Dynamic Set Cover: Improved Algorithms and Lower Bounds

Amir Abboud
IBM Almaden Research Center
San Jose, CA, USA
amir.abboud@ibm.com

Debmalya Panigrahi
Duke University
Durham, NC, USA
debmalya@cs.duke.edu

ABSTRACT

We give new upper and lower bounds for the dynamic set cover
problem. First, we give a (1 + ¢) f-approximation for fully dynamic
set cover in O(f? log n/¢%) (amortized) update time, for any € > 0,
where f is the maximum number of sets that an element belongs
to. In the decremental setting, the update time can be improved to
O(f? /&%), while still obtaining an (1+¢) f-approximation. These are
the first algorithms that obtain an approximation factor linear in
f for dynamic set cover, thereby almost matching the best bounds
known in the offline setting and improving upon the previous best
approximation of O(f?) in the dynamic setting.

To complement our upper bounds, we also show that a linear
dependence of the update time on f is necessary unless we can
tolerate much worse approximation factors. Using the recent dis-
tributed PCP-framework, we show that any dynamic set cover
algorithm that has an amortized update time of O(f1~¢) must have
an approximation factor that is Q(n%) for some constant § > 0
under the Strong Exponential Time Hypothesis.

CCS CONCEPTS

« Theory of computation — Online algorithms.

KEYWORDS

dynamic algorithm, randomized algorithm, set cover, competitive
ratio.

ACM Reference Format:

Amir Abboud, Raghavendra Addanki, Fabrizio Grandoni, Debmalya Pani-
grahi, and Barna Saha. 2019. Dynamic Set Cover: Improved Algorithms and
Lower Bounds. In Proceedings of the 51st Annual ACM SIGACT Symposium
on the Theory of Computing (STOC ’19), June 23-26, 2019, Phoenix, AZ, USA.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3313276.3316376

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC 19, June 23-26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6705-9/19/06....$15.00
https://doi.org/10.1145/3313276.3316376

Raghavendra Addanki
University of Massachusetts Amherst
Ambherst, MA, USA
raddanki@cs.umass.edu

Fabrizio Grandoni
IDSIA, USI-SUPSI
Switzerland

fabrizio@idsia.ch

Barna Saha

University of Massachusetts Amherst

114

Ambherst, MA, USA
barna@cs.umass.edu

1 INTRODUCTION

Suppose, we need to solve a combinatorial optimization problem
where the input to the problem changes over time. In such a dy-
namic setting, recomputing the solution from scratch after every
update can be prohibitively time consuming, and it is natural to
seek dynamic algorithms that provide faster updates. In the last
few decades, efficient dynamic algorithms have been discovered for
many combinatorial optimization problems, particularly in graphs
such as shortest paths [4, 17, 19, 28], connectivity [5, 25, 26, 37],
maximal independent set and coloring [7, 11, 34]. For many of
these problems, maintaining exact solutions is prohibitively ex-
pensive under various complexity conjectures [2, 3, 23, 30], and
thus the best approximation bounds are sought. In their seminal
work [33], Onak and Rubinfeld proposed an algorithm for matching
and vertex cover that maintains O(1)-approximate solutions to the
maximum matching and minimum vertex cover in the graph. The
algorithm runs in ¢ - polylog(n) time for any sequence of ¢t edge
insertions and deletions in an n-vertex graph, i.e., in O(polylog(n))
time when amortized over all the updates. This has led to a flurry
of activity in dynamic algorithms for matching and vertex cover
[8-10, 13, 14, 22, 32, 36], and more recently, for the more general
set cover problem [10, 12, 21] that we study in this paper.

In the set cover problem, we are given a universe X of n elements
and a family S of m sets on these elements. The goal is to find a
minimum-cardinality subfamily of sets # € S such that ¥ cov-
ers all the elements of X. The two traditional lines of inquiry for
this problem are via greedy and primal dual algorithms, and have
respectively led to a Inn- and an f-approximation. Here, f is the
maximum number of sets that an element belongs to in the set sys-
tem S. Both these results are known to be tight under appropriate
complexity-theoretic assumptions [18, 29]. In the dynamic setting,
the set system S is fixed, but the set of elements that needs to be
covered in X changes over time. In particular, after the insertion
of a new element, or the deletion of an existing one, the solution
has to be updated to maintain feasibility and the approximation
guarantee. The time taken to perform these updates is called the
update time of the algorithm, and is often stated amortized over
any fixed prefix of updates.

As in the case of the offline problem, dynamic algorithms for
set cover have also followed two lines of inquiry. The first is to
use greedy-like techniques, which were recently shown to yield

https://doi.org/10.1145/3313276.3316376
https://doi.org/10.1145/3313276.3316376

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

an O(log n)-approximation in O(f log n) update time by Gupta, Ku-
mar, Krishnaswamy, and Panigrahi [21]'. The second is to use a
primal-dual framework, which was employed by Bhattacharya,
Henzinger, and Italiano [12] to give an O(f?)-approximation in
O(f log (m + n)) update time. Gupta et al. [21] and Bhattacharya,
Chakrabarty, and Henzinger [10] also obtained a different but in-
comparable result using the primal-dual technique, which improves
the update time to O(f?) thereby removing the dependence on n
and m, but at the cost of a weaker approximation bound of O(f3).
What stands out in these results is that:

e While dynamic and offline approximation factors match at
O(log n), there is no O(f)-approximation known for the dy-
namic setting. Indeed, the only previous algorithm we are
aware of that achieves this bound is one that recomputes the
offline f-approximation after every update.

e The update times of these algorithms depend on logn and
f. While the dependence on logn is not required, at least
if we settle for an O(f3) approximation [10, 21], it is not
clear if the polynomial dependence on f is fundamental.
For instance, might it be possible to design a dynamic set
cover algorithm whose update time only has a logarithmic
dependence on f?

1.1 Our Results

Our first result closes the gap between offline and dynamic ap-
proximation for the set cover problem: for any ¢ > 0, we give
a (1 + ¢)f-approximation algorithm for dynamic set cover
with an update time of O(f?log n/&>). Previous algorithms for
dynamic set cover heavily rely on deterministically maintaining
a greedy-like or primal-dual structure on the set cover solution.
Instead, our algorithm is based on the observation that a simple
offline algorithm for the set cover problem achieves a (1 + ¢)f-
approximation in O(f/¢) expected update time when the elements
are deleted in a random order. We switch this statement around
by transferring the randomness to the algorithm in order to han-
dle an arbitrary sequence of deletions (and insertions). As a result,
our algorithm is randomized, and our update time bound holds in
expectation. (The approximation bound holds deterministically.)

In the decremental setting where elements can only be deleted
but not inserted, a simplification of the above algorithm yields the
same approximation factor of (1 + ¢)f in amortized update
time O(f?/¢>). This can be compared with the result of Gupta et al.
[21] which achieves a (larger) O(f3)-approximation with (roughly)
the same update time, but in the fully dynamic case. As far as we
know, the approximation bounds of [10, 21] do not change when
considering the decremental setting, which has been extensively
studied in the past for other problems [15, 24, 28].?

Finally, we turn to the problem of determining the dependence of
the update time on f. Using the recently introduced framework of
distributed PCP [1] from fine-grained complexity theory, we show
that under the Strong Exponential Time Hypothesis (SETH),

! All update times stated in this paper are amortized, unless stated otherwise.
2For the incremental setting, where elements can be inserted but not deleted, the
offline set cover algorithm itself gives an f-approximation in O(f) update time.

115

A. Abboud, R. Addanki, F. Grandoni, D. Panigrahi and B. Saha

any dynamic set cover algorithm that has an (amortized) up-
date time of O(f17¢) for any fixed ¢ > 0 must have an approx-
imation factor of (n/log f)*(!). Since a polynomial dependence
on n in the approximation factor is rather weak, this result essen-
tially states that any dynamic set cover algorithm must have a linear
dependence on f in the update time>. This shows the update time
bound of [21] to achieve O(log n) approximation is essentially tight
within a log n factor. Our lower bound holds even if the algorithm
is allowed a preprocessing stage with arbitrary polynomial runtime,
and it also applies to the set-updates model where the elements are
fixed but sets get inserted and deleted. This model is much more
popular in the streaming setting [6, 31], especially when there are
only insertions (see the work by Indyk et al. [27] and the many ref-
erences therein). This is a novel application of the growing area of
fine-grained complexity theory to show hardness of approximation
of an NP-Hard problem.

1.2 Our Techniques

A natural starting point for our work is to use the deterministic
greedy or primal dual techniques for dynamic set cover from [10, 12,
21]. An alternative strategy is to generalize previous randomized
approaches for dynamic vertex cover [8, 36]. At a very high level,
all these algorithms derive their results from maintaining, either
explicitly or implicitly, a very structured dual solution that lower
bounds the cost of the algorithm. Indeed, the algorithm of [21]
for dynamic set cover can be thought of as a derandomization of
the dynamic vertex cover algorithm of [36]. In order to improve
the approximation factor to O(f), these dual solutions must only
violate the dual packing constraints by a constant factor (as against
an Q(f) violation in the previous results), but this requirement is
too strict for the analysis framework of these papers that effectively
rely on an f-discretization of the dual space.

