
Dynamic Set Cover: Improved Algorithms and Lower Bounds
Amir Abboud

IBM Almaden Research Center

San Jose, CA, USA

amir.abboud@ibm.com

Raghavendra Addanki

University of Massachusetts Amherst

Amherst, MA, USA

raddanki@cs.umass.edu

Fabrizio Grandoni

IDSIA, USI-SUPSI

Switzerland

fabrizio@idsia.ch

Debmalya Panigrahi

Duke University

Durham, NC, USA

debmalya@cs.duke.edu

Barna Saha

University of Massachusetts Amherst

Amherst, MA, USA

barna@cs.umass.edu

ABSTRACT
We give new upper and lower bounds for the dynamic set cover
problem. First, we give a (1 + ε)f -approximation for fully dynamic

set cover in O(f 2 logn/ε5) (amortized) update time, for any ϵ > 0,

where f is the maximum number of sets that an element belongs

to. In the decremental setting, the update time can be improved to

O(f 2/ε5), while still obtaining an (1+ε)f -approximation. These are

the first algorithms that obtain an approximation factor linear in

f for dynamic set cover, thereby almost matching the best bounds

known in the offline setting and improving upon the previous best

approximation of O(f 2) in the dynamic setting.

To complement our upper bounds, we also show that a linear

dependence of the update time on f is necessary unless we can

tolerate much worse approximation factors. Using the recent dis-

tributed PCP-framework, we show that any dynamic set cover

algorithm that has an amortized update time ofO(f 1−ε) must have

an approximation factor that is Ω(nδ) for some constant δ > 0

under the Strong Exponential Time Hypothesis.

CCS CONCEPTS
• Theory of computation→ Online algorithms.

KEYWORDS
dynamic algorithm, randomized algorithm, set cover, competitive

ratio.

ACM Reference Format:
Amir Abboud, Raghavendra Addanki, Fabrizio Grandoni, Debmalya Pani-

grahi, and Barna Saha. 2019. Dynamic Set Cover: Improved Algorithms and

Lower Bounds. In Proceedings of the 51st Annual ACM SIGACT Symposium
on the Theory of Computing (STOC ’19), June 23–26, 2019, Phoenix, AZ, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3313276.3316376

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6705-9/19/06. . . $15.00

https://doi.org/10.1145/3313276.3316376

1 INTRODUCTION
Suppose, we need to solve a combinatorial optimization problem

where the input to the problem changes over time. In such a dy-

namic setting, recomputing the solution from scratch after every

update can be prohibitively time consuming, and it is natural to

seek dynamic algorithms that provide faster updates. In the last

few decades, efficient dynamic algorithms have been discovered for

many combinatorial optimization problems, particularly in graphs

such as shortest paths [4, 17, 19, 28], connectivity [5, 25, 26, 37],

maximal independent set and coloring [7, 11, 34]. For many of

these problems, maintaining exact solutions is prohibitively ex-

pensive under various complexity conjectures [2, 3, 23, 30], and

thus the best approximation bounds are sought. In their seminal

work [33], Onak and Rubinfeld proposed an algorithm formatching
and vertex cover that maintains O(1)-approximate solutions to the

maximum matching and minimum vertex cover in the graph. The

algorithm runs in t · polylog(n) time for any sequence of t edge
insertions and deletions in an n-vertex graph, i.e., in O(polylog(n))
time when amortized over all the updates. This has led to a flurry

of activity in dynamic algorithms for matching and vertex cover

[8–10, 13, 14, 22, 32, 36], and more recently, for the more general

set cover problem [10, 12, 21] that we study in this paper.

In the set cover problem, we are given a universeX of n elements

and a family S ofm sets on these elements. The goal is to find a

minimum-cardinality subfamily of sets F ⊆ S such that F cov-

ers all the elements of X . The two traditional lines of inquiry for

this problem are via greedy and primal dual algorithms, and have

respectively led to a lnn- and an f -approximation. Here, f is the

maximum number of sets that an element belongs to in the set sys-

tem S. Both these results are known to be tight under appropriate

complexity-theoretic assumptions [18, 29]. In the dynamic setting,

the set system S is fixed, but the set of elements that needs to be

covered in X changes over time. In particular, after the insertion
of a new element, or the deletion of an existing one, the solution

has to be updated to maintain feasibility and the approximation

guarantee. The time taken to perform these updates is called the

update time of the algorithm, and is often stated amortized over

any fixed prefix of updates.

As in the case of the offline problem, dynamic algorithms for

set cover have also followed two lines of inquiry. The first is to

use greedy-like techniques, which were recently shown to yield

114

https://doi.org/10.1145/3313276.3316376
https://doi.org/10.1145/3313276.3316376

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA A. Abboud, R. Addanki, F. Grandoni, D. Panigrahi and B. Saha

anO(logn)-approximation inO(f logn) update time by Gupta, Ku-

mar, Krishnaswamy, and Panigrahi [21]
1
. The second is to use a

primal-dual framework, which was employed by Bhattacharya,

Henzinger, and Italiano [12] to give an O(f 2)-approximation in

O(f log (m + n)) update time. Gupta et al. [21] and Bhattacharya,

Chakrabarty, and Henzinger [10] also obtained a different but in-

comparable result using the primal-dual technique, which improves

the update time to O(f 2) thereby removing the dependence on n
andm, but at the cost of a weaker approximation bound of O(f 3).
What stands out in these results is that:

• While dynamic and offline approximation factors match at

O(logn), there is no O(f)-approximation known for the dy-

namic setting. Indeed, the only previous algorithm we are

aware of that achieves this bound is one that recomputes the

offline f -approximation after every update.

• The update times of these algorithms depend on logn and

f . While the dependence on logn is not required, at least

if we settle for an O(f 3) approximation [10, 21], it is not

clear if the polynomial dependence on f is fundamental.

For instance, might it be possible to design a dynamic set

cover algorithm whose update time only has a logarithmic

dependence on f ?

1.1 Our Results
Our first result closes the gap between offline and dynamic ap-

proximation for the set cover problem: for any ε > 0, we give
a (1 + ε)f -approximation algorithm for dynamic set cover
with an update time of O(f 2 logn/ε5). Previous algorithms for

dynamic set cover heavily rely on deterministically maintaining

a greedy-like or primal-dual structure on the set cover solution.

Instead, our algorithm is based on the observation that a simple

offline algorithm for the set cover problem achieves a (1 + ε)f -
approximation in O(f /ε) expected update time when the elements

are deleted in a random order. We switch this statement around

by transferring the randomness to the algorithm in order to han-

dle an arbitrary sequence of deletions (and insertions). As a result,

our algorithm is randomized, and our update time bound holds in

expectation. (The approximation bound holds deterministically.)

In the decremental setting where elements can only be deleted

but not inserted, a simplification of the above algorithm yields the

same approximation factor of (1 + ε)f in amortized update
timeO(f 2/ε5). This can be compared with the result of Gupta et al.
[21] which achieves a (larger) O(f 3)-approximation with (roughly)

the same update time, but in the fully dynamic case. As far as we

know, the approximation bounds of [10, 21] do not change when

considering the decremental setting, which has been extensively

studied in the past for other problems [15, 24, 28].
2

Finally, we turn to the problem of determining the dependence of

the update time on f . Using the recently introduced framework of

distributed PCP [1] from fine-grained complexity theory, we show
that under the Strong Exponential Time Hypothesis (SETH),

1
All update times stated in this paper are amortized, unless stated otherwise.

2
For the incremental setting, where elements can be inserted but not deleted, the

offline set cover algorithm itself gives an f -approximation in O (f) update time.

any dynamic set cover algorithm that has an (amortized) up-
date time ofO(f 1−ε) for any fixed ε > 0must have an approx-
imation factor of (n/log f)Ω(1). Since a polynomial dependence

on n in the approximation factor is rather weak, this result essen-

tially states that any dynamic set cover algorithmmust have a linear

dependence on f in the update time
3
. This shows the update time

bound of [21] to achieveO(logn) approximation is essentially tight

within a logn factor. Our lower bound holds even if the algorithm

is allowed a preprocessing stage with arbitrary polynomial runtime,

and it also applies to the set-updates model where the elements are

fixed but sets get inserted and deleted. This model is much more

popular in the streaming setting [6, 31], especially when there are

only insertions (see the work by Indyk et al. [27] and the many ref-

erences therein). This is a novel application of the growing area of

fine-grained complexity theory to show hardness of approximation

of an NP-Hard problem.

