that our case case is covered since O(k9)
is dominated by k5 logk−1 k3.

Recall that n
k+1 ≤ |S| ≤ nk

k+1 , and that because of our

base case, 0.5n
k+1 ≥ k. The recurrence is

T (n) ≤ kn logk−2 n+ T (|S|) + T (n− |S|+ k).

T (n) ≤ kn logk−2 n+ T (|S|) + T (n− |S|+ k)

≤ kn logk−2 n+ 4k(k + 1)|S| logk−1 |S|
+ 4k(k + 1)(n− |S|+ k) logk−1(n− |S|+ k)

≤ kn logk−2 n+ 4k(k + 1)n logk−1

(
nk

k + 1
+ k

)

+ 4k2(k + 1) logk−1

(
nk

k + 1
+ k

)

≤ kn logk−2 n+ 4k(k + 1)n logk−1

(
n(k + 0.5)

k + 1

)

+ 4k2(k + 1) logk−1

(
n(k + 0.5)

k + 1

)

≤ kn logk−2 n

+ 4k(k + 1)n logk−2 n(log n− log
k + 1

k + 0.5
)

+ 4k2(k + 1) logk−1

(
n(k + 0.5)

k + 1

)

≤ kn logk−2 n

+ T ′(n)− 4k(k + 1)n logk−2 n
1

2k + 2

+ 4k2(k + 1) logk−1 n(k + 0.5)

k + 1

≤ T ′(n)− kn logk−2 n+ 4k2(k + 1) logk−1 n

The negative term has at least as much magnitude as the pos-

itive term if n
logn ≥ 4k(k + 1), which is true because n is at

least k3. Hence our running time is indeed O(k2n logk−1 n).
This completes the proof.

We can now use our eccentricities to compute the diam-

eter and radius of a graph:

COROLLARY 3.1. There are algorithms that, given a tree

decomposition of width at most k of an undirected weighted

graph G, compute UNDIRECTEDDIAMETER and UNDI-

RECTEDRADIUS in time O(k2n logk−1 n).

Proof. We invoke Theorem 3.3, observing radius is the min-

imum eccentricity in the graph and diameter is the maximum

eccentricity in the graph. We can recover both quantities in

only O(n) additional time.

By noticing that g(k, n) = k2n logk−1 n ≤
22k log lognn can be upper-bounded by 2O(k log k)n1+o(1) we

prove Theorem 1.8 from the Introduction. This is because

when k ≤ ε log n/ log log n we can upper bound g(n, k) =
Õ(n1+ε) and otherwise k > ε log n/ log logn and there-

fore k2 > log n and log k > log log n/2 and we can up-

per bound g(n, k) = 2O(k log k) · n. Furthermore, if we use

the Bodlaender et. al. 5-approximation tree decomposition

algorithm, which runs in time 2O(k)n, the running time is

O(k2n log5k−5 n), where k is now the treewidth of the input

graph.

Directed Graphs With Small Treewidth We now explain

simple modifications to Theorem 3.3 to compute the various

directed eccentricities. As before, this means that we can

compute diameter and radius, since they are simply the

maximum and minimum eccentricies. A simple modification

gives us max-eccentricities:

THEOREM 3.4. There is an algorithm that, given a tree

decomposition of width at most k of an directed weighted

graph G, computes the max-eccentricity of every vertex in

time O(k2n logk−1 n).

Proof. We make a few modifications to the proof of The-

orem 3.3. We must run forward and backward Dijkstra’s

from the portals of S (but this only doubles the running

time). When recursing, we add directed edges between por-

tals, weighted by the distance from the appropriate Dijk-

stra. We construct twice as many three-layered graphs; one

weighted by forward distances from A to B and B to C and

the other will have backward distances from A to B and B to

C. The max-eccentricity of a node is just the maximum over

its recursive value, the distance in the forward three-layered

graph, and the distance in the backwards three-layered graph.

The running time analysis is identical.