Hence, we need a significantly new approach to improve the
approximation factor to O(f). We start with the following folklore
algorithm for offline set cover. Initially, all elements are uncovered
and the algorithm has an empty solution. Pick an arbitrary uncov-
ered element and call it a pivot p. Then, include all sets containing
p in the solution and mark all elements in those sets as covered.
Repeat this process until all elements get covered. This algorithm
runs in O(nf) time and achieves an f-approximation, since no two
pivots share a common set and the algorithm picks at most f sets
for each pivot. We call this the deterministic covering algorithm.

Now, consider a decremental setting where elements are deleted
over time, but in a uniform random order. A small modification to the
deterministic covering algorithm gives a (1+ O(¢)) f-approximation
in O(f /¢) update time in this setting. Initially, we run deterministic
covering to produce a feasible cover. During the deletion phase,
the approximation bound may no longer hold because pivots are
being deleted. To restore the bound, we re-run the deterministic
covering algorithm whenever an e-fraction of the pivots have been
deleted. Since the number of undeleted pivots forms a lower bound

3In our model, the elements and sets are fixed, as well as their membership relations,
and the updates can change which of the elements are “active” in the instance. Thus,
an element insertion can be specified with O(log n) bits, rather than the Q(f) bits
that may be required to list all its membership relations. This makes an Q(f) lower
bound on the update time non-trivial.

Dynamic Set Cover: Improved Algorithms and Lower Bounds

on the optimal solution, it follows that this algorithm maintains an
f/(1—¢) =(1+ O(e)) f-approximation.

Let us now consider the update time. Clearly, deterministic cov-
ering takes O(nf) time in every run. So, the question is: how fre-
quently do we run it? Because of the random deletion order, we
expect to delete an e-fraction of all elements before an e-fraction
of pivots gets deleted. This suggests an informal amortized update
bound of O(nf/(en)) = O(f/¢). It turns out that this informal idea
can be made formal, but we skip the details here since we are going
to use this only for intuitive purposes.

More interesting for us is to transition from a random deletion
order to an adversarial deletion order. The same update rule gives a
(1+¢)f-approximation, but now, the bound on update time may no
longer hold. For instance, if all the pivots are deleted before other
elements, the amortized update time is clearly much higher when
the first e-fraction of pivots gets deleted.

Our main idea, at this juncture, is to transfer the randomization
from the deletion sequence to the algorithm itself. More specifically,
instead of picking a pivot arbitrarily from the uncovered elements
in each step, let us select it uniformly at random. We call this
the random covering algorithm. Our hope is that an (oblivious)
adversary deleting a single element will be able to pick a specific
pivot with probability no higher than 1/n. This would ensure that
in expectation, an ¢-fraction of the elements will have to be deleted
before an e-fraction of pivots is, as in the random deletion scenario.

However, this intuition is not quite correct. While the first pivot
is indeed uniformly distributed over all elements, the subsequent
pivots are not. To see this, consider the following example: suppose
the sets represent edges of a graph containing (n — 2)/f cliques on
f vertices each, and an isolated edge. For a vertex on the isolated
edge to be chosen as the second pivot, it must not be covered
by sets containing the first pivot and should be selected as the
second pivot; the probability for this event is given by: (1 — 2/n) -
(1/(n = f)). Clearly, this probability exceeds 1/n for f > 2. As
a consequence, the expected number of element deletions after
which we need to run random covering might be smaller than
en. To overcome this bottleneck, we employ a more fine-grained
update procedure: instead of running random covering over the
entire undeleted instance, we run it only for a subset of elements. We
maintain sufficient structure in the solution to still claim a (1 + ¢) f-
approximation, while improving the update time to O(f?/¢°) for
the decremental setting, and O(f2 log n/e®) for the fully dynamic
setting where elements can be inserted in addition to deletions.

2 THE DECREMENTAL SET COVER
ALGORITHM

In this section, we give a dynamic set cover algorithm for the

decremental setting. We denote the initial set system by (X, S),

where S = {51, 52, ...,Sm} is a collection of subsets of the ground

set X that contains n elements. The maximum number of subsets

that an element belongs to is denoted f:

= i:x € S;}.
f glggl{l x € Si}

The elements are deleted in a fixed sequence, independent of the ran-
domness of the algorithm, that is represented by X = {x1, x2, . . .

s Xn}.

116

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

2.1 The Algorithm

The description of the algorithm comprises two phases: the initial
phase where the algorithm selects a feasible solution at the outset,
and the update phases where the algorithm changes its solution in
response to the deletion of elements. The feasible solution that the
algorithm maintains dynamically is denoted by ¥ Recall that the
goal is to ensure that the cost of ¥ is at most (1 + ¢) f times that of
an optimal solution for the set of undeleted elements at all times.

Both the initial and the update phases use a common subrou-
tine that we call the random cover subroutine. We describe this
subroutine first.

The Random Cover Subroutine. The random cover subroutine
takes as input a set system (X', S”) and outputs a feasible set cover
solution ¥ for this set system. The algorithm is iterative, where
each iteration starts with a set of uncovered elements Y C X’, adds
a collection of sets F* C S’ to the solution F’, and removes all the
elements covered by the sets in ¥ from the set of the uncovered
elements Y for the next iteration. Initially, all elements in X” are
uncovered, i.e., Y = X’, and the solution ¥” is empty, i.e., F’
It only remains to describe an iteration, or more precisely, the sets
F* added to the solution F” in an iteration. The selection of F*
has three steps. First, the algorithm picks the set in S’ that covers
the maximum number of uncovered elements, breaking ties arbi-
trarily. Let us call this set Z, i.e., Z = arg maxge s/ |S N Y. Next, the
algorithm chooses an element in Z N Y, i.e., an uncovered element
in the chosen set, uniformly at random, and calls this element the
pivot for the current iteration. Let us call this pivotp €y.a.r. ZNY.
Finally, all sets in S’ that contain the pivot are added to the solution,
ie, Ft ={S € 8’ : p € S}. The random cover subroutine ends
when all elements in X’ are covered by the solution ¥’ i.e., Y = 0.
This algorithm can be implemented in O(f|X’|) deterministic time
(details in Section 4).

The above completes the description of the random cover subrou-
tine. However, it will be convenient to introduce some additional
notation for this process that we will use later. Each iteration is char-
acterized by its pivot p. We map the pivot to the set S(p) :=ZNY
from which it is chosen. If [S(p)| € [2, 2i*1), we say that p is a
level-i pivot, and denote £(p) = i. Note that by the definition of
the random cover subroutine, the pivots chosen in successive iter-
ations have monotonically non-increasing levels, i.e., if pivot p is
chosen in an earlier iteration and pivot p’ in a later iteration, then
£(p) > €(p’). Finally, if the sets ¥ are added to the solution ¥’ in
an iteration with pivot p, then we denote F(p) = F . The set of
previously uncovered elements that are covered by ¥ (p) is denoted

X().

Initial Phase. In the initial phase, the random cover subroutine
is run on the the entire input set system (X, S). This produces the
initial solution ¥ .

In the algorithm, we also maintain sets P, D, and U that respec-
tively represent all, deleted, and undeleted pivots. At the end of the
initial phase, all the pivots in F are added to P and U, and D is
empty. When an element e is deleted, if e is in P, then we move
e from U to D, i.e., change its status from undeleted to deleted.
Importantly, we keep this element in P. Changes to P are done only
at the end of an update phase that we describe below.

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

Update Phase. An update phase is triggered when the number of
deleted pivots exceeds an e-fraction of the total number of pivots,
ie., |[D| > ¢ - |P|. In an update phase, the algorithm first fixes a
level € using a process that we describe later called the level fixing
process. Having fixed this level £, the algorithm discards all sets 7 (p)
from F that were added by pivots p at levels ¢ or lower, i.e., where
{(p) < ¢. Correspondingly, these pivots p are also removed from P
and from either D or U depending on whether they are deleted or
undeleted. As a result of this change to ¥, some elements become
uncovered in ¥ this set is denoted by X’. The algorithm now runs
the Random Cover subroutine on the instance (X’,S’) induced by
X', where 8" = {SNX’:S € 8,SNX’" # 0}. The resulting sets ¥’
are added to the overall solution ¥. Correspondingly, the newly
selected pivots are also added to P and U. We say that levels £ and
below have been updated in the current update phase. (Note that
the newly selected pivots will be at level ¢ or below.) Clearly, this
restores feasibility of the solution . We already argued that the
call to the Random Cover subroutine can be performed in O(f|X’|)
deterministic time. The same upper bound holds for the remaining
operations related to the construction of the instance (X’, S’) and
to the update of the approximate solution (see Section 4 for the
details).

The level fixing process. We now describe the level fixing process.
Let {0,1,...,L = |log, n|} be the set of levels. Let Pj, Dj, and Uj;
respectively denote the current total set of pivots, deleted pivots,
and undeleted pivots at a given level j. This process finds a level
¢ with the following property: for every level i < ¢, Zf: ;IDj| =
£ Zfz ; IPj|. In other words, the fraction of deleted pivots in levels
i,i+1,...,{is at least an e-fraction of the total number of pivots in
these levels. We say that level ¢ is critical. The next lemma claims
that at least one critical level exists whenever the number of deleted
pivots is an e-fraction of the total number of pivots.