1.2 Our Techniques
A natural starting point for our work is to use the deterministic

greedy or primal dual techniques for dynamic set cover from [10, 12,

21]. An alternative strategy is to generalize previous randomized

approaches for dynamic vertex cover [8, 36]. At a very high level,

all these algorithms derive their results from maintaining, either

explicitly or implicitly, a very structured dual solution that lower

bounds the cost of the algorithm. Indeed, the algorithm of [21]

for dynamic set cover can be thought of as a derandomization of

the dynamic vertex cover algorithm of [36]. In order to improve

the approximation factor to O(f), these dual solutions must only

violate the dual packing constraints by a constant factor (as against

an Ω(f) violation in the previous results), but this requirement is

too strict for the analysis framework of these papers that effectively

rely on an f -discretization of the dual space.

Hence, we need a significantly new approach to improve the

approximation factor to O(f). We start with the following folklore

algorithm for offline set cover. Initially, all elements are uncovered

and the algorithm has an empty solution. Pick an arbitrary uncov-

ered element and call it a pivot p. Then, include all sets containing
p in the solution and mark all elements in those sets as covered.

Repeat this process until all elements get covered. This algorithm

runs inO(nf) time and achieves an f -approximation, since no two

pivots share a common set and the algorithm picks at most f sets

for each pivot. We call this the deterministic covering algorithm.

Now, consider a decremental setting where elements are deleted

over time, but in a uniform random order. A small modification to the

deterministic covering algorithm gives a (1+O(ε))f -approximation

inO(f /ε) update time in this setting. Initially, we run deterministic

covering to produce a feasible cover. During the deletion phase,

the approximation bound may no longer hold because pivots are

being deleted. To restore the bound, we re-run the deterministic

covering algorithm whenever an ε-fraction of the pivots have been

deleted. Since the number of undeleted pivots forms a lower bound

3
In our model, the elements and sets are fixed, as well as their membership relations,

and the updates can change which of the elements are “active” in the instance. Thus,

an element insertion can be specified with O (logn) bits, rather than the Ω(f) bits
that may be required to list all its membership relations. This makes an Ω(f) lower
bound on the update time non-trivial.

115

Dynamic Set Cover: Improved Algorithms and Lower Bounds STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

on the optimal solution, it follows that this algorithm maintains an

f /(1 − ε) = (1 +O(ε))f -approximation.

Let us now consider the update time. Clearly, deterministic cov-

ering takes O(nf) time in every run. So, the question is: how fre-

quently do we run it? Because of the random deletion order, we

expect to delete an ε-fraction of all elements before an ε-fraction
of pivots gets deleted. This suggests an informal amortized update

bound of O(nf /(εn)) = O(f /ε). It turns out that this informal idea

can be made formal, but we skip the details here since we are going

to use this only for intuitive purposes.

More interesting for us is to transition from a random deletion

order to an adversarial deletion order. The same update rule gives a

(1+ ε)f -approximation, but now, the bound on update time may no

longer hold. For instance, if all the pivots are deleted before other

elements, the amortized update time is clearly much higher when

the first ε-fraction of pivots gets deleted.

Our main idea, at this juncture, is to transfer the randomization

from the deletion sequence to the algorithm itself. More specifically,

instead of picking a pivot arbitrarily from the uncovered elements

in each step, let us select it uniformly at random. We call this

the random covering algorithm. Our hope is that an (oblivious)

adversary deleting a single element will be able to pick a specific

pivot with probability no higher than 1/n. This would ensure that

in expectation, an ε-fraction of the elements will have to be deleted

before an ε-fraction of pivots is, as in the random deletion scenario.

However, this intuition is not quite correct. While the first pivot

is indeed uniformly distributed over all elements, the subsequent

pivots are not. To see this, consider the following example: suppose

the sets represent edges of a graph containing (n − 2)/f cliques on

f vertices each, and an isolated edge. For a vertex on the isolated

edge to be chosen as the second pivot, it must not be covered

by sets containing the first pivot and should be selected as the

second pivot; the probability for this event is given by: (1 − 2/n) ·
(1/(n − f)). Clearly, this probability exceeds 1/n for f > 2. As

a consequence, the expected number of element deletions after

which we need to run random covering might be smaller than

εn. To overcome this bottleneck, we employ a more fine-grained

update procedure: instead of running random covering over the

entire undeleted instance, we run it only for a subset of elements.We

maintain sufficient structure in the solution to still claim a (1+ ε)f -
approximation, while improving the update time to O(f 2/ε5) for
the decremental setting, and O(f 2 logn/ε5) for the fully dynamic

setting where elements can be inserted in addition to deletions.

2 THE DECREMENTAL SET COVER
ALGORITHM

In this section, we give a dynamic set cover algorithm for the

decremental setting. We denote the initial set system by (X ,S),
where S = {S1, S2, . . . , Sm } is a collection of subsets of the ground

set X that contains n elements. The maximum number of subsets

that an element belongs to is denoted f :

f = max

x ∈X
|{i : x ∈ Si }|.

The elements are deleted in a fixed sequence, independent of the ran-

domness of the algorithm, that is represented byX = {x1,x2, . . . ,xn }.

2.1 The Algorithm
The description of the algorithm comprises two phases: the initial
phase where the algorithm selects a feasible solution at the outset,

and the update phases where the algorithm changes its solution in

response to the deletion of elements. The feasible solution that the

algorithm maintains dynamically is denoted by F . Recall that the

goal is to ensure that the cost of F is at most (1 + ε)f times that of

an optimal solution for the set of undeleted elements at all times.

Both the initial and the update phases use a common subrou-

tine that we call the random cover subroutine. We describe this

subroutine first.

The Random Cover Subroutine. The random cover subroutine

takes as input a set system (X ′,S′) and outputs a feasible set cover

solution F ′
for this set system. The algorithm is iterative, where

each iteration starts with a set of uncovered elements Y ⊆ X ′
, adds

a collection of sets F + ⊆ S′
to the solution F ′

, and removes all the

elements covered by the sets in F + from the set of the uncovered

elements Y for the next iteration. Initially, all elements in X ′
are

uncovered, i.e., Y = X ′
, and the solution F ′

is empty, i.e., F ′ = ∅.

It only remains to describe an iteration, or more precisely, the sets

F + added to the solution F ′
in an iteration. The selection of F +

has three steps. First, the algorithm picks the set in S′
that covers

the maximum number of uncovered elements, breaking ties arbi-

trarily. Let us call this set Z , i.e., Z = argmaxS ∈S′ |S ∩Y |. Next, the
algorithm chooses an element in Z ∩ Y , i.e., an uncovered element

in the chosen set, uniformly at random, and calls this element the

pivot for the current iteration. Let us call this pivot p ∈u.a.r. Z ∩ Y .
Finally, all sets inS′

that contain the pivot are added to the solution,

i.e., F + = {S ∈ S′
: p ∈ S}. The random cover subroutine ends

when all elements in X ′
are covered by the solution F ′

, i.e., Y = ∅.