COROLLARY 3.2. There are algorithms that, given a tree

decomposition of width at most k of an directed weighted

graph G, compute MAXDIAMETER and MAXRADIUS in

time O(k2n logk−1 n).

Source-eccentricities are also easy:

THEOREM 3.5. There is an algorithm that, given a tree

decomposition of width at most k of an directed weighted

graph G, computes the source-eccentricity of every vertex in

time O(k2n logk−1 n).

387 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

03
/2

1/
21

 to
 1

32
.7

6.
61

.5
1.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Proof. Again, we make modifications to the proof of The-

orem 3.3. We run forward and backward Dijkstra’s, and re-

curse with directed edges. We construct three-layered graphs

weighted by forward distances bewteen A to B and B to C.

The running time analysis is identical.

COROLLARY 3.3. There is an algorithm that, given a

tree decomposition of width at most k of an directed

weighted graph G, computes SOURCERADIUS in time

O(k2n logk−1 n).

It may be surprising that we can even solve MINDIAME-

TER and MINRADIUS efficiently, since they proved difficult

in general graphs:

THEOREM 3.6. There is an algorithm that, given a tree

decomposition of width at most k of an directed weighted

graph G, computes the min-eccentricity of every vertex in

time O(k2n log2k−1 n).

Proof. Again, we modify the proof of Theorem 3.3. We run

forward and backward Dijkstra’s, and recurse with directed

edges. We construct three-layered graphs with twice as

many nodes in the middle layer. One copy will have edges

weighted by forward distances from A to B and B to

C, while the other will have edges weighted by backward

distances from A to B and B to C. Since distance meausres

shortest paths, the furthest distance from any a ∈ A will

be the minimum of forward and backward distances to some

node.

The running time analysis is almost identical, except

invoking Theorem 3.2 now costs O(kn log2k−2 n) time.

Hence we pay an additional O(logk n) everywhere, to get

a running time of O(k2n log2k−1 n).

COROLLARY 3.4. There are algorithms that, given a tree

decomposition of width at most k of an directed weighted

graph G, compute MINDIAMETER and MINRADIUS in time

O(k2n log2k−1 n).

We need to do a little more work to get roundtrip-

eccentricities. Since the paths of interest go through two

portals, we end up with larger middle layers in our three-

layered graph construction.

THEOREM 3.7. There is an algorithm that, given a tree

decomposition of width at most k of an directed weighted

graph G, computes the roundtrip-eccentricity of every vertex

in time O(k2n logk
2−1 n).

Proof. We again modify the proof of Theorem 3.3. Run

forward and backward Dijkstra’s, and recurse with directed

edges. We construct three-layered graphs with k2 nodes in

the middle layer, one per pair of portals. The weights from

A to B will correspond to the sum of distance to the first

portal and distance from the second portal, and weights from

B to C will correspond to the sum of distance from the first

portal and distance from the second portal.

Notice that two-hop paths in the three-layered graph

now actually correspond to roundtrip distances between

nodes in A and nodes in C, since these roundtrips must go

through a portal each way.

The running time analysis is almost identical, except

invoking Theorem 3.2 now costs O(kn logk
2−2 n) time.

Hence we pay an additional O(logk
2−k n) everywhere, to

get a running time of O(k2n logk
2−1 n).

COROLLARY 3.5. There are algorithms that, given a

tree decomposition of width at most k of an directed

weighted graph G, compute ROUNDTRIPDIAMETER and

ROUNDTRIPRADIUS in time O(k2n logk
2−1 n).

4 Conditional lower bounds

In this section we present our lower bound for Roundtrip

Radius under the HS conjecture which is a good illustration

of the constructions used in all our other reductions. All

other lower bounds appear in the full version.

The HSE-Graph. All our reductions from HSE will

start with the following simple representation of the HSE

problem as a “radius-like” graph problem.