LEMMA 1. Iijfzo |Dj| > ¢ - 2]17:0 |P;j|, then there exists at least
one critical level.
Proof. Suppose Zfzo |Dj| > & - Zf“:o |Pj|. Assume by contradiction
that the claim is not true. Hence for each level ¢, there exists a level
FAIL({) < ¢ (in case of ties, take the lowest such level) such that the
condition does not hold, namely Zj:mu(0 |Dj| < e- Zf:mu(0 |P;].
We next define a sequence of levels {1, . . ., {4 as follows. Set {1 = L.
Given ¢;, halt if FATL(¢;) = 0, else set £;+1 = FAIL({;)—1 and continue
with £;11. Observe that the intervals [FAIL({;), ¢;] are disjoint and
span [0, L]. We have

L q li q li L
DUDil=3" Y Djl<Ye DL IBl=e-) 1Pl
Jj=0 i=1 j=ra1L({;) i=1 j=raIL({;) Jj=0

This contradicts the assumption. O
The next lemma, shown in Section 4, establishes the time com-
plexity of the above algorithm.

LEMMA 2. Suppose we perform an update at critical level . Let p;
be the total number of pivots at levels i < { right before this update.
Then, the total time taken for this update phase is O(Y;<¢ f2pi2").

2.2 Analysis of the Competitive Ratio

i ; ; ; f
LEmMA 3. The competitive ratio of the algorithm is at most §EnE

117

A. Abboud, R. Addanki, F. Grandoni, D. Panigrahi and B. Saha

Proof. Consider the data structure right before the ¢-th deletion. Let
P! be the total set of pivots and U’ the set of undeleted pivots at
that time. We also let OPT? and F? be the optimal and approximate
solution at that time.

Observe that |F?| < f - |P?| by construction. We claim that
|OPT?| > |U*|. This implies the claim since by construction |P?| <
|Ut|/(1 - &) at any time.

To see that, let us show by a simple induction that, for any two
distinct p,p’ € U?, there is no set S € F covering both p and p’.
Thus OPT? needs to include a distinct set for each element of U?.
The Random Cover subroutine applied to X’ never selects a pivot
p’ that is covered by sets selected due to a previous pivot p. This
implies that the property holds after the initialization step, where
X' =X.

Assume the property holds up to step ¢ > 1, and suppose that at
step ¢ + 1 an update happens at critical level ¢, involving elements
X’. By inductive hypothesis and the properties of Random Cover,
the claim holds for any pair of pivots p, p’ that are both contained
in X’ or in its complement X \ X’. Furthermore by construction X’
is disjoint from any set S that covers a pivot p € X \ X’, hence S
cannot cover any pivot p’ € X’. O

2.3 Analysis of the Amortized Update Time

Our goal is to show that, after ¢ deletions, the expected time taken
2

by the algorithm is O (fn+ % . t). In particular, over a sequence

fz

of n deletions, the expected amortized cost per deletion is O (? .

Suppose we perform an update at critical level £. Let P; be the
total set of pivots at level i < £ right before this update, of which
D; denotes the set of deleted pivots. Let also p; = |P;| and d; = |D;|.
Recall that by Lemma 2, the total time taken for this update phase
is O(T;<¢ f2pi2'). We call a level i < € charged if d; > £pi and
uncharged otherwise. We denote by £ = ({4,€g-1,...,{1) the
decreasingly ordered sequence of charged levels j < ¢. Observe
that, by the definition of critical level, tg =L Also let D be the
set of deleted pivots in the charged levels. The following lemma
creates a useful mapping between D and P := U;<,P;.

LEMMA 4. There exists a b-matching M between D and P such
that:

o Each element of P is matched to exactly one element of D and
each element of D to at most b = 2/¢ elements of P;
e Ifd € D is matched top € P, then {(d) > €(p).

Proof. Let us define ¢y = 0. For every k = 1,.. ., g, by definition

Cr—1 e -1
$ st S <1>
j=Cr-_1+1 j=Cr-1+1
— b . _
Let us define ng = Uj=é’k-1+1P]' Therefore, foreveryh =1,...,q,
we have
q l q (-1
Qo=), =),) 4
k=h j=Cp_1+1 k=h j=Cp_1+1
£ critical £ 9 el
S w3 S
Jj=Cp_1+1 k=h j=Cr_1+1

Dynamic Set Cover: Improved Algorithms and Lower Bounds

) l Cr—1 . V4 . q
IO ~--z R I
J=th1+1 k=h j=Cr_1+1 2 =Ch_1+1 2 k=h

@

Let us replace each pivot d € Dj, j € L, with 2/ copies, and let
us call the new set D]'.. Each copy of a pivot inherits the level of
the original element. Let us sort D’ := Uj¢ LD]’. in non-increasing
order of level (breaking ties arbitrarily), and similarly sort P. Now,
for every element p € P according to this order, we match p with
the first unmatched element d’ € D’. The b-matching is obtained
by collapsing the copies in D" of the same pivot in D. Observe that
this allows us to match all elements of P since

q q
|D'|=2|D|=E§d § [Pe | = |P|
c e Ck Ck :

=1 k=1

It remains to show that the condition on the levels is satisfied.
Suppose there exists some d’ € D’ matched to p € P with £;,_; =
£(d’) < {(p). By construction this implies that

2 q q 9
DN AR A
k=h k=h k=h

which contradicts (2). O

Consider a sequence of t deletions, and let T be time right before
the (¢ + 1)-st deletion occurs (or the end of the execution if no
such deletion exists). We wish to bound the expected total update
time till time T as a multiple of t. To that aim, we need a more
global notation. Suppose that level i is updated g; times in total,

(@) with b =1
>

mlm
[\le'n

and let P{ be the total set of pivots in the j-th such update. We use
P(i) to denote the multiset of pivots given by the union of the sets
PIJ., and define p(i) := |P(i)|. The pivots of type P; where level i is
charged on the j-th update are called charged and denoted CH(i),
ch(i) := |CH(i)|. The charged deleted pivots at level i are denoted
by D(i), d(i) := |D(i)|.

We call level i globally-charged iff ch(i) > §p(i), and globally-
uncharged otherwise. We also let GC denote the (random) set of
globally-charged levels. We next show that, in order to bound the
total update time, we can focus on globally-charged levels only.

LEMMA 5. The expected running time of the algorithm is O(fn) +
2 .
(zL Pr[i € GC] - [f?zld(i) ‘ ie GC])

Proof. Excluding the initialization cost of O(fn) and by Lemma 2,
we can focus on bounding O(Y; f2p(i)2!). We use the following
token argument to upper bound the latter cost. We provide f22}
tokens to each pivot p € P(i), where each token can pay for a large
enough constant amount of work. Then we transfer these tokens to
charged deleted pivots in globally-charged levels so that all tokens
are transferred and each charged deleted pivot at level i is charged
¢ 450

with at mos tokens.

We next descrlbe the transfer process. Let M denote the b-matchings

in Lemma 4. In particular, each pivot p € P(i) is matched with some
charged deleted pivot M(p) at no lower level, and each charged
deleted pivot is matched with at most 2/¢ pivots. We remark that
uncharged pivots p have their M(p) at a strictly higher level by
construction. First of all, each pivot p € P(i) transfers its tokens
to the corresponding charged deleted pivot according to M. Note

118

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

that at this point each charged deleted pivot at level i owns at most
% 2 tokens.

Next we proceed in increasing order of level i. For a given level
i, each charged deleted pivot d € D(i) owns the tokens originally
owned by d and possibly tokens transferred from lower levels. If
i € GC we do nothing. Otherwise (ie., i ¢ GC), we define a b-
matching M’ where each charged deleted pivot d € D(i) is matched
with % distinct uncharged pivots in P(i) so that no uncharged pivot
in P(i) is matched twice. Note that this is possible since, by definition
of globally-uncharged level, the uncharged pivots in P(i) are at least

pli) = ch() = (1= %) pl) = (1-2) ‘;‘ch(i) > %ch(i),

where we assumed ¢ < 2 w.lo.g. Now d transfers an §-fraction
of its tokens to each corresponding pivot in M(d). Finally each
matched uncharged pivot p € P(i) transfers the received tokens to
the corresponding deleted pivot M(p) in the global b-matching M.
Observe that M(p) must be at strictly higher level than p, hence the
process is well-defined.

Clearly at the end of the process all the tokens are transferred
to charged deleted pivots in globally-charged levels and no token
is left. We next prove by induction that, at the end of iteration i
(where level i is considered), the number of tokens charged to each
d € D(i) is at most %fZZi. The claim follows.

The base of the induction i = 0 is trivially true. Indeed, if i ¢ GC
all the tokens of d are transferred to higher levels. Otherwise d can
only be charged with the starting number of tokens, which is at

most f since there are no lower levels that can transfer tokens to
level i. Note that the number of tokens that d is charged with does
not change in the rest of the token transfer process.