This algorithm can be implemented in O(f |X ′ |) deterministic time

(details in Section 4).

The above completes the description of the random cover subrou-

tine. However, it will be convenient to introduce some additional

notation for this process that we will use later. Each iteration is char-

acterized by its pivot p. We map the pivot to the set S(p) := Z ∩ Y
from which it is chosen. If |S(p)| ∈ [2i , 2i+1), we say that p is a

level-i pivot, and denote ℓ(p) = i . Note that by the definition of

the random cover subroutine, the pivots chosen in successive iter-

ations have monotonically non-increasing levels, i.e., if pivot p is

chosen in an earlier iteration and pivot p′ in a later iteration, then

ℓ(p) ≥ ℓ(p′). Finally, if the sets F + are added to the solution F ′
in

an iteration with pivot p, then we denote F (p) = F +. The set of

previously uncovered elements that are covered by F (p) is denoted
X(p).

Initial Phase. In the initial phase, the random cover subroutine

is run on the the entire input set system (X ,S). This produces the
initial solution F .

In the algorithm, we also maintain sets P , D, and U that respec-

tively represent all, deleted, and undeleted pivots. At the end of the

initial phase, all the pivots in F are added to P and U , and D is

empty. When an element e is deleted, if e is in P , then we move

e from U to D, i.e., change its status from undeleted to deleted.

Importantly, we keep this element in P . Changes to P are done only

at the end of an update phase that we describe below.

116

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA A. Abboud, R. Addanki, F. Grandoni, D. Panigrahi and B. Saha

Update Phase. An update phase is triggered when the number of

deleted pivots exceeds an ε-fraction of the total number of pivots,

i.e., |D | ≥ ε · |P |. In an update phase, the algorithm first fixes a

level ℓ using a process that we describe later called the level fixing
process. Having fixed this level ℓ, the algorithm discards all sets F (p)
from F that were added by pivots p at levels ℓ or lower, i.e., where

ℓ(p) ≤ ℓ. Correspondingly, these pivots p are also removed from P
and from either D orU depending on whether they are deleted or

undeleted. As a result of this change to F , some elements become

uncovered in F ; this set is denoted by X ′
. The algorithm now runs

the Random Cover subroutine on the instance (X ′,S′) induced by

X ′
, where S′ = {S ∩X ′

: S ∈ S, S ∩X ′ , ∅}. The resulting sets F ′

are added to the overall solution F . Correspondingly, the newly

selected pivots are also added to P andU . We say that levels ℓ and

below have been updated in the current update phase. (Note that

the newly selected pivots will be at level ℓ or below.) Clearly, this

restores feasibility of the solution F . We already argued that the

call to the Random Cover subroutine can be performed inO(f |X ′ |)

deterministic time. The same upper bound holds for the remaining

operations related to the construction of the instance (X ′,S′) and

to the update of the approximate solution (see Section 4 for the

details).

The level fixing process.Wenow describe the level fixing process.

Let {0, 1, . . . ,L = ⌊log
2
n⌋} be the set of levels. Let Pj , D j , and Uj

respectively denote the current total set of pivots, deleted pivots,

and undeleted pivots at a given level j. This process finds a level

ℓ with the following property: for every level i ≤ ℓ,
∑ℓ
j=i |D j | ≥

ε ·
∑ℓ
j=i |Pj |. In other words, the fraction of deleted pivots in levels

i, i + 1, . . . , ℓ is at least an ε-fraction of the total number of pivots in

these levels. We say that level ℓ is critical. The next lemma claims

that at least one critical level exists whenever the number of deleted

pivots is an ε-fraction of the total number of pivots.

Lemma 1. If
∑L
j=0 |D j | ≥ ε ·

∑L
j=0 |Pj |, then there exists at least

one critical level.

Proof. Suppose
∑L
j=0 |D j | ≥ ε ·

∑L
j=0 |Pj |. Assume by contradiction

that the claim is not true. Hence for each level ℓ, there exists a level

fail(ℓ) ≤ ℓ (in case of ties, take the lowest such level) such that the

condition does not hold, namely

∑ℓ
j=fail(ℓ) |D j | < ε ·

∑ℓ
j=fail(ℓ) |Pj |.

We next define a sequence of levels ℓ1, . . . , ℓq as follows. Set ℓ1 = L.
Given ℓi , halt if fail(ℓi) = 0, else set ℓi+1 = fail(ℓi)−1 and continue

with ℓi+1. Observe that the intervals [fail(ℓi), ℓi] are disjoint and

span [0,L]. We have

L∑
j=0

|D j | =

q∑
i=1

ℓi∑
j=fail(ℓi)

|D j | <

q∑
i=1

ε ·

ℓi∑
j=fail(ℓi)

|Pj | = ε ·
L∑
j=0

|Pj |.

This contradicts the assumption. □
The next lemma, shown in Section 4, establishes the time com-

plexity of the above algorithm.

Lemma 2. Suppose we perform an update at critical level ℓ. Let pi
be the total number of pivots at levels i ≤ ℓ right before this update.
Then, the total time taken for this update phase is O(

∑
i≤ℓ f

2pi2
i).

2.2 Analysis of the Competitive Ratio
Lemma 3. The competitive ratio of the algorithm is at most f

(1−ε) .

Proof. Consider the data structure right before the t-th deletion. Let
P t be the total set of pivots and U t

the set of undeleted pivots at

that time. We also letOPT t and F t
be the optimal and approximate

solution at that time.

Observe that |F t | ≤ f · |P t | by construction. We claim that

|OPT t | ≥ |U t |. This implies the claim since by construction |P t | ≤
|U t |/(1 − ε) at any time.

To see that, let us show by a simple induction that, for any two

distinct p,p′ ∈ U t
, there is no set S ∈ F covering both p and p′.

Thus OPT t needs to include a distinct set for each element ofU t
.

The Random Cover subroutine applied to X ′
never selects a pivot

p′ that is covered by sets selected due to a previous pivot p. This
implies that the property holds after the initialization step, where

X ′ = X .

Assume the property holds up to step t ≥ 1, and suppose that at

step t + 1 an update happens at critical level ℓ, involving elements

X ′
. By inductive hypothesis and the properties of Random Cover,

the claim holds for any pair of pivots p,p′ that are both contained

in X ′
or in its complement X \X ′

. Furthermore by construction X ′

is disjoint from any set S that covers a pivot p ∈ X \ X ′
, hence S

cannot cover any pivot p′ ∈ X ′
. □

2.3 Analysis of the Amortized Update Time
Our goal is to show that, after t deletions, the expected time taken

by the algorithm is O
(
f n +

f 2

ε5 · t
)
. In particular, over a sequence

of n deletions, the expected amortized cost per deletion is O
(
f 2

ε5

)
.

Suppose we perform an update at critical level ℓ. Let Pi be the
total set of pivots at level i ≤ ℓ right before this update, of which
Di denotes the set of deleted pivots. Let also pi = |Pi | and di = |Di |.

Recall that by Lemma 2, the total time taken for this update phase

is O(
∑
i≤ℓ f

2pi2
i). We call a level i ≤ ℓ charged if di ≥ ε

2
pi and

uncharged otherwise. We denote by L = (ℓq , ℓq−1, . . . , ℓ1) the

decreasingly ordered sequence of charged levels j ≤ ℓ. Observe

that, by the definition of critical level, ℓq = ℓ. Also let D be the

set of deleted pivots in the charged levels. The following lemma

creates a useful mapping between D and P := ∪i≤ℓPi .