Given an instance A, B, U of HSE we create the

following tripartite graph that we call an “HSE-graph” that

we will utilize in our reductions. The vertex set is A∪B∪U
(we overload the notation slightly so that x denotes both a

vertex and the corresponding subset in the original instance).

The edge set E is as follows: for each u ∈ U there is an edge

to x ∈ A ∪ B if u ∈ x. The question becomes, is there a

node a ∈ A such that for all b ∈ B there is a u ∈ U such that

(a, u), (u, b) ∈ E? Preprocess the HSE graph as follows.

Suppose that there are some a, a′ ∈ A such that N(a) ⊆
N(a′) then we can remove a since if a is a hitting set, then

so is a′. Now we can assume that for all a, a′ ∈ A, there are

u, u′ ∈ U such that u ∈ N(a) \N(a′), u′ ∈ N(a′) \N(a).
We will refer to this as the HSE-graph-problem.

LEMMA 4.1. If for some ε > 0, there is an algorithm that

can determine if a given directed, unweighted graph with n
nodes and m = O(n) edges has roundtrip radius 4 or 8 in

O(n2−ε) time, then the Hitting Set Conjecture is false.

Proof. We will start from the HSE-graph G with partitions

A′, B′, U and edge set E. We first build a gadget graph H
from G as follows. H has vertex set A ∪ B ∪ C ∪D where

A is a copy of A′, B is a copy of B′ and C and D are copies

of U . For a ∈ A′, let its copy in A also be a, and for b ∈ B′

let its copy in B also be b. For u ∈ U let its copies in C and

D be uC and uD, respectively.

388 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

03
/2

1/
21

 to
 1

32
.7

6.
61

.5
1.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

If a ∈ A′, u ∈ U , we create a directed 4-cycle

connecting a ∈ A and uC and a directed 4-cycle connecting

a ∈ A and uD as follows. If (a, u) ∈ E, then there is an

edge from a to uC and a path of length 3 directed from uC

to a where the internal nodes of the path are of degree 2 in

H; additionally, there is an edge from uD to a and a path

of length 3 from a to uD. If (a, u) /∈ E, then the roles of

the edges and 3-paths are reversed. That is, there is a 3-path

from a to uC and an edge from uC to a and an edge from

a to uD and a 3-path from uD to a. Call the set of internal

nodes of all the 3-paths, X . Each edge (u, b) with u ∈ U ,

b ∈ B is represented by two directed edges, (uC , b), (b, uD).
Note that any cycle in H has length at least 4 so that any

roundtrip distance within H is also at least 4. Now, given H
as a gadget, create two copies of H , H1 on vertex partitions

(A,B1, C1, D1, X1) and H2 on (A,B2, C2, D2, X2) so that

H1 and H2 are glued at A. Call this graph F and see Figure 1

for an illustration.

First suppose that the HSE-instance G was a “yes”

instance, and there is some a ∈ A such that for all b ∈ B,

there is some u ∈ U with (a, u), (b, u) ∈ E. Then we

will show that a has roundtrip distance at most 4 to all

nodes in F and hence the roundtrip radius is at most 4.

To see this, first note that by construction, a is on a cycle

of length 4 to every node of D1 ∪ C1 ∪ D2 ∪ C2. For

any other node a′ ∈ A, let u, u′ ∈ U be nodes such that

(a, u), (a′, u′) ∈ E, (a, u′), (a′, u) /∈ E (recall such u, u′

exist). Then a → uC1
→ a′ → uD1

→ a is a directed 4-

cycle in F . Finally, for any bi ∈ Bi for i = 1, 2, if u ∈ U
is such that (a, u), (u, b) ∈ G, the following is a directed

4-cycle in F : a → uCi
→ bi → uDi

→ a.

Now suppose that the roundtrip radius of F is < 8 and

we will show that the original graph G must be a “yes”

instance. We first claim that no node of F \ A can be a

center.