Next consider a level i > 0, and assume the claim is true for levels
i — 1 and lower. For any d € D(i), again the claim holds trivially if
i ¢ GC. Otherwise, d initially has up to g? tokens. Furthermore,
d can receive extra tokens from up to % pivots p of strictly lower
levels. Each such p at level £ < i — 1 transfers to d an §-fraction of
the tokens of some charged deleted pivot of level £. By the inductive
hypothesis, the total number of tokens received by d at the end of
iteration i is at most

fzzl fzzl

Again, the number of tokens that d is charged with does not change
in the rest of the token transfer process. O

Based on the above lemma, what remains to show is a bound
for E [Zid(i) I i€ GC]. We bound this in terms of E [¢(i) | i € GC],
where t(i) is the (random) number of deletions that happen at level i.
Instead of considering ¢(i) directly, we rather focus on the following
quantity. For a pivot p(S) sampled from some set S (considering only
the uncovered elements at that time), let i(S) be the relative position
of p(S) in S w.r.t. the deletion order. We remark that i(S) is uniformly
distributed in {1, .. ., |S|}. Define x(i) := X.5.5(5)eD(i) i(S)- Notice
that deterministically x(i) < ¢(i) since all the elements that appear
in a set S no later than the respective pivot p(S) in the deletion
order are deleted assuming p(S) is deleted.

Let us also condition on p(i) = p for some fixed value p, and
consider E [x(i) | i € GC, p(i) = p]. We now relate this quantity to
another random process. Suppose there is an adversary that defines

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

a collection of exactly p sets S (possibly with repetition), where
each set S € S hassize |S| € [2¢,2/*1), and a deletion sequence over
the elements of the sets. Now we sample a pivot p(S) uniformly at
random in each set S € S, and let i(S) be the relative position of
the pivot p(S) in S w.r.t. the deletion sequence. The adversary is
informed about the values i(S). The adversary chooses a subcollec-
tion 8’ C 8 of size at least %p, and computes Xp(i) = Yses i(S).
The adversary makes these choices in order to minimize E [J?p(i)].

Lemma 6. E [%5(i)] < E[x(i) | i € GC,p(i) = p].

Proof. We use a coupling argument. Intuitively, the adversary can
mimic the behavior of any execution of our decremental algorithm.
In more detail, consider any execution of the decremental algorithm
such that i € GC and p(i) = p. We couple the behavior of the
adversary with this execution as follows. The adversary selects the
same deletion order as in the input, and as collection S precisely
the sets that appear at level i right before each update phase that
involves that level (hence |S| = p). By coupling, we can assume
that the sampled pivots in S are precisely the pivots P(i) of level
i in the execution of the algorithm. The collection S’ is given by
the sets S € S such that the corresponding pivots are deleted and
charged in the considered execution of the algorithm. Observe that

d(i) = §ch(i) = %p(i) = %p, hence the constraint |S’| > %:p
is satisfied. One has %,(i) = x(i) deterministically in the above
construction, hence E [fcp(i)] = E [x(i)]. The claim follows since
the adversary makes the optimal choices in order to minimize

E [%,(1)]. O
Lemma 7. E [%5(i)] > #;42"17.
Proof. Consider the collection S of p sets and the deletion order
chosen by the adversary. Once the p pivots P(i) are fixed, the best
strategy for the adversary is to choose the sub-collection S’ of
precisely %2 p sets S with smallest i(S) (breaking ties arbitrarily). It
remains to bound the expected value of X, (i) = Yscs i(s).
We say that a set S € S is bad if i(S) < %Zi and good otherwise.
We let b(i) and ¢(i) be the number of bad and good sets, respectively.
Observe that each set is bad independently with probability at most

82

%5, hence E [b(i)] < g—;p. By Markov’s inequality,

<

& 1
P i) > — -.
r [b(l) > Pl =3

Given the event & = {b(i) < %p}, one has that at least one half of

2
the &-p selected sets are good, in which case deterministically

e g2 4
Xp(i) > —p- —2' = —=2'p.
%)= 6p- 5 512° 7
We can conclude that
1 &
E[5()] 2 Pr[&] E[%() | €] = 5 - S%zlp.

Finally, we put the above lemmas together to obtain the desired
bound.

LEmMMA 8. The expected running time of the algorithm in the decre-

2
mental case is O (fn + % . t), where t is the number of deletions.

119

A. Abboud, R. Addanki, F. Grandoni, D. Panigrahi and B. Saha

Proof. Let us consider a given level i. One has

E[t(i) | i € GC,p(i) = p] 2 E[x(i) | i € GC,p(i) = p]

Lem. 6

> E[xi()] >

]Lem.7 g4 2i
1022 "

Hence

E[t(i) |i € GCl = Y Prlp(i) =p | i € GCJE[t(i) | i € GC.p(i) = p]
P

4 4

(3) ¢ . Px .
> 1) =] Rn— 1 = — L,]]
S ;Pr[p(z) plieGel o 2ip= 12 Elp(i) | i € GC]
L E[d(i) | i € GC] ()
1024 ’
Now, we note that
L f2]
ZPr [i € GC]- L-2'E[d(i) | i € GC]
i=0 €
@& f? ;1024
< ZPr[z € Gl T—2' T E[1(i) | i € GC
i=0
L 2 2
1024 1024
< ZO E—SfE [£()] = €—Sft.
=
The lemma now follows from Lemma 5. O

We summarize the results in the following theorem.

2
THEOREM 1. Givenane > 0, letA = f—5 There exists a decremental
algorithm for set cover that achieves an f(1 + €) approximation and
takes O(A - t) time in expectation over t updates.

3 THE FULLY DYNAMIC SET COVER
ALGORITHM

In this section, we extend the algorithm for the decremental case to
the fully dynamic case. At any time ¢, let A C X denote the elements
that need to be covered; we call these the active elements. Our goal
is to maintain a feasible set cover 7 for the active elements A and
ensure that the cost of ¥ is at most (1+¢€) f times that of an optimal
solution. At the beginning, A = 0 and ¥ = 0. Elements are then
inserted or deleted from A in a fixed sequence, independent of the
randomness of the algorithm. If an element is inserted and then
gets deleted and reinserted, we treat the two insertions separately
as two copies of the same element.

3.1 The Algorithm

We now describe the update phases where the algorithm changes
its solution in response to the insertions and deletions of elements.
The update phases are very similar to the decremental algorithm,
but with a few critical changes. To describe the changes, we need
to introduce some additional notation. Just like the decremental
algorithm, the fully dynamic algorithm maintains a set of pivots P,
and at any time, the solution ¥ can be completely specified by P
as follows: ¥ = {S | S 2 p}. S(p) denotes the set of elements from
which a pivot p € P is chosen and X(p) denotes the set of elements
pis accounted to cover at any point of time. If |S(p)| € [2¢, 2!+1), we
say that pivot p is a level-i pivot, and denote £(p) = i. We call the sets

Dynamic Set Cover: Improved Algorithms and Lower Bounds

{S | S > p,L(p) = i} level-i sets. In addition, we partition X(p) into
two subsets Orig(p) and Extra(p), thatis X(p) = Orig(p)UExtra(p)
and Orig(p) N Extra(p) = 0. An element e € Orig(p) is called an
original element and an element e € Extra(p) is called an extra
element. Orig(p) consists of all elements that p is accounted to
cover at the time when p was chosen to be a pivotand ¥+ = {S €
S’ : p € S} sets are included in the solution. Thus, S(p) C Orig(p).
It is possible that p is accounted to cover more elements due to later
updates. Those elements are added to Extra(p). Along with P, the
algorithm also maintains sets D and U of deleted and undeleted
pivots respectively, just like in the decremental algorithm. When
an element e € P is deleted, we move e from U to D but keep this
element in P. Changes to P are done only during an update phase
which we describe below.

Insertion of a new active element. Supppose a new element e is
inserted in the set of active elements A. If {S | S 3 e} N F # 0, then
e is already covered by the current solution ¥ . In this case, let S
be the set containing e at the highest level breaking ties arbitrarily.
If p € PN S denotes the pivot in S, then we insert e in Extra(p)
and X(p), and F remains unchanged. Otherwise, e is not covered
by the current solution 7. In this case, we include e as a level-
0 pivot and set S(e) = {e}, X(e) = Orig(e) = {e}. We update
F =F U{S|S > e}. We also update the sets P and U to include e.

Deletion of an existing active element. When an element e is
deleted from the set of active elements A, we mark e as deleted
from the sets {S | S 3 e} N F.If e € P, we move e from U to D. By
doing so, if |D| > € - |P|, then we say that an update phase has been
triggered, and perform the following additional steps.

Update Phase. First, we fix a critical level ¢ using the level fixing
process of the decremental algorithm. Having fixed this level £, we
discard all sets ¥ (p) from ¥ that were added by pivots p at levels ¢
or lower, i.e., where £(p) < ¢. Correspondingly, these pivots p are
also removed from P and from either D or U depending on whether
they are deleted or undeleted. As a result, a set of active elements
become uncovered in ¥; this set is denoted X’.

Next, the update phase has two steps, a movement step and a
covering step, to cover the elements in X’.
Movement step: For each element e € X’, we check if there is a
set S € ¥ containing e at a level £’ > €. If yes, we select a set S > e
at the highest level (breaking ties arbitrarily). If p = PN S, then e is
added to Extra(p) and X(p).
Covering step: Let Y’ C X’ denote the elements left uncovered
after the movement step. We now run the Random Cover subroutine
on the instance (Y”, 8’) induced by Y’ and add the resulting sets ¥’
to the overall solution ¥. We say that levels ¢ and below have been
updated in the current update phase. The newly selected pivots
are added to P and U. For every newly chosen pivot p € Y/ N P,
if S(p) € [2¢,21*1), then pivot p is a level-i pivot and we include
{S | S > p} at level i. Note that it is possible that i > ¢ due to
newly inserted elements. Also note that all the elements of Y’ now
become original elements after the covering step.