Lemma 4. There exists a b-matching M between D and P such
that:

• Each element of P is matched to exactly one element of D and
each element of D to at most b = 2/ε elements of P ;

• If d ∈ D is matched to p ∈ P , then ℓ(d) ≥ ℓ(p).

Proof. Let us define ℓ0 = 0. For every k = 1, . . . ,q, by definition

ℓk−1∑
j=ℓk−1+1

dj ≤
ε

2

ℓk−1∑
j=ℓk−1+1

pj . (1)

Let us define Pℓk := ∪
ℓk
j=ℓk−1+1

Pj . Therefore, for every h = 1, . . . ,q,

we have

q∑
k=h

dℓk =
ℓ∑

j=ℓh−1+1

dj −

q∑
k=h

ℓk−1∑
j=ℓk−1+1

dj

ℓ critical

≥

ℓ∑
j=ℓh−1+1

εpj −

q∑
k=h

ℓk−1∑
j=ℓk−1+1

dj

117

Dynamic Set Cover: Improved Algorithms and Lower Bounds STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

(1)

≥

ℓ∑
j=ℓh−1+1

εpj −
ε

2

q∑
k=h

ℓk−1∑
j=ℓk−1+1

pj ≥
ε

2

ℓ∑
j=ℓh−1+1

pj =
ε

2

q∑
k=h

|Pℓk |.

(2)

Let us replace each pivot d ∈ D j , j ∈ L, with 2/ε copies, and let

us call the new set D ′
j . Each copy of a pivot inherits the level of

the original element. Let us sort D ′
:= ∪j ∈LD

′
j in non-increasing

order of level (breaking ties arbitrarily), and similarly sort P . Now,
for every element p ∈ P according to this order, we match p with

the first unmatched element d ′ ∈ D ′
. The b-matching is obtained

by collapsing the copies in D ′
of the same pivot in D. Observe that

this allows us to match all elements of P since

|D ′ | =
2

ε
|D | =

2

ε

q∑
k=1

dℓk
(2) with h = 1

≥
2

ε
·
ε

2

q∑
k=1

|Pℓk | = |P |.

It remains to show that the condition on the levels is satisfied.

Suppose there exists some d ′ ∈ D ′
matched to p ∈ P with ℓh−1 =

ℓ(d ′) < ℓ(p). By construction this implies that

2

ε

q∑
k=h

dℓk =

q∑
k=h

|D ′
ℓk
| <

q∑
k=h

|Pℓk |,

which contradicts (2). □
Consider a sequence of t deletions, and letT be time right before

the (t + 1)-st deletion occurs (or the end of the execution if no

such deletion exists). We wish to bound the expected total update

time till time T as a multiple of t . To that aim, we need a more

global notation. Suppose that level i is updated qi times in total,

and let P
j
i be the total set of pivots in the j-th such update. We use

P(i) to denote the multiset of pivots given by the union of the sets

P
j
i , and define p(i) := |P(i)|. The pivots of type P

j
i where level i is

charged on the j-th update are called charged and denoted CH (i),
ch(i) := |CH (i)|. The charged deleted pivots at level i are denoted
by D(i), d(i) := |D(i)|.

We call level i globally-charged iff ch(i) ≥ ε
4
p(i), and globally-

uncharged otherwise. We also let GC denote the (random) set of

globally-charged levels. We next show that, in order to bound the

total update time, we can focus on globally-charged levels only.

Lemma 5. The expected running time of the algorithm is O(f n) +

O
(∑L

i=0 Pr [i ∈ GC] · E
[
f 2
ε 2

id(i)
��� i ∈ GC

])
.

Proof. Excluding the initialization cost of O(f n) and by Lemma 2,

we can focus on bounding O(
∑
i f

2p(i)2i). We use the following

token argument to upper bound the latter cost. We provide f 22i

tokens to each pivot p ∈ P(i), where each token can pay for a large

enough constant amount of work. Then we transfer these tokens to

charged deleted pivots in globally-charged levels so that all tokens

are transferred and each charged deleted pivot at level i is charged

with at most
4f 2
ε 2

i
tokens.

We next describe the transfer process. LetM denote theb-matchings

in Lemma 4. In particular, each pivot p ∈ P(i) is matched with some

charged deleted pivot M(p) at no lower level, and each charged

deleted pivot is matched with at most 2/ε pivots. We remark that

uncharged pivots p have their M(p) at a strictly higher level by

construction. First of all, each pivot p ∈ P(i) transfers its tokens
to the corresponding charged deleted pivot according toM . Note

that at this point each charged deleted pivot at level i owns at most

2f 2
ε 2

i
tokens.

Next we proceed in increasing order of level i . For a given level

i , each charged deleted pivot d ∈ D(i) owns the tokens originally
owned by d and possibly tokens transferred from lower levels. If

i ∈ GC we do nothing. Otherwise (i.e., i < GC), we define a b-
matchingMi

where each charged deleted pivot d ∈ D(i) is matched

with
2

ε distinct uncharged pivots in P(i) so that no uncharged pivot
in P(i) is matched twice. Note that this is possible since, by definition

of globally-uncharged level, the uncharged pivots in P(i) are at least

p(i) − ch(i) ≥
(
1 −

ε

4

)
p(i) ≥

(
1 −

ε

4

)
4

ε
ch(i) ≥

2

ε
ch(i),

where we assumed ε ≤ 2 w.l.o.g. Now d transfers an
ε
2
-fraction

of its tokens to each corresponding pivot in Mi (d). Finally each

matched uncharged pivot p ∈ P(i) transfers the received tokens to

the corresponding deleted pivotM(p) in the global b-matchingM .

Observe thatM(p)must be at strictly higher level than p, hence the
process is well-defined.

Clearly at the end of the process all the tokens are transferred

to charged deleted pivots in globally-charged levels and no token

is left. We next prove by induction that, at the end of iteration i
(where level i is considered), the number of tokens charged to each

d ∈ D(i) is at most
4

ε f
2
2
i
. The claim follows.

The base of the induction i = 0 is trivially true. Indeed, if i < GC
all the tokens of d are transferred to higher levels. Otherwise d can

only be charged with the starting number of tokens, which is at

most
2f 2
ε since there are no lower levels that can transfer tokens to

level i . Note that the number of tokens that d is charged with does

not change in the rest of the token transfer process.

Next consider a level i > 0, and assume the claim is true for levels

i − 1 and lower. For any d ∈ D(i), again the claim holds trivially if

i < GC . Otherwise, d initially has up to
2f 2
ε 2

i
tokens. Furthermore,

d can receive extra tokens from up to
2

ε pivots p of strictly lower

levels. Each such p at level ℓ ≤ i − 1 transfers to d an
ε
2
-fraction of

the tokens of some charged deleted pivot of level ℓ. By the inductive

hypothesis, the total number of tokens received by d at the end of

iteration i is at most

2

ε
f 22i +

2

ε
·
ε

2

·
4

ε
f 22i−1 =

4

ε
f 22i .