Case 1. Suppose that some node uC1
is a center (the

cases uC2
, uD1

, uD2
are symmetric). Then consider the

roundtrip shortest path to uC2
. Either the portion of the path

from uC1
to uC2

, or the one from uC2
to uC1

, must have

length at most 3. Assume, w.l.o.g. that d(uC1
→ uC2

) ≤ 3,

and note that the path must go through A. None of the 3-

paths can be used, since the length would become > 3, which

implies that it must be of the form uC1
→ a → uC2

for some

a → A. However, by construction, if (a, uC2
) ∈ E(F) then

(a, u) ∈ E(G) and (uC1
, a) /∈ E(F). Hence uC1

cannot be

a center.

Case 2. Suppose that some node x in X is the center and

let u be the closest node in C1∪C2∪D1∪D2 to x. Note that

any roundtrip path from x must go through u, which implies

that u can only be a better center than x. But by case 1, u
cannot be the center and therefore neither can x.

Case 3. Now consider any two nodes b1 ∈ B1, b2 ∈ B2.

By construction, d(b1, b2), d(b2, b1) ≥ 4 and hence the

A

C1C2

D1D2

B1
B2

E

¬E

E

¬E

E

E

E

¬E

E

E

E

¬E
H2 H1

Figure 1: The reduction from HSE to Roundtrip Radius.

roundtrip distance is at least 8. Hence no node of B1 ∪ B2

can be a center.

Hence the center of F is some node a ∈ A. Consider

the roundtrip distance from a to any b1 ∈ B1. It is supposed

to be at most 7. Any path from a to b1 that does not go

directly from a to some node of C1 to b1 must have length

at least 4. Similarly, any path from b1 to a that does not go

directly from a to some node of D1 to a must have length

at least 4. Thus, if the roundtrip radius is < 8, one of the

pieces of the roundtrip path (from a to b1 and from b1 to a)

must be of length 2, as otherwise the roundtrip path would

be of length at least 8. Hence there is some u ∈ U for

which (a, u), (u, b) ∈ E and the original graph G is a “yes”

instance of HSE.

To complete the proof, note that our new graph F has

O(n|U |) nodes and O(n|U |) edges. This implies that a

subquadratic algorithm for sparse graphs that distinguished

between roundtrip radius 4 and 8 will solve the HSE problem

in O(n2−ε · |U |2−ε) time, for some ε > 0, which refutes the

HS conjecture.

Finally, we observe that the treewidth (in fact, path-

width) of the graph in our construction is O(|U |) since by

removing all nodes in the C ∪ D parts of the graph we are

left with a disconnected set of paths. Thus, an algorithm that

can compute Radius on treewidth (or pathwidth) k graphs

in 2o(k) · n2−ε can be used to solve the HSE problem where

|U | = ω(log n) in O(n2−ε) time, refuting the HS conjecture.

References

[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska

Williams. Quadratic-time hardness of lcs and other sequence

similarity measures. FOCS, 2015.

[2] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska

Williams. Subcubic equivalences between graph centrality

problems, APSP and diameter. In Proceedings of the Twenty-

Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages

1681–1697, 2015.

389 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

03
/2

1/
21

 to
 1

32
.7

6.
61

.5
1.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Radius Variants

Problem Definition Upper Bound HS Conjecture

UNDIRECTEDRADIUS min
v∗

max
v

d(v∗, v) 3/2 in Õ(m
√
n) [[47]] 3/2 [Thm 1.1]

SOURCERADIUS min
v∗

max
v

d(v∗, v) 2 in Õ(m
√
n logM) [Thm 2.1] 2 [Thm 1.4]

MAXRADIUS min
v∗

max
v

max{d(v∗, v), d(v, v∗)} 2 in Õ(m) [metric] 2

MINRADIUS min
v∗

max
v

min{d(v∗, v), d(v, v∗)} n 2

MINRADIUS on DAGs min
v∗

max
v

min{d(v∗, v), d(v, v∗)} 3 in Õ(m
√
n logM) [Thm 2.3] 2

ROUNDTRIPRADIUS min
v∗

max
v

{d(v∗, v) + d(v, v∗)} 2 in Õ(m) [metric] 2 [Thm 1.5]

Table 1: Our Bounds for Various Radius Problems. Missing proofs are given in the full version.