The next lemma, shown in Section 4, establishes the time taken
to implement the above algorithm.

LEMMA 9. The above algorithm for the insertion of a new element,
or the deletion of an existing element that does not trigger an update

120

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

phase, takes O(f) time. The time complexity of an update phase is
O(fIX"]).

3.2 Analysis of the Competitive Ratio
LEMMA 10. The competitive ratio of the algorithm is at most (lj_f_g)

Proof. Consider the data structure right before the ¢-th update. Let
P! be the set of pivots at that time, with Ut being the subset of
undeleted pivots. We also let OPT? and F* be the optimal and
approximate solution at that time.

Observe that |F!| < f - |P!| by construction. We claim that
|OPT?| > |U?|. This implies the claim since by construction |P?| <
|U?|/(1 -) at any time.

To see that, let us show by a simple induction that, for any two
distinct p,p’ € U?, there is no set S € F covering both p and p’.
Thus OPT? needs to include a distinct set for each element of U?.
Since we start with an empty set cover, the property holds at the
outset. Assume the property holds up to step t > 1, and consider
step t + 1. If an element e is inserted at time ¢ + 1, then e becomes a
pivot if and only if e is not covered by any existing set in . Hence,
the property holds. If a non-pivot element e is deleted at t + 1, or
e is a pivot but its deletion does not trigger an update phase, then
since we do not change the solution 7, the property holds by the
inductive hypothesis.

Now, assume e is a pivot and its deletion triggers an update
phase at critical level ¢/, with the elements covered at levels i < ¢
being denoted by X’. Note that we select a set of new pivots from
Y’ € X’ and let ¥ denote the new sets that are added after the
update phase. We consider three cases. if p,p’ € ¥, then they do
not belong to the same set by the inductive hypothesis. If p, p’ € 7,
then they do not belong to the same set since the Random Cover
subroutine picked both these elements as pivots. Finally, if p € F
and p’ € ¥/, then the movement step ensures that p’ is not covered
by ¥ whereas all sets containing p are in ¥ . Therefore, p and p’
do not belong to the same set in this case either. Therefore, the
property holds after the (¢ + 1)-st update. O

3.3 Analysis of the Amortized Update Time

Consider a sequence of t updates, and let T be the time right before
the (¢ + 1)-st update occurs (or the end of the execution if no such
update occurs). Our goal is to bound the expected update time till
TasO (t . @) We recall some definitions from Section 2 and
introduce some new notation for the purpose of the analysis.
Old notation. Recall the definition of the critical level £ and Lemma 4.
Note that when performing an update at a critical level ¢, a level
i < lis said to be charged if d; > §p; and uncharged otherwise.
Suppose that level i is updated g; times in total, and let P{ be
the total set of pivots in the j-th such update. P(i) is the multiset
of pivots obtained by taking union over Pl] and p(i) = |P(i)|. The

pivots of type P{ where level i is charged on the j-th update are
called charged and denoted CH(i), ch(i) = |CH(i)|. The charged
deleted pivots at level i are denoted D(i), d(i) = |D(i)|. Let I be the
total number of insertions up to time T.

Recall that a level i is globally-charged iff ch(i) > £p(i), and
globally-uncharged otherwise. Let GC denote the random set of
globally-charged levels.

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

New notation. Let us now define a new mapping R that maps an
element e (on which an update phase operates) either to a charged
deleted pivot or to an insertion. To construct this mapping, if an
element e takes part in g, update phases, including both the move-
ment and the covering steps, then each of these occurrences is
treated separately.

An element e € Orig(p) is mapped to a charged deleted pivot d,
ie., R(e) = d, if M(p) = d. Now consider an element e € Extra(p).
If e has never been an original element, then it must have been
inserted as an extra element and has taken part only in movement
steps since then. This is because whenever a covering step processes
an element, it becomes an original element. In this case, we map e
to its insertion, denoted e; and set R(e) = ej. Otherwise, consider
the last update phase, when e was an original element just before
the update and became an extra element immediately after it. If
e € Orig(p’) and M(p’) = d’ during that phase, then set R(e) = d’.

Note that all g occurrences of e are mapped by R to either to
the insertion e or to charged deleted pivots. If R(e) = e, we say
insertion ey is responsible for e and if R(e) = d, we say the charged
deleted pivot d is responsible for e. Note that a charged deleted
pivot d is responsible for an element e if an only if e € Orig(p) for
some pivot p and M(p) = d.

Let us use L = [log, n] to denote the largest level and X to
denote the multiset of elements obtained by taking the union of
Orig(p) and Extra(p) over all p € P.

LEMMA 11. Each charged deleted pivot d € D(i) is responsible for
at most (2/€) - f - 2771 - (L + 1) elements of X.
Proof. Consider a deleted pivot d € D(i) and let Py = {p | M(p) =
d} be the set of pivots mapped to d. Consider any pivot p € Py.
Note that, d is only responsible for the elements in Orig(p) and that
{(p) < £(d) = i. By definition of £(p), each set containing p covers
less than 2{(P)*! new elements at the time p was selected to be a
pivot. Hence |Orig(p)| < f - 2(®)*1 < £ . 21*1 Now let us count
the number of times d was held responsible for e € Orig(p). The
element e was an original element just before the update phase that
operates on d. If e gets processed during that phase by the covering
step, then d was responsible for e only once. Otherwise, e gets
processed by the movement step during that phase and becomes
an extra element. If e is processed r times by the movement step
before becoming an original element again, then d is responsible
r + 1 times for e. However, the level of e strictly increases after each
movement step. Therefore, r < L. Thus, d can be responsible for
e at most L + 1 times. This holds for all p € P;. Now, the claim
follows noting |Py| < 2/ by Lemma 4. O

LEMMA 12. Each insertion ey € I is responsible for at most L + 1
elements of X.
Proof. An insertion e is only responsible for the element e. If e
takes part in r movement steps before becoming an original element
for the first time, then ey is responsible r + 1 times for e. Since the
level of e strictly increases after each movement step, we have r < L.
Thus, the claim follows. O

We now have an analog of Lemma 5.

LEMMA 13. The expected running time of the algorithm after t
updates is

O(f-|I|~(L+1)+ZiL:0Pr

[i € GC]-E];-Zi-d(i)-(L+1)|ieGC])

121

A. Abboud, R. Addanki, F. Grandoni, D. Panigrahi and B. Saha

Proof. From Lemma 9, the total update time up to time T is O(f -
(/1] + |X])). Now from Lemma 11 and Lemma 12,

f-(+1X]) = f- (L+1)-|I|+(2/6)'f-(L+1)-Zd(i)-Zi+1 -

We can give each charged deleted pivot % - f-(L+1)-2" tokens and
then follow the token transfer process of Lemma 5 so that all these
tokens are transferred to charged deleted pivots in the globally
charged levels. Moreover, each charged deleted pivot in a globally
charged level contains at most % - f-(L+1)- 2! tokens. The lemma
now follows. O

Let t(i) denote the (random) number of deletions at level i up
to time T, and let ¢’ = }}; #(i). Then t’ < t. Exactly as in the

decremental case, we can now use Lemmas 6, 7, and 8 to bound

L
ZPr[i € GC]-E [fzzid(i)(L+ N]iecc| < %?fzt(L+ 1).
i=0

®)
LEMMA 14. The expected running time of the algorithm in the fully

£

2
dynamic case is O (% . t), where t is the number of updates.

Proof. This follows from Lemmas 8 and 13, and Eq. (5), noting that
t’ < t,|I| <t and L = O(log n). O
We summarize the results in the following theorem.

THEOREM 2. Given an¢e > 0, let A = . There exists a
fully-dynamic algorithm for set cover that achieves an f(1 + €) ap-

proximation and takes O(A - t) time in expectation over t updates.

filogn
5

4 IMPLEMENTATION DETAILS AND
RUNNING TIME

In this section, we give implementation details of the algorithms,
leading to the proofs of Lemma 2 (decremental) and Lemma 9 (fully
dynamic).

4.1 Decremental Algorithm

We assume that any given set cover instance (X’, S’), with maxi-
mum frequency f is represented as follows. Elements (resp., sets)
are labelled 1 to n” = |X’| (resp., m’ = |S’|). W.Lo.g. we can assume
that each set covers at least one element of X’, so that m” < f - n’.
We have a vector SET indexed by elements, where SET e] is the list
of sets S’(e) containing e. Observe that SET[e] contains at most f
entries. We assume that sets are described by a vector ELEM in-
dexed by sets, where ELEM(S] is a list of elements contained in set
S. We keep a pointer from each e € ELEM[S] to the corresponding
entry S in SET[e] and vice-versa.

In order to implement deletions, we proceed as follows. We main-
tain a Boolean vector DEL indexed by e € X’, which is initialized
to false. When element e is deleted, we set DEL[e] = true. Further-
more, we scan SET|e], and for each S € SET[e] we remove e from
ELEM][S]. Note that this can be done in O(1) time for each set S
using the pointers mentioned above, i.e., in time O(f) per element
e. This also implies that deleting all the elements one by one takes
O(f|X’|) time in total.