Again, the number of tokens that d is charged with does not change

in the rest of the token transfer process. □
Based on the above lemma, what remains to show is a bound

for E

[
2
id(i)

�� i ∈ GC
]
. We bound this in terms of E [t(i) | i ∈ GC],

where t(i) is the (random) number of deletions that happen at level i .
Instead of considering t(i) directly, we rather focus on the following
quantity. For a pivotp(S) sampled from some set S (considering only
the uncovered elements at that time), let i(S) be the relative position
ofp(S) in S w.r.t. the deletion order.We remark that i(S) is uniformly

distributed in {1, . . . , |S |}. Define x(i) :=
∑
S :p(S)∈D(i) i(S). Notice

that deterministically x(i) ≤ t(i) since all the elements that appear

in a set S no later than the respective pivot p(S) in the deletion

order are deleted assuming p(S) is deleted.
Let us also condition on p(i) = p for some fixed value p, and

consider E [x(i) | i ∈ GC,p(i) = p]. We now relate this quantity to

another random process. Suppose there is an adversary that defines

118

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA A. Abboud, R. Addanki, F. Grandoni, D. Panigrahi and B. Saha

a collection of exactly p sets S (possibly with repetition), where

each set S ∈ S has size |S | ∈ [2i , 2i+1), and a deletion sequence over

the elements of the sets. Now we sample a pivot p̃(S) uniformly at

random in each set S ∈ S, and let ĩ(S) be the relative position of

the pivot p̃(S) in S w.r.t. the deletion sequence. The adversary is

informed about the values ĩ(S). The adversary chooses a subcollec-

tion S′ ⊆ S of size at least
ε2
8
p, and computes x̃p (i) =

∑
S ∈S′ ĩ(S).

The adversary makes these choices in order to minimize E

[
x̃p (i)

]
.

Lemma 6. E

[
x̃p (i)

]
≤ E [x(i) | i ∈ GC,p(i) = p].

Proof. We use a coupling argument. Intuitively, the adversary can

mimic the behavior of any execution of our decremental algorithm.

In more detail, consider any execution of the decremental algorithm

such that i ∈ GC and p(i) = p. We couple the behavior of the

adversary with this execution as follows. The adversary selects the

same deletion order as in the input, and as collection S precisely

the sets that appear at level i right before each update phase that

involves that level (hence |S| = p). By coupling, we can assume

that the sampled pivots in S are precisely the pivots P(i) of level
i in the execution of the algorithm. The collection S′

is given by

the sets S ∈ S such that the corresponding pivots are deleted and

charged in the considered execution of the algorithm. Observe that

d(i) ≥ ε
2
ch(i) ≥ ε2

8
p(i) = ε2

8
p, hence the constraint |S′ | ≥ ε2

8
p

is satisfied. One has x̃p (i) = x(i) deterministically in the above

construction, hence E

[
x̃p (i)

]
= E [x(i)]. The claim follows since

the adversary makes the optimal choices in order to minimize

E

[
x̃p (i)

]
. □

Lemma 7. E

[
x̃p (i)

]
≥ ε4

1024
2
ip.

Proof. Consider the collection S of p sets and the deletion order

chosen by the adversary. Once the p pivots P̃(i) are fixed, the best
strategy for the adversary is to choose the sub-collection S′

of

precisely
ε2
8
p sets S with smallest ĩ(S) (breaking ties arbitrarily). It

remains to bound the expected value of x̃p (i) =
∑
S ∈S′ ĩ(S).

We say that a set S ∈ S is bad if ĩ(S) ≤ ε2
32
2
i
and good otherwise.

We let b(i) and д(i) be the number of bad and good sets, respectively.

Observe that each set is bad independently with probability at most

ε2
32
, hence E [b(i)] ≤ ε2

32
p. By Markov’s inequality,

Pr

[
b(i) ≥

ε2

16

p

]
≤

1

2

.

Given the event E =
{
b(i) < ε2

16
p
}
, one has that at least one half of

the
ε2
8
p selected sets are good, in which case deterministically

x̃p (i) ≥
ε2

16

p ·
ε2

32

2
i =

ε4

512

2
ip.

We can conclude that

E

[
x̃p (i)

]
≥ Pr [E] · E

[
x̃p (i)

�� E]
≥

1

2

·
ε4

512

2
ip. □

Finally, we put the above lemmas together to obtain the desired

bound.

Lemma 8. The expected running time of the algorithm in the decre-

mental case is O
(
f n +

f 2

ε5 · t
)
, where t is the number of deletions.

Proof. Let us consider a given level i . One has

E [t(i) | i ∈ GC,p(i) = p] ≥ E [x(i) | i ∈ GC,p(i) = p]

Lem. 6

≥ E

[
x̃p (i)

] Lem. 7

≥
ε4

1024

2
ip. (3)

Hence

E [t(i) | i ∈ GC] =
∑
p

Pr [p(i) = p | i ∈ GC]·E [t(i) | i ∈ GC,p(i) = p]

(3)

≥
∑
p

Pr [p(i) = p | i ∈ GC] ·
ε4

1024

2
ip =

ε4

1024

2
i · E [p(i) | i ∈ GC]

≥
ε4

1024

2
i · E [d(i) | i ∈ GC] . (4)

Now, we note that

L∑
i=0

Pr [i ∈ GC] ·
f 2

ε
2
i
E [d(i) | i ∈ GC]

(4)

≤

L∑
i=0

Pr [i ∈ GC] ·
f 2

ε
2
i 1024

ε42i
E [t(i) | i ∈ GC]

≤

L∑
i=0

1024f 2

ε5
E [t(i)] =

1024f 2

ε5
t .

The lemma now follows from Lemma 5. □
We summarize the results in the following theorem.

Theorem 1. Given an ε > 0, let∆ = f 2

ε5 . There exists a decremental
algorithm for set cover that achieves an f (1 + ϵ) approximation and
takes O(∆ · t) time in expectation over t updates.

3 THE FULLY DYNAMIC SET COVER
ALGORITHM

In this section, we extend the algorithm for the decremental case to

the fully dynamic case. At any time t , letA ⊆ X denote the elements

that need to be covered; we call these the active elements. Our goal

is to maintain a feasible set cover F for the active elements A and

ensure that the cost of F is at most (1+ϵ)f times that of an optimal

solution. At the beginning, A = ∅ and F = ∅. Elements are then

inserted or deleted from A in a fixed sequence, independent of the

randomness of the algorithm. If an element is inserted and then

gets deleted and reinserted, we treat the two insertions separately

as two copies of the same element.

3.1 The Algorithm
We now describe the update phases where the algorithm changes

its solution in response to the insertions and deletions of elements.

The update phases are very similar to the decremental algorithm,

but with a few critical changes. To describe the changes, we need

to introduce some additional notation. Just like the decremental

algorithm, the fully dynamic algorithm maintains a set of pivots P ,
and at any time, the solution F can be completely specified by P
as follows: F = {S | S ∋ p}. S(p) denotes the set of elements from

which a pivot p ∈ P is chosen and X(p) denotes the set of elements

p is accounted to cover at any point of time. If |S(p)| ∈ [2i , 2i+1), we

say that pivotp is a level-i pivot, and denote ℓ(p) = i . We call the sets

119

Dynamic Set Cover: Improved Algorithms and Lower Bounds STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

{S | S ∋ p, ℓ(p) = i} level-i sets. In addition, we partition X (p) into
two subsetsOriд(p) and Extra(p), that isX (p) = Oriд(p)∪Extra(p)
and Oriд(p) ∩ Extra(p) = ∅. An element e ∈ Oriд(p) is called an

original element and an element e ∈ Extra(p) is called an extra
element. Oriд(p) consists of all elements that p is accounted to

cover at the time when p was chosen to be a pivot and F + = {S ∈

S′
: p ∈ S} sets are included in the solution. Thus, S(p) ⊆ Oriд(p).

It is possible that p is accounted to cover more elements due to later

updates. Those elements are added to Extra(p). Along with P , the
algorithm also maintains sets D and U of deleted and undeleted

pivots respectively, just like in the decremental algorithm. When

an element e ∈ P is deleted, we move e fromU to D but keep this

element in P . Changes to P are done only during an update phase

which we describe below.

Insertion of a new active element. Supppose a new element e is
inserted in the set of active elementsA. If {S | S ∋ e} ∩ F , ∅, then

e is already covered by the current solution F . In this case, let S
be the set containing e at the highest level breaking ties arbitrarily.