Diameter Variants

Problem Definition Upper Bound OV Conjecture

UNDIRECTEDDIAMETER max
u,v

d(u, v) 3/2 in Õ(m
√
n) [47] 3/2 [[47]]

MAXDIAMETER max
u,v

d(u → v) 3/2 in Õ(m
√
n) [47] 3/2 [[47]]

MINDIAMETER max
u,v

min{d(u → v), d(v → u)} nε in Õ(mn1−ε) [Lem 2.1] 2 on weighted

MINDIAMETER on DAGs max
u<v

d(u → v) 2 in Õ(m) [Thm 2.2] 3/2

ROUNDTRIPDIAMETER max
u,v

{d(u → v) + d(v → u)} 2 in Õ(m) [metric] 3/2

Table 2: Our Bounds for Various Diameter Problems. Missing proofs are given in the full version.

[3] Amir Abboud, Richard Ryan Williams, and Huacheng Yu.

More applications of the polynomial method to algorithm

design. In Proceedings of the Twenty-Sixth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2015, San

Diego, CA, USA, January 4-6, 2015, pages 218–230, 2015.

[4] Amir Abboud and Virginia Vassilevska Williams. Popular

conjectures imply strong lower bounds for dynamic problems.

In 55th IEEE Annual Symposium on Foundations of Computer

Science, FOCS 2014, Philadelphia, PA, USA, October 18-21,

2014, pages 434–443, 2014.

[5] Amir Abboud, Virginia Vassilevska Williams, and Oren

Weimann. Consequences of faster alignment of sequences.

In ICALP (1), pages 39–51, 2014.

[6] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast

estimation of diameter and shortest paths (without matrix

multiplication). SIAM J. Comput., 28(4):1167–1181, 1999.

[7] N. Alon, R. Yuster, and U. Zwick. Finding and counting given

length cycles. Algorithmica, 17:209–223, 1997.

[8] Arturs Backurs and Piotr Indyk. Edit distance cannot be

computed in strongly subquadratic time (unless SETH is

false). In Proceedings of the Forty-Seventh Annual ACM on

Symposium on Theory of Computing, STOC 2015, Portland,

OR, USA, June 14-17, 2015, pages 51–58, 2015.

[9] Alex Bavelas. Communication patterns in task-oriented

groups. The Journal of the Acoustical Society of America,

pages 725–730, 1950.

[10] Murray A Beauchamp. An improved index of centrality.

Behavioral Science, 10(2):161–163, 1965.

[11] B. Ben-Moshe, B. K. Bhattacharya, Q. Shi, and A. Tamir.

Efficient algorithms for center problems in cactus networks.

Theoretical Computer Science, 378(3):237 – 252, 2007.

[12] P. Berman and S. P. Kasiviswanathan. Faster approximation

of distances in graphs. In Proc. WADS, pages 541–552, 2007.

[13] Hans L Bodlaender. Dynamic programming on graphs with

bounded treewidth. Springer, 1988.

[14] Hans L Bodlaender. Treewidth: characterizations, applica-

tions, and computations. In Graph-theoretic concepts in com-

puter science, pages 1–14. Springer, 2006.

[15] Hans L Bodlaender, Pål Grønås Drange, Markus S Dregi,

Fedor V Fomin, Daniel Lokshtanov, and Michal Pilipczuk.

An o (cˆ kn) 5-approximation algorithm for treewidth. In

Foundations of Computer Science (FOCS), 2013 IEEE 54th

Annual Symposium on, pages 499–508. IEEE, 2013.