The Random Cover Subroutine. The Random Cover procedure
computes a sequence of pivots P’. Furthermore, for each pivot

Dynamic Set Cover: Improved Algorithms and Lower Bounds

p € P, it computes a collection F(p) of sets that are added to the
solution because of p, and the corresponding set X(p) of newly
covered elements. This takes O(f + |X(p)|) time for a given pivot p.

It remains to specify how we efficiently extract a set S of maxi-
mum cardinality at each step to select a pivot. We maintain a list
SORT whose entries are pairs (i, L;), where i is the cardinality of
a set and L; is the list of sets of cardinality i. We store all such
entries with L; not empty, in decreasing order of i. This list can be
initialized in linear time O(f|X’|) (say, using radix sort). We also
maintain pointers from each set S to the corresponding entry in
the list L|5|.

The first element of the first list L; is the selected set S at each
step. Then we update SORT as follows. Each time we remove an
element e from some set S’ of cardinality i, we remove S’ from
L; and add it to L;_1. Note that this might involve creating a new
entry (i —1,L;—1) in SORT (if S becomes the only set of cardinality
i — 1), or deleting the entry (i, L;) from SORT (if S was the only set
of cardinality i). In any case, these operations can be performed in
O(1) time. It follows that the entire procedure can be implemented
in time O(f - |X’]) time.

The Set Cover Solution. We store and maintain the approximate
solution as follows. We maintain the set cover instance under dele-
tions as described before. Furthermore, we maintain vectors # and
X. For a pivot p, 7 (p) is the corresponding list of selected sets be-
cause of p, and X (p) is the associated list of newly covered elements
due to these selected sets. These two lists are empty if p is not a
pivot.

Level selection. We maintain counters D and P labelled by levels
i=0,...,[log,n], where D[i] (resp., P[i]) is the number of deleted
pivots (resp., all pivots) at level i. When we delete a pivot at level
i, we increment D[i]. When we update at critical level ¢, we set
D[i] = P[i] = 0 for all i < ¢£. Furthermore we increment P[i] for
each newly computed pivot of level i. Clearly these operations have
amortized cost O(1) per update. We similarly maintain the total
number D and P of deleted pivots and all pivots, respectively. By
comparing D and P at each deletion, we can check whether the
condition for the update of a suffix is satisfied. In that case, using D
and P, it is easy to compute in O(£?) time the lowest critical level £.
Update Phase. We next describe how, given a critical level £, we
update the approximate solution. We keep a list GREEDY whose
entries are pairs (j, Pj). Here j is a level and P; is the list of pivots of
that level. We keep such entries only for non-empty Pj, in increasing
order of j.

Given a critical level £, we scan the list GREEDY and compute
P’ := Uj<¢Pj together with X’ := Uy p X(p) (represented as lists).
We remove all the corresponding entries from GREEDY, and reset
the corresponding values of £(p), S(p), F (p), and X(p).

Let us show how to build the data structures for the subinstance
(X',8), withS’ = {SNX":S € SandSN X" # 0}, in time
O(fIX’|). Let n’ = |X’| and m’ = |F’'| < fn’. By scanning the
entries of SET corresponding to X', we build the list of indexes S’.
We now map X’ into a set of new indexes in [1, O(n’)] by means
of a perfect hash function, and similarly map ¥ into a set of new
indexes in [1, O(m’)]. These perfect hash functions can be built in
expected linear time using well-known constructions (say, 2-level
hashing [20]). Observe that some indexes might not be used: we

122

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

interpret those indexes as dummy elements and sets. Given this, we
can easily build in linear time the data structures SET” and ELEM’
for the new instance.

The use of random hash functions can be avoided by assuming
that we are given access to two arrays MAP,j,,, and MAP.; re-
spectively of size n and m < nf that are initialized to all zeros.
We now map X’ to [1,n’] and S’ to [1,m’] as follows. We create
vectors MAP;llem and MAP_}, of size n’ and fn’, resp., which are
initialized to zero. We iterate over X’: when considering the j-th
element of X of global id k (that is, it is the k-th element in [1, n]),
then we set MAP,j,,|k] = j and MAPL [j] = k. Similarly, we

elem

iterate over S’ and update MAPs,; and MAPS_elt analogously. In
order to handle possible duplicates in S’ (and possibly in X’), we
simply do not perform the update when we find an entry of MAP,;
(or MAP, . ,,) that is already non-zero. Now, X" has been mapped
to [1,n’] and S’ has been mapped to [1, m’]. This allows us to build
vectors ELEM’ and SET’ in the same way as above. Once the update
phase has ended, we reset MAP, ., and MAP;,.; to 0 by iterating
over MAP;llem and MAP,,. The overall process takes O(fn’) time.
We feed the vectors SET’ and ELEM’ to the Random Cover
subroutine that outputs a list P’ of pivots, plus the associated values
£(p), S(p), F(p), and X(p) for each p € P’. Using MAPZ! and

elem
MAP, we can map back the indexes of the corresponding elements

and sets into the original indexes.

We remark that by construction, we will have £(p) < . Now,
we build a list GREEDY” of the same type as GREEDY, however
restricted to pivots in P’ and to the respective levels. Finally, we
concatenate GREEDY' to the beginning of the list GREEDY.

We are now ready to prove Lemma 2. We first observe that, up to
constant factors, the time taken in one level fixing process at critical
level ¢ is at most that in the subsequent update phase. Indeed, recall
that level fixing at level ¢ takes time O(£2). Since £ is the lowest
critical level, € — 1 is not critical, therefore there is at least one
deleted pivot in level ¢. This implies that this update involves at
least 2¢ elements, thus having cost Q(2%). The claim follows.

We can therefore focus on the cost of the update phase. Each
pivot p at level i that participates in the update corresponds to at
most f sets of size at most 27! each. Hence the set X’ of elements
that participate in the update has size at most 3; <, fp;2:*1. As
argued above, we can build the corresponding set cover instance
(X’,8’) and run the Random Cover subroutine on it in O(f|X’|)
time. This completes the proof of Lemma 2.

4.2 Fully Dynamic Algorithm

We now briefly describe the changes in the fully-dynamic algorithm
that leads to Lemma 9. Along with each X(p), we also maintain
two disjoint subsets of X(p): Orig(p) and Extra(p). When a set S
is included in the current solution with pivot p and newly covers
elements X(p), we follow the implementation details of the decre-
mental case. In addition, we set Orig(p) = X(p) and Extra(p) = 0.
This does not change the asymptotic run time.

When an element e is inserted, we iterate over SET(e) and check
if there exists any set S € SET(e) present in the current solution.
For each S € SET(e), the check can be implemented in O(1) time
by maintaining a Boolean variable for every S € S and setting
it to 1 whenever it is included in the solution. If S € S, we also

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

maintain a pointer to its pivot p, and the value ¢(p). If none of the
sets in SET (e) is present, then we include all sets in SET(e) in the
solution, mark e as the pivot for these sets and set £(e) = 0. We set
X(e) = {e}, Orig(e) = {e} and Extra(e) = 0. This entire process
can be implemented in O(f) time as [SET(e)| < f. Thus, insertion
takes O(f) time.

Deletion without an update phase is implemented in the same
way as in the decremental case and, therefore, takes O(f) time
as well. If there is an update phase at a critical level ¢, given the
instance (X', 8’), we first execute the movement step as follows.
We scan every element e € X” and iterate over SET(e) to check if
there exists a set S € SET(e) that is in the current solution at a level
strictly higher than ¢. If so, we include e as an extra element in the
highest such set and discard e from X’. This entire operation takes
O(f1X’]) time.

Let Y’ be the uncovered elements at the end of the movement
step. We run the covering step as in the decremental case over Y.
This takes O(f|Y’|) time which is bounded by O(f|X’|). Whenever
a new pivot p is selected, the level of p and the corresponding
sets are determined in O(|S(p)|) time. Accordingly, the lists L;s are
updated. These updates take O(1) time per set.

Thus, the update phase in the fully dynamic algorithm can be
implemented in O(f|X’|) time, thereby proving Lemma 9.

5 CONDITIONAL LOWER BOUNDS FOR
DYNAMIC SET COVER

A fast algorithm for a dynamic problem usually gives a fast algo-
rithm for its static version. If we can solve dynamic Set Cover with
preprocessing time P(n, f) and update time T(n, f), then we can
solve the static Set Cover problem in P(n, f)+n-T(n, f) time: n up-
dates are sufficient in order to create an offline instance. This simple
connection immediately leads to some lower bounds for dynamic
Set Cover. In particular, we get that it is NP-Hard to get an o(log n)
approximation with polynomial preprocessing and update times.
However, this connection does not give any lower bound in the
polynomial time solvable regime of Set Cover where a min{ f, log n}
approximation is possible in linear time. Could there be a dynamic
algorithm with such approximation factors that has o(f) or even
O(1) update time? This would not imply a new static algorithm for
Set Cover.

Of course, such an algorithm is impossible if to insert an element
we must explicitly specify the O(f) sets it appears in. But in the
model we consider, an update can be specified with much fewer
bits. We assume that all elements X and sets S are given in advance,
as well as all the membership information. Then, an update can
add or remove an elements (in the Element-Update case) or sets
(in the Set-Updates case). Only elements from X (or sets from S)
can be added or removed, and when an element is removed then
a set-cover does not need to cover it. Notice that O(log |X|) bits
are needed to specify an element insertion, and its membership
in all the sets is known from the initial input. In this model, it
is conceivable that an algorithm can spend o(f) time per update
and maintain some non-trivial approximation. The results in this
section show that this is unlikely.