If p ∈ P ∩ S denotes the pivot in S , then we insert e in Extra(p)
and X (p), and F remains unchanged. Otherwise, e is not covered
by the current solution F . In this case, we include e as a level-

0 pivot and set S(e) = {e}, X (e) = Oriд(e) = {e}. We update

F = F ∪ {S | S ∋ e}. We also update the sets P andU to include e .

Deletion of an existing active element. When an element e is
deleted from the set of active elements A, we mark e as deleted

from the sets {S | S ∋ e} ∩ F . If e ∈ P , we move e fromU to D. By
doing so, if |D | > ϵ · |P |, then we say that an update phase has been

triggered, and perform the following additional steps.

Update Phase. First, we fix a critical level ℓ using the level fixing
process of the decremental algorithm. Having fixed this level ℓ, we

discard all sets F (p) from F that were added by pivots p at levels ℓ

or lower, i.e., where ℓ(p) ≤ ℓ. Correspondingly, these pivots p are

also removed from P and from either D orU depending on whether

they are deleted or undeleted. As a result, a set of active elements

become uncovered in F ; this set is denoted X ′
.

Next, the update phase has two steps, a movement step and a

covering step, to cover the elements in X ′
.

Movement step: For each element e ∈ X ′
, we check if there is a

set S ∈ F containing e at a level ℓ′ > ℓ. If yes, we select a set S ∋ e
at the highest level (breaking ties arbitrarily). If p = P ∩ S , then e is
added to Extra(p) and X (p).
Covering step: Let Y ′ ⊆ X ′

denote the elements left uncovered

after the movement step.We now run the RandomCover subroutine

on the instance (Y ′,S′) induced byY ′
and add the resulting sets F ′

to the overall solution F . We say that levels ℓ and below have been

updated in the current update phase. The newly selected pivots

are added to P and U . For every newly chosen pivot p ∈ Y ′ ∩ P ,
if S(p) ∈ [2i , 2i+1), then pivot p is a level-i pivot and we include

{S | S ∋ p} at level i . Note that it is possible that i > ℓ due to

newly inserted elements. Also note that all the elements of Y ′
now

become original elements after the covering step.

The next lemma, shown in Section 4, establishes the time taken

to implement the above algorithm.

Lemma 9. The above algorithm for the insertion of a new element,
or the deletion of an existing element that does not trigger an update

phase, takes O(f) time. The time complexity of an update phase is
O(f |X ′ |).

3.2 Analysis of the Competitive Ratio
Lemma 10. The competitive ratio of the algorithm is at most f

(1−ε) .

Proof. Consider the data structure right before the t-th update. Let

P t be the set of pivots at that time, with U t
being the subset of

undeleted pivots. We also let OPT t and F t
be the optimal and

approximate solution at that time.

Observe that |F t | ≤ f · |P t | by construction. We claim that

|OPT t | ≥ |U t |. This implies the claim since by construction |P t | ≤
|U t |/(1 − ε) at any time.

To see that, let us show by a simple induction that, for any two

distinct p,p′ ∈ U t
, there is no set S ∈ F covering both p and p′.

Thus OPT t needs to include a distinct set for each element ofU t
.

Since we start with an empty set cover, the property holds at the

outset. Assume the property holds up to step t ≥ 1, and consider

step t + 1. If an element e is inserted at time t + 1, then e becomes a

pivot if and only if e is not covered by any existing set in F . Hence,

the property holds. If a non-pivot element e is deleted at t + 1, or
e is a pivot but its deletion does not trigger an update phase, then

since we do not change the solution F , the property holds by the

inductive hypothesis.

Now, assume e is a pivot and its deletion triggers an update

phase at critical level ℓ′, with the elements covered at levels i ≤ ℓ
being denoted by X ′

. Note that we select a set of new pivots from

Y ′ ⊆ X ′
and let F ′

denote the new sets that are added after the

update phase. We consider three cases. if p,p′ ∈ F , then they do

not belong to the same set by the inductive hypothesis. If p,p′ ∈ F ′
,

then they do not belong to the same set since the Random Cover

subroutine picked both these elements as pivots. Finally, if p ∈ F

and p′ ∈ F ′
, then the movement step ensures that p′ is not covered

by F whereas all sets containing p are in F . Therefore, p and p′

do not belong to the same set in this case either. Therefore, the

property holds after the (t + 1)-st update. □

3.3 Analysis of the Amortized Update Time
Consider a sequence of t updates, and letT be the time right before

the (t + 1)-st update occurs (or the end of the execution if no such

update occurs). Our goal is to bound the expected update time till

T as O
(
t ·

f 2 logn
ϵ

)
. We recall some definitions from Section 2 and

introduce some new notation for the purpose of the analysis.

Oldnotation.Recall the definition of the critical level ℓ and Lemma 4.

Note that when performing an update at a critical level ℓ, a level

i ≤ l is said to be charged if di ≥
ϵ
2
pi and uncharged otherwise.

Suppose that level i is updated qi times in total, and let P
j
i be

the total set of pivots in the j-th such update. P(i) is the multiset

of pivots obtained by taking union over P
j
i and p(i) = |P(i)|. The

pivots of type P
j
i where level i is charged on the j-th update are

called charged and denoted CH (i), ch(i) = |CH (i)|. The charged

deleted pivots at level i are denoted D(i),d(i) = |D(i)|. Let I be the
total number of insertions up to time T .

Recall that a level i is globally-charged iff ch(i) ≥ ϵ
4
p(i), and

globally-uncharged otherwise. Let GC denote the random set of

globally-charged levels.

120

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA A. Abboud, R. Addanki, F. Grandoni, D. Panigrahi and B. Saha

New notation. Let us now define a new mapping R that maps an

element e (on which an update phase operates) either to a charged

deleted pivot or to an insertion. To construct this mapping, if an

element e takes part in qe update phases, including both the move-

ment and the covering steps, then each of these occurrences is

treated separately.

An element e ∈ Oriд(p) is mapped to a charged deleted pivot d ,
i.e., R(e) = d , if M(p) = d . Now consider an element e ∈ Extra(p).
If e has never been an original element, then it must have been

inserted as an extra element and has taken part only in movement

steps since then. This is because whenever a covering step processes

an element, it becomes an original element. In this case, we map e
to its insertion, denoted eI and set R(e) = eI . Otherwise, consider
the last update phase, when e was an original element just before

the update and became an extra element immediately after it. If

e ∈ Oriд(p′) andM(p′) = d ′ during that phase, then set R(e) = d ′.
Note that all qe occurrences of e are mapped by R to either to

the insertion eI or to charged deleted pivots. If R(e) = eI , we say
insertion eI is responsible for e and if R(e) = d , we say the charged

deleted pivot d is responsible for e . Note that a charged deleted

pivot d is responsible for an element e if an only if e ∈ Oriд(p) for
some pivot p andM(p) = d .

Let us use L = ⌊log
2
n⌋ to denote the largest level and X to

denote the multiset of elements obtained by taking the union of

Oriд(p) and Extra(p) over all p ∈ P .