[16] Michele Borassi, Pierluigi Crescenzi, and Michel Habib. Into

the square - on the complexity of quadratic-time solvable

problems. CoRR, abs/1407.4972, 2014.

[17] Michele Borassi, Pierluigi Crescenzi, Michel Habib, Wal-

ter A. Kosters, Andrea Marino, and Frank W. Takes. Fast

diameter and radius bfs-based computation in (weakly con-

nected) real-world graphs: With an application to the six de-

grees of separation games. Theoretical Computer Science,

2015. accepted.

[18] Karl Bringmann. Why walking the dog takes time: Frechet

distance has no strongly subquadratic algorithms unless

SETH fails. In 55th IEEE Annual Symposium on Foundations

of Computer Science, FOCS 2014, Philadelphia, PA, USA,

October 18-21, 2014, pages 661–670, 2014.

[19] Karl Bringmann and Marvin Künnemann. Quadratic condi-

tional lower bounds for string problems and dynamic time

warping. FOCS, 2015.

[20] Karl Bringmann and Wolfgang Mulzer. Approximability

of the Discrete Fréchet Distance. In 31st International

390 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

03
/2

1/
21

 to
 1

32
.7

6.
61

.5
1.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Symposium on Computational Geometry (SoCG 2015), pages

739–753, 2015.

[21] Sergio Cabello and Christian Knauer. Algorithms for graphs

of bounded treewidth via orthogonal range searching. Com-

putational Geometry, 42(9):815–824, 2009.

[22] Marco Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan

Mikhailin, Ramamohan Paturi, and Stefan Schneider. Non-

deterministic extensions of the strong exponential time hy-

pothesis and consequences for non-reducibility. Electronic

Colloquium on Computational Complexity (ECCC), 22:148,

2015.

[23] T. M. Chan. All-pairs shortest paths for unweighted undi-

rected graphs in o(mn) time. ACM Transactions on Algo-

rithms, 8(4):34, 2012.

[24] B. Chazelle. A minimum spanning tree algorithm with

inverse-ackermann type complexity. J. ACM, 47(6):1028–

1047, 2000.

[25] S. Chechik, D. Larkin, L. Roditty, G. Schoenebeck, R. E.

Tarjan, and V. Vassilevska Williams. Better approximation

algorithms for the graph diameter. In Proc. SODA, 2014.

[26] V. Chepoi, F. Dragan, and Y. Vaxès. Center and diameter

problems in plane triangulations and quadrangulations. In

Proc. SODA, pages 346–355, 2002.

[27] V. Chepoi and F. F. Dragan. A linear-time algorithm for

finding a central vertex of a chordal graph. In ESA, pages

159–170, 1994.

[28] F. R. K. Chung. Diameters of graphs: Old problems and new

results. Congr. Numer., 60:295–317, 1987.

[29] Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F.

Werneck. Computing classic closeness centrality, at scale.

CoRR, abs/1409.0035, 2014.

[30] D.G. Corneil, F.F. Dragan, M. Habib, and C. Paul. Diameter

determination on restricted graph families. Discr. Appl.

Math., 113:143 – 166, 2001.

[31] L. Cowen and C. Wagner. Compact roundtrip routing for

digraphs. In SODA, pages 885–886, 1999.

[32] Lenore J Cowen and Christopher G Wagner. Compact

roundtrip routing in directed networks. In Proceedings of

the nineteenth annual ACM symposium on Principles of dis-

tributed computing, pages 51–59. ACM, 2000.

[33] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof,

Y. Okamoto, R. Paturi, S. Saurabh, and M. Wahlstrom. On

problems as hard as CNFSAT. In Proc. CCC, pages 74–84,

2012.

[34] Rod G Downey and Michael Ralph Fellows. Parameterized

complexity, volume 3. springer Heidelberg, 1999.

[35] D. Dvir and G. Handler. The absolute center of a network.

Networks, 43:109 – 118, 2004.