Under SETH, we show that no algorithm can preprocess an
instance with m sets and n elements in poly(n, m) time, and subse-
quently maintain element (or set) updates in O(m!~¢) time, for any

123

A. Abboud, R. Addanki, F. Grandoni, D. Panigrahi and B. Saha

& > 0, unless the approximation factor is essentially m? for some
& > 0. Note that a factor m approximation can be maintained triv-
ially in constant time (pick either zero or all sets). and we show that
essentially any me@ approximation algorithm requires Q(m°®°?)
time.

THEOREM 3 (MAIN LowER Bounp). Let n®M) < m < 2000 gnd
t > 2, such that t = (n/logm)°V). Assuming SETH, for all ¢ > 0,
no dynamic algorithm can preprocess a collection of m sets over a
universe [n] in poly(n,m) time, and then support element (or set)
updates in O(m'~¢) amortized time, and answer Set Cover queries in
O(m'~%) amortized time with an approximation factor of .

We can state the following corollary in terms of the frequency
bound f.

CoROLLARY 1. Assuming SETH, any dynamic algorithm for Set
Cover on n elements and frequency bound f, wheren®() < f < 20(n),
that has polynomial time preprocessing and amortized update and
query time O(f17¢), for some ¢ > 0, must have approximation factor
at least (n/log f)Q(l).

Proof. Without assuming anything about the instances in Theo-
rem 3 we can conclude that f < m while m < nf < f2. Therefore,
any approximation algorithm with factor O((n/log f)?) also gets
an approximation of O((n/2log f)‘s) = O((n/log fz)(S) which is
smaller than O((n/log m)9) and it is enough to refute SETH via
Theorem 3. O

The rest of this section is dedicated to the proof of Theorem 3.
Our starting point is the following SETH-based hardness of ap-
proximation result, which was proven first in [1] with a slightly
smaller approximation factor, and was strengthened in [16] using,
in part, the technique of [35]. These results use the distributed PCP
framework of [1] for hardness of approximation results in P, and
ours is the first application of this framework to dynamic problems.

THEOREM 4 ([1, 16, 35]). Let n®V < m < 2°0) gndt > 2, such
thatt = (n/log m)o(l). Given two collections of m sets A, B over a
universe [n], no algorithm can distinguish the following two cases in
O(m?~¢) time, for any € > 0, unless SETH is false:

YES case there exist A € A,B € B such that B C A; and
NO case forevery A€ A,B € B we have |AN B| < |B|/t.

From this theorem and standard manipulations it is easy to con-
clude the following statement. There are two differences in the
statement below: first, the sizes of A and B are asymmetric, and
second, the approximation is in terms of the number of sets required
to cover a single b € B, rather than the size of the overlap.

Lemma 15. Let n®D) < m < 2°W and t > 2, such that t =
(n/log m)°), and for all 0 < a < 1. Given two collections of sets
A, B over a universe [n], where |B| = m and |A| = m?, no algorithm
can distinguish the following two cases in O(m'™4~¢) time, for any

& > 0, unless SETH is false:

YES case there exist A € A,B € B such that B C A; and

NO case there do not exist t sets Ay,...,Ar € A,andasetBe B
such thatBC AU ---U A;.

Proof. Assume for contradiction that such an algorithm exists. Given
an instance A, B of the problem in Theorem 4 we show how to
solve it in O(m?~¢) time. Partition A into k = m!~% collections

Dynamic Set Cover: Improved Algorithms and Lower Bounds

A, ..., A of size m? each, and invoke our algorithm on the asym-
metric instance A;, B for each i = 1--- k. The total time will be
k - O(m'*4=¢) = O(m?¢). If the original (symmetric) instance was
a YES case, then clearly at least one of the k asymmetric instances
is a YES case. On the other hand, if it was a NO case, then any
A € A cannot cover more than a 1/¢ fraction of any set B € 8 and
therefore all the asymmetric instances are NO cases. O

Next we take this static set-containment problem and reduce it
to dynamic Set Cover. We show two distinct reductions, a simpler
one for the element updates case, and then a more complicated one
with set updates.

5.1 Element Updates

Given an instance A, B of the problem in Lemma 15, we construct
an instance of dynamic Set Cover with approximation factor (¢ — 1)
as follows. The universe [n] will be the same, and all sets in A will
appear in the instance. However, the sets in 8 will not, and they
will be implemented implicitly in a dynamic way. Initially, all the
universe elements are activated, and the algorithm may preprocess
the instance. Note that the number of sets is only m?.

For each set B; € B8 we will have a stage. We start the stage by
removing from the universe all elements e € B; that belong to B;.
After we do these O(n) updates, we ask a Set Cover query. If the
answer is less than ¢ then we can stop and answer YES. Otherwise,
we finish the stage by adding back all the elements that we removed
and move on to the next stage. After we finish all m stages for all
the sets in B, we answer NO.

In total we have O(nm) updates and queries, and so the final
runtime is P(n, m%)+0(nm)-(T(n, m*)+Q(n, m%)). Assume we have
an algorithm with update and query time T(n, m?) + Q(n, m%) =
O(m®(1=€)) and polynomial preprocessing, P(n, m?) = O(m®©) for
some ¢ > 1, then we can choose a = 1/c and get an algorithm for
the problem in Lemma 15 with runtime O(m!*4=¢4), contradicting
SETH.

Finally, let us show the correctness of the answer. If we are in
the YES case, then there is a set B € B that is contained in some set
in A. When we ask a query at the stage corresponding to this set
B, the size of the minimum set cover is 1. To see this note that all
active universe elements are the elements of B and so we can cover
all of them with some set in (A. Therefore, our (¢ — 1) approximation
algorithm must output an answer that is less than t and we will
output YES. On the other hand, if we are in the NO case, then in
all stages, the size of the minimum set cover is at least ¢ since at
least t sets from A are required to cover any set in 8. Thus, the
approximation algorithm will always return an answer that is at
least ¢t and we will never output YES.

5.2 Set Updates

The previous reduction fails in this case because we are only allowed
to update sets, not elements. A natural approach for extending it is
to have all sets from B in our instance and then at each stage we
activate one of them. This would work, except that the number of
sets grows to m which would only give us a weaker lower bound.
Indeed such a simple reduction can rule out O(m!~¢) update times if
the preprocessing is restricted to take subquadratic time. A different
idea is to add n auxiliary sets, one per element, so that this set only
contains that element. Then, if we want to remove an element, we

124

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

can add this set and somehow ensure that it is a part of the solution
so that, effectively, the corresponding element is removed. This is
the approach we take. The main challenge, however, is that these
auxiliary sets have to be picked in our set cover solution and so
they contribute to the size of the optimal solution. That is, we will
no longer have a set cover of size 1 in the YES case and the gap
between the YES and NO cases changes. To overcome this issue, we
introduce another idea where we create many copies of everything
and combine them into one instance in a certain way.

Given an instance A, B of the problem in Lemma 15, we con-
struct an instance of dynamic Set Cover with approximation factor
(t — 1) as follows.

Our universe will be k := n? times larger, and for each element
e € [n] in the universe of the original instance we will add k

elements el, RS ek to our instance. (So, our universe is isomorphic
to [kn].)
For each set A € A we construct ¢ sets Al s A¥ in our dynamic

instance. All of these sets will remain activated throughout the
reduction. The set A? contains all elements e’ such that e € A. That
is, Al contains the i*” copy of all the elements that were in A. Note
that A! does not contain e/ for any i # j.

We also add sets Si, . . ., S, which will be activated dynamically,
and we let S, contain all copies of the element e € [n]. That is,
Se contains el,. .., ek, These sets will allow us to simulate the
deactivation of a set B.

Next we explain the dynamic part of the reduction. For each set
B € B we have a stage where we effectively deactivate all universe
elements that are not in B. To do this, we activate the set S, for all
e ¢ B such that e is not in B. Note that we have activated up to n
sets Se, and that together they cover all copies of all elements that
are in the complement of B. After we perform these O(n) updates,
we ask a Set Cover query. If the answer to the query is at most
(n+k) - (t — 1) we return YES. Otherwise, we undo the changes we
made in this stage and we move on to the next B € B. After all the
stages are done, we return NO.

The runtime analysis is similar to before since the only difference
is in the universe size which increased from n to kn = n® but it s still
m®1). We have O(nm) updates and queries, and so the final runtime
is P(nk, m%) + O(nm) - (T(nk, m?) + Q(nk, m%)). Assume we have
an algorithm with update and query time T(nk, m?) + Q(nk, m%) =
O(m®(1=9)) and polynomial preprocessing, P(nk, m?) = O(m®)
for some ¢ > 1, then we can choose a = 1/c and get an algorithm for
the problem in Lemma 15 with runtime O(m!'*%~¢4), contradicting
SETH.