Lemma 11. Each charged deleted pivot d ∈ D(i) is responsible for
at most (2/ϵ) · f · 2i+1 · (L + 1) elements of X.
Proof. Consider a deleted pivot d ∈ D(i) and let Pd = {p | M(p) =
d} be the set of pivots mapped to d . Consider any pivot p ∈ Pd .
Note that, d is only responsible for the elements inOriд(p) and that
ℓ(p) ≤ ℓ(d) = i . By definition of ℓ(p), each set containing p covers

less than 2
ℓ(p)+1

new elements at the time p was selected to be a

pivot. Hence |Oriд(p)| < f · 2ℓ(p)+1 ≤ f · 2i+1. Now let us count

the number of times d was held responsible for e ∈ Oriд(p). The
element e was an original element just before the update phase that

operates on d . If e gets processed during that phase by the covering
step, then d was responsible for e only once. Otherwise, e gets

processed by the movement step during that phase and becomes

an extra element. If e is processed r times by the movement step

before becoming an original element again, then d is responsible

r + 1 times for e . However, the level of e strictly increases after each
movement step. Therefore, r ≤ L. Thus, d can be responsible for

e at most L + 1 times. This holds for all p ∈ Pd . Now, the claim
follows noting |Pd | ≤ 2/ε by Lemma 4. □

Lemma 12. Each insertion eI ∈ I is responsible for at most L + 1
elements of X.
Proof. An insertion eI is only responsible for the element e . If e
takes part in r movement steps before becoming an original element

for the first time, then eI is responsible r + 1 times for e . Since the
level of e strictly increases after each movement step, we have r ≤ L.
Thus, the claim follows. □

We now have an analog of Lemma 5.

Lemma 13. The expected running time of the algorithm after t
updates is

O
(
f · |I | · (L + 1) +

∑L
i=0 Pr [i ∈ GC] · E

[
f 2
ε · 2i · d(i) · (L + 1)

��� i ∈ GC
])
.

Proof. From Lemma 9, the total update time up to time T is O(f ·

(|I | + |X|)). Now from Lemma 11 and Lemma 12,

f ·(|I |+ |X|) = f ·

(
(L + 1) · |I | + (2/ϵ) · f · (L + 1) ·

∑
i
d(i) · 2i+1

)
.

We can give each charged deleted pivot
4

ϵ · f · (L+ 1) · 2i tokens and
then follow the token transfer process of Lemma 5 so that all these

tokens are transferred to charged deleted pivots in the globally

charged levels. Moreover, each charged deleted pivot in a globally

charged level contains at most
8

ϵ · f · (L + 1) · 2i tokens. The lemma

now follows. □
Let t(i) denote the (random) number of deletions at level i up

to time T , and let t ′ =
∑
i t(i). Then t ′ ≤ t . Exactly as in the

decremental case, we can now use Lemmas 6, 7, and 8 to bound

L∑
i=0

Pr [i ∈ GC] · E

[
f 2

ε
2
id(i)(L + 1)

���� i ∈ GC

]
≤

1024

ϵ5
f 2t(L + 1).

(5)

Lemma 14. The expected running time of the algorithm in the fully

dynamic case is O
(
f 2 logn

ε5 · t
)
, where t is the number of updates.

Proof. This follows from Lemmas 8 and 13, and Eq. (5), noting that

t ′ ≤ t , |I | ≤ t , and L = O(logn). □
We summarize the results in the following theorem.

Theorem 2. Given an ε > 0, let ∆ = f 2 logn
ε5 . There exists a

fully-dynamic algorithm for set cover that achieves an f (1 + ϵ) ap-
proximation and takes O(∆ · t) time in expectation over t updates.

4 IMPLEMENTATION DETAILS AND
RUNNING TIME

In this section, we give implementation details of the algorithms,

leading to the proofs of Lemma 2 (decremental) and Lemma 9 (fully

dynamic).

4.1 Decremental Algorithm
We assume that any given set cover instance (X ′,S′), with maxi-

mum frequency f is represented as follows. Elements (resp., sets)

are labelled 1 to n′ = |X ′ | (resp.,m′ = |S′ |). W.l.o.g. we can assume

that each set covers at least one element of X ′
, so thatm′ ≤ f · n′.

We have a vector SET indexed by elements, where SET [e] is the list
of sets S′(e) containing e . Observe that SET [e] contains at most f
entries. We assume that sets are described by a vector ELEM in-

dexed by sets, where ELEM[S] is a list of elements contained in set

S . We keep a pointer from each e ∈ ELEM[S] to the corresponding

entry S in SET [e] and vice-versa.

In order to implement deletions, we proceed as follows. We main-

tain a Boolean vector DEL indexed by e ∈ X ′
, which is initialized

to false. When element e is deleted, we set DEL[e] = true . Further-
more, we scan SET [e], and for each S ∈ SET [e] we remove e from
ELEM[S]. Note that this can be done in O(1) time for each set S
using the pointers mentioned above, i.e., in time O(f) per element

e . This also implies that deleting all the elements one by one takes

O(f |X ′ |) time in total.

The Random Cover Subroutine. The Random Cover procedure

computes a sequence of pivots P ′. Furthermore, for each pivot

121

Dynamic Set Cover: Improved Algorithms and Lower Bounds STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

p ∈ P ′, it computes a collection F (p) of sets that are added to the

solution because of p, and the corresponding set X(p) of newly
covered elements. This takesO(f + |X(p)|) time for a given pivot p.

It remains to specify how we efficiently extract a set S of maxi-

mum cardinality at each step to select a pivot. We maintain a list

SORT whose entries are pairs (i,Li), where i is the cardinality of

a set and Li is the list of sets of cardinality i . We store all such

entries with Li not empty, in decreasing order of i . This list can be

initialized in linear time O(f |X ′ |) (say, using radix sort). We also

maintain pointers from each set S to the corresponding entry in

the list L |S | .

The first element of the first list Li is the selected set S at each

step. Then we update SORT as follows. Each time we remove an

element e from some set S ′ of cardinality i , we remove S ′ from
Li and add it to Li−1. Note that this might involve creating a new

entry (i − 1,Li−1) in SORT (if S becomes the only set of cardinality

i − 1), or deleting the entry (i,Li) from SORT (if S was the only set

of cardinality i). In any case, these operations can be performed in

O(1) time. It follows that the entire procedure can be implemented

in time O(f · |X ′ |) time.

The Set Cover Solution. We store and maintain the approximate

solution as follows. We maintain the set cover instance under dele-

tions as described before. Furthermore, we maintain vectors F and

X. For a pivot p, F (p) is the corresponding list of selected sets be-

cause of p, andX(p) is the associated list of newly covered elements

due to these selected sets. These two lists are empty if p is not a

pivot.

Level selection. We maintain counters D and P labelled by levels

i = 0, . . . , ⌈log
2
n⌉, where D[i] (resp., P[i]) is the number of deleted

pivots (resp., all pivots) at level i . When we delete a pivot at level

i , we increment D[i]. When we update at critical level ℓ, we set

D[i] = P[i] = 0 for all i ≤ ℓ. Furthermore we increment P[i] for
each newly computed pivot of level i . Clearly these operations have
amortized cost O(1) per update. We similarly maintain the total

number D̃ and P̃ of deleted pivots and all pivots, respectively. By

comparing D̃ and P̃ at each deletion, we can check whether the

condition for the update of a suffix is satisfied. In that case, using D
and P , it is easy to compute inO(ℓ2) time the lowest critical level ℓ.

Update Phase.We next describe how, given a critical level ℓ, we

update the approximate solution. We keep a list GREEDY whose

entries are pairs (j, Pj). Here j is a level and Pj is the list of pivots of
that level.We keep such entries only for non-empty Pj , in increasing
order of j.

Given a critical level ℓ, we scan the list GREEDY and compute

P ′ := ∪j≤ℓPj together with X ′
:= ∪p∈P ′X(p) (represented as lists).

We remove all the corresponding entries from GREEDY , and reset

the corresponding values of ℓ(p), S(p), F (p), and X(p).
Let us show how to build the data structures for the subinstance

(X ′,S′), with S′ = {S ∩ X ′
: S ∈ S and S ∩ X ′ , ∅}, in time

O(f |X ′ |). Let n′ = |X ′ | and m′ = |F ′ | ≤ f n′. By scanning the

entries of SET corresponding to X ′
, we build the list of indexes S′

.