[36] D. Eppstein. Subgraph isomorphism in planar graphs and

related problems. J. Graph Algorithms and Applications,

3(3):1–27, 1999.

[37] Jörg Flum and Martin Grohe. Parameterized complexity

theory, volume xiv of texts in theoretical computer science.

an eatcs series, 2006.

[38] Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer.

Networks cannot compute their diameter in sublinear time.

In Proceedings of the twenty-third annual ACM-SIAM sympo-

sium on Discrete Algorithms, pages 1150–1162. SIAM, 2012.

[39] Archontia C. Giannopoulou, George B. Mertzios, and Rolf

Niedermeier. Polynomial fixed-parameter algorithms: A

case study for longest path on interval graphs. CoRR,

abs/1506.01652, 2015.

[40] S.L. Hakimi. Optimum location of switching centers and

absolute centers and medians of a graph. Oper. Res., 12:450

– 459, 1964.

[41] R. Impagliazzo and R. Paturi. On the complexity of k-sat. J.

Comput. Syst. Sci., 62(2):367–375, 2001.

[42] R. Impagliazzo, R. Paturi, and F. Zane. Which problems

have strongly exponential complexity? J. Comput. Syst. Sci.,

63(4):512–530, 2001.

[43] Piotr Indyk. Sublinear time algorithms for metric space

problems. In Proceedings of the thirty-first annual ACM

symposium on Theory of computing, pages 428–434. ACM,

1999.

[44] R. Niedermeier. Invitation to fixed-parameter algorithms.

pages 84–103, 2004.

[45] M. Pǎtraşcu and L. Roditty. Distance oracles beyond the

thorup–zwick bound. In Proc. FOCS, pages 815–823, 2010.

[46] M. Pǎtraşcu and R. Williams. On the possibility of faster SAT

algorithms. In Proc. SODA, pages 1065–1075, 2010.

[47] L. Roditty and V. Vassilevska Williams. Fast approximation

algorithms for the diameter and radius of sparse graphs. In

Proceedings of the 45th annual ACM symposium on Sympo-

sium on theory of computing, STOC ’13, pages 515–524, New

York, NY, USA, 2013. ACM.

[48] Liam Roditty, Mikkel Thorup, and Uri Zwick. Roundtrip

spanners and roundtrip routing in directed graphs. ACM

Transactions on Algorithms, 4(3), 2008.

[49] Liam Roditty and Uri Zwick. On dynamic shortest paths

problems. In ESA, pages 580–591, 2004.

[50] Gert Sabidussi. The centrality index of a graph. Psychome-

trika, 31(4):581–603, 1966.

[51] Barna Saha. Faster language edit distance, connection to all-

pairs shortest paths and related problems. In FOCS, 2015.

[52] Barbaros C Tansel, Richard L Francis, and Timothy J Lowe.

State of the art - location on networks: a survey. part i:

the p-center and p-median problems. Management Science,

29(4):482–497, 1983.

[53] Mikkel Thorup. Quick k-median, k-center, and facility

location for sparse graphs. SIAM Journal on Computing,

34(2):405–432, 2005.

[54] O. Weimann and R. Yuster. Approximating the diameter of

planar graphs in near linear time. In Proc. ICALP, 2013.

[55] R. Williams. A new algorithm for optimal constraint satisfac-

tion and its implications. In Proc. ICALP, pages 1227–1237,

2004.

[56] V. Vassilevska Williams and R. Williams. Subcubic equiva-

lences between path, matrix and triangle problems. In Proc.

FOCS, pages 645–654, 2010.

[57] C. Wulff-Nilsen. Wiener index, diameter, and stretch factor

of a weighted planar graph in subquadratic time. Technical

report, University of Copenhagen, 2008.

[58] Raphael Yuster. Computing the diameter polynomially faster

than apsp. arXiv preprint arXiv:1011.6181, 2010.

391 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

03
/2

1/
21

 to
 1

32
.7

6.
61

.5
1.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