Finally, we show the correctness of the answer. For the YES case,
there is a set B € B that is contained in some set in A. When we
ask a query at the stage corresponding to this set B, the size of the
minimum set cover is at most n + k. This is because of the following
set cover: Choose all sets S, that are active in this stage; this cover
all copies of all universe elements that are not in B. Then choose
all copies A of the set A € A that contains B; this covers all copies
of all elements that are in B. Therefore, our (¢ — 1) approximation
algorithm must output an answer that is at most (n + k)(t — 1) and
we will output YES. On the other hand, in the NO case, the size of
the minimum set cover is at least k - t in every stage. This is because
at least ¢ sets from A are required to cover any set in B, and in a

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

stage of some set B the only way we can cover copies of elements
that belong to B is by choosing copies of sets A that contain them.
There are k copies of the universe elements, and for each such copy
we have to choose at least ¢ sets from A to cover the elements of
that copy, and these sets do not contain any elements from any
other copy of the universe. Thus, the approximation algorithm will
always return an answer that is at least kt, which is larger than
(n+k)(t—1)sincek =n®andt = n°@ and we will never output
YES.

ACKNOWLEDGEMENTS

The authors are grateful to Shay Solomon for pointing out an
error in a preliminary version of this paper. The authors would
also like to thank the anonymous reviewers for their insightful
comments. F. Grandoni is partially supported by the SNSF grants
200021_159697/1 and 200020B_ 182865/1. D. Panigrahi is partially
supported by NSF contracts CCF 1535972, CCF 1527084, an NSF
CAREER Award CCF 1750140, and the Indo-US Virtual Networked
Joint Center on Algorithms under Uncertainty. B. Saha is partially
supported by an NSF CRII grant CCF 1464310, an NSF CAREER
Award CCF 1652303, and an Alfred P. Sloan fellowship.

REFERENCES

[1] Amir Abboud, Aviad Rubinstein, and R. Ryan Williams. 2017. Distributed PCP
Theorems for Hardness of Approximation in P. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17,
2017. 25-36.

Amir Abboud and Virginia Vassilevska Williams. 2014. Popular conjectures imply
strong lower bounds for dynamic problems. In Foundations of Computer Science
(FOCS). 434-443.

Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. 2018. Matching
triangles and basing hardness on an extremely popular conjecture. SIAM 7.
Comput. 47, 3 (2018), 1098-1122.

Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. 2017. Fully dynamic
all-pairs shortest paths with worst-case update-time revisited. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,
440-452.

Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. 2017. Fully dynamic
all-pairs shortest paths with worst-case update-time revisited. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,
440-452.

Sepehr Assadi and Sanjeev Khanna. 2018. Tight bounds on the round complexity
of the distributed maximum coverage problem. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2412-2431.
Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. 2018. Fully
dynamic maximal independent set with sublinear update time. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing. ACM,
815-826.

Surender Baswana, Manoj Gupta, and Sandeep Sen. 2015. Fully Dynamic Maximal
Matching in O(log n) Update Time. SIAM J. Comput. 44, 1 (2015), 88-113.
Aaron Bernstein and Cliff Stein. 2016. Faster fully dynamic matchings with small
approximation ratios. In Proceedings of the twenty-seventh annual ACM-SIAM
symposium on Discrete algorithms. Society for Industrial and Applied Mathematics,
692-711.

Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. 2017. De-
terministic fully dynamic approximate vertex cover and fractional matching in
O (1) amortized update time. In International Conference on Integer Programming
and Combinatorial Optimization. Springer, 86-98.

Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon
Nanongkai. 2018. Dynamic Algorithms for Graph Coloring. In Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,
1-20.

Sayan Bhattacharya, Monika Henzinger, and Giuseppe F Italiano. 2015. Design
of dynamic algorithms via primal-dual method. In International Colloquium on
Automata, Languages, and Programming. Springer, 206-218.

Sayan Bhattacharya, Monika Henzinger, and Giuseppe F Italiano. 2015. Determin-
istic fully dynamic data structures for vertex cover and matching. In Proceedings
of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms. Society
for Industrial and Applied Mathematics, 785-804.

[9

=

[10]

[11

[12

[13

125

[14

[15

[16

(17]

[18

[19

™
=

[21

[22

[23

[24

[25

[26]

[27

[28

[29]

[30

(31

(32]

®
3

[34

[35

[36

[37

A. Abboud, R. Addanki, F. Grandoni, D. Panigrahi and B. Saha

Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2016. New
deterministic approximation algorithms for fully dynamic matching. In Proceed-
ings of the forty-eighth annual ACM symposium on Theory of Computing. ACM,
398-411.

Shiri Chechik, Thomas Dueholm Hansen, Giuseppe F. Italiano, Jakub Lacki, and
Nikos Parotsidis. 2016. Decremental Single-Source Reachability and Strongly
Connected Components in O(m+/n) Total Update Time. In IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA. 315-324.

Lijie Chen. 2018. On The Hardness of Approximate and Exact (Bichromatic)
Maximum Inner Product. In 33rd Computational Complexity Conference, CCC
2018, June 22-24, 2018, San Diego, CA, USA. 14:1-14:45.

Camil Demetrescu and Giuseppe F. Italiano. 2004. A New Approach to Dynamic
All Pairs Shortest Paths. J. ACM 51, 6 (Nov. 2004), 968—992.

Irit Dinur and David Steurer. 2014. Analytical approach to parallel repetition. In
Proceedings of the forty-sixth annual ACM symposium on Theory of computing.
ACM, 624-633.

Greg N Frederickson. 1985. Data structures for on-line updating of minimum
spanning trees, with applications. SIAM J. Comput. 14, 4 (1985), 781-798.
Michael L. Fredman, Janos Komlés, and Endre Szemerédi. 1984. Storing a Sparse
Table with 0(1) Worst Case Access Time. J. ACM 31, 3 (1984), 538-544.
Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Pani-
grahi. 2017. Online and dynamic algorithms for set cover. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing. ACM, 537-550.
Manoj Gupta and Richard Peng. 2013. Fully dynamic (1+ e)-approximate match-
ings. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium
on. IEEE, 548-557.

Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. 2015. Unifying and Strengthening Hardness for Dynamic Problems
via the Online Matrix-Vector Multiplication Conjecture. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015. 21-30.

Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. 2015. Unifying and strengthening hardness for dynamic problems via
the online matrix-vector multiplication conjecture. In Proceedings of the forty-
seventh annual ACM symposium on Theory of computing. ACM, 21-30.

Monika R Henzinger and Valerie King. 1999. Randomized fully dynamic graph
algorithms with polylogarithmic time per operation. Journal of the ACM (JACM)
46, 4 (1999), 502-516.

Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. 2001. Poly-logarithmic
deterministic fully-dynamic algorithms for connectivity, minimum spanning tree,
2-edge, and biconnectivity. Journal of the ACM (JACM) 48, 4 (2001), 723-760.
Piotr Indyk, Sepideh Mahabadi, Ronitt Rubinfeld, Jonathan Ullman, Ali Vakilian,
and Anak Yodpinyanee. 2017. Fractional set cover in the streaming model. In
LIPIcs-Leibniz International Proceedings in Informatics, Vol. 81. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

Giuseppe F. Italiano, Adam Karczmarz, Jakub Lacki, and Piotr Sankowski. 2017.
Decremental single-source reachability in planar digraphs. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017. 1108-1121.

Subhash Khot and Oded Regev. 2008. Vertex cover might be hard to approximate
to within 2- €. J. Comput. System Sci. 74, 3 (2008), 335-349.

Tsvi Kopelowitz, Seth Pettie, and Ely Porat. 2016. Higher Lower Bounds from
the 3SUM Conjecture. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016. 1272-1287.

Andrew McGregor and Hoa T Vu. 2016. Better streaming algorithms for the
maximum coverage problem. arXiv preprint arXiv:1610.06199 (2016).

Ofer Neiman and Shay Solomon. 2016. Simple deterministic algorithms for fully
dynamic maximal matching. ACM Transactions on Algorithms (TALG) 12, 1 (2016),
7.

Krzysztof Onak and Ronitt Rubinfeld. 2010. Maintaining a large matching and a
small vertex cover. In Proceedings of the forty-second ACM symposium on Theory
of computing. ACM, 457-464.

Krzysztof Onak, Baruch Schieber, Shay Solomon, and Nicole Wein. 2018. Fully
Dynamic MIS in Uniformly Sparse Graphs. In 45th International Colloquium on
Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic. 92:1-92:14.

Aviad Rubinstein. 2018. Hardness of approximate nearest neighbor search. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018. 1260-1268.

Shay Solomon. 2016. Fully dynamic maximal matching in constant update time.
In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on.
IEEE, 325-334.

Christian Wulff-Nilsen. 2017. Fully-dynamic minimum spanning forest with im-
proved worst-case update time. In 49th ACM Symposium on Theory of Computing.
ACM, 1130-1143.

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 The Decremental Set Cover Algorithm
	2.1 The Algorithm
	2.2 Analysis of the Competitive Ratio
	2.3 Analysis of the Amortized Update Time

	3 The Fully Dynamic Set Cover Algorithm
	3.1 The Algorithm
	3.2 Analysis of the Competitive Ratio
	3.3 Analysis of the Amortized Update Time

	4 Implementation Details and Running Time
	4.1 Decremental Algorithm
	4.2 Fully Dynamic Algorithm

	5 Conditional Lower Bounds for Dynamic Set Cover
	5.1 Element Updates
	5.2 Set Updates

	References