We now map X ′
into a set of new indexes in [1,O(n′)] by means

of a perfect hash function, and similarly map F ′
into a set of new

indexes in [1,O(m′)]. These perfect hash functions can be built in

expected linear time using well-known constructions (say, 2-level

hashing [20]). Observe that some indexes might not be used: we

interpret those indexes as dummy elements and sets. Given this, we

can easily build in linear time the data structures SET ′
and ELEM ′

for the new instance.

The use of random hash functions can be avoided by assuming

that we are given access to two arrays MAPelem and MAPset re-
spectively of size n and m ≤ nf that are initialized to all zeros.

We now map X ′
to [1,n′] and S′

to [1,m′] as follows. We create

vectorsMAP−1elem andMAP−1set of size n
′
and f n′, resp., which are

initialized to zero. We iterate over X ′
: when considering the j-th

element of X of global id k (that is, it is the k-th element in [1,n]),
then we set MAPelem [k] = j and MAP−1elem [j] = k . Similarly, we

iterate over S′
and update MAPset and MAP−1set analogously. In

order to handle possible duplicates in S′
(and possibly in X ′

), we

simply do not perform the update when we find an entry ofMAPset
(orMAPelem) that is already non-zero. Now, X ′

has been mapped

to [1,n′] and S′
has been mapped to [1,m′]. This allows us to build

vectors ELEM ′
and SET ′

in the same way as above. Once the update

phase has ended, we resetMAPelem andMAPset to 0 by iterating

overMAP−1elem andMAP−1set . The overall process takesO(f n
′) time.

We feed the vectors SET ′
and ELEM ′

to the Random Cover

subroutine that outputs a list P ′ of pivots, plus the associated values
ℓ(p), S(p), F (p), and X(p) for each p ∈ P ′. Using MAP−1elem and

MAP−1set we canmap back the indexes of the corresponding elements

and sets into the original indexes.

We remark that by construction, we will have ℓ(p) ≤ ℓ. Now,
we build a list GREEDY ′

of the same type as GREEDY , however
restricted to pivots in P ′ and to the respective levels. Finally, we

concatenate GREEDY ′
to the beginning of the list GREEDY .

We are now ready to prove Lemma 2. We first observe that, up to

constant factors, the time taken in one level fixing process at critical

level ℓ is at most that in the subsequent update phase. Indeed, recall

that level fixing at level ℓ takes time O(ℓ2). Since ℓ is the lowest
critical level, ℓ − 1 is not critical, therefore there is at least one

deleted pivot in level ℓ. This implies that this update involves at

least 2
ℓ
elements, thus having cost Ω(2ℓ). The claim follows.

We can therefore focus on the cost of the update phase. Each

pivot p at level i that participates in the update corresponds to at

most f sets of size at most 2
i+1

each. Hence the set X ′
of elements

that participate in the update has size at most

∑
i≤ℓ f pi2

i+1
. As

argued above, we can build the corresponding set cover instance

(X ′,S′) and run the Random Cover subroutine on it in O(f |X ′ |)

time. This completes the proof of Lemma 2.

4.2 Fully Dynamic Algorithm
We now briefly describe the changes in the fully-dynamic algorithm

that leads to Lemma 9. Along with each X(p), we also maintain

two disjoint subsets of X(p): Oriд(p) and Extra(p). When a set S
is included in the current solution with pivot p and newly covers

elements X(p), we follow the implementation details of the decre-

mental case. In addition, we set Oriд(p) = X(p) and Extra(p) = ∅.

This does not change the asymptotic run time.

When an element e is inserted, we iterate over SET (e) and check
if there exists any set S ∈ SET (e) present in the current solution.

For each S ∈ SET (e), the check can be implemented in O(1) time

by maintaining a Boolean variable for every S ∈ S and setting

it to 1 whenever it is included in the solution. If S ∈ S, we also

122

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA A. Abboud, R. Addanki, F. Grandoni, D. Panigrahi and B. Saha

maintain a pointer to its pivot p, and the value ℓ(p). If none of the
sets in SET (e) is present, then we include all sets in SET (e) in the

solution, mark e as the pivot for these sets and set ℓ(e) = 0. We set

X(e) = {e}, Oriд(e) = {e} and Extra(e) = ∅. This entire process

can be implemented in O(f) time as |SET (e)| ≤ f . Thus, insertion
takes O(f) time.

Deletion without an update phase is implemented in the same

way as in the decremental case and, therefore, takes O(f) time

as well. If there is an update phase at a critical level ℓ, given the

instance (X ′,S′), we first execute the movement step as follows.

We scan every element e ∈ X ′
and iterate over SET (e) to check if

there exists a set S ∈ SET (e) that is in the current solution at a level

strictly higher than ℓ. If so, we include e as an extra element in the

highest such set and discard e from X ′
. This entire operation takes

O(f |X ′ |) time.

Let Y ′
be the uncovered elements at the end of the movement

step. We run the covering step as in the decremental case over Y ′
.

This takesO(f |Y ′ |) time which is bounded byO(f |X ′ |). Whenever

a new pivot p is selected, the level of p and the corresponding

sets are determined inO(|S(p)|) time. Accordingly, the lists Li s are
updated. These updates take O(1) time per set.

Thus, the update phase in the fully dynamic algorithm can be

implemented in O(f |X ′ |) time, thereby proving Lemma 9.

5 CONDITIONAL LOWER BOUNDS FOR
DYNAMIC SET COVER

A fast algorithm for a dynamic problem usually gives a fast algo-

rithm for its static version. If we can solve dynamic Set Cover with

preprocessing time P(n, f) and update time T (n, f), then we can

solve the static Set Cover problem in P(n, f)+n ·T (n, f) time: n up-

dates are sufficient in order to create an offline instance. This simple

connection immediately leads to some lower bounds for dynamic

Set Cover. In particular, we get that it is NP-Hard to get an o(logn)
approximation with polynomial preprocessing and update times.

However, this connection does not give any lower bound in the

polynomial time solvable regime of Set Cover where amin{ f , logn}
approximation is possible in linear time. Could there be a dynamic

algorithm with such approximation factors that has o(f) or even
O(1) update time? This would not imply a new static algorithm for

Set Cover.

Of course, such an algorithm is impossible if to insert an element

we must explicitly specify the O(f) sets it appears in. But in the

model we consider, an update can be specified with much fewer

bits. We assume that all elementsX and sets S are given in advance,

as well as all the membership information. Then, an update can

add or remove an elements (in the Element-Update case) or sets

(in the Set-Updates case). Only elements from X (or sets from S)

can be added or removed, and when an element is removed then

a set-cover does not need to cover it. Notice that O(log |X |) bits

are needed to specify an element insertion, and its membership

in all the sets is known from the initial input. In this model, it

is conceivable that an algorithm can spend o(f) time per update

and maintain some non-trivial approximation. The results in this

section show that this is unlikely.

Under SETH, we show that no algorithm can preprocess an

instance withm sets and n elements in poly(n,m) time, and subse-

quently maintain element (or set) updates inO(m1−ε) time, for any

ε > 0, unless the approximation factor is essentiallymδ
, for some

δ > 0. Note that a factorm approximation can be maintained triv-

ially in constant time (pick either zero or all sets). and we show that

essentially anymo(1)
approximation algorithm requires Ω(m0.99)

time.

Theorem 3 (Main Lower Bound). Let nω(1) < m < 2
o(n) and

t ≥ 2, such that t = (n/logm)o(1). Assuming SETH, for all ε > 0,
no dynamic algorithm can preprocess a collection of m sets over a
universe [n] in poly(n,m) time, and then support element (or set)
updates in O(m1−ε) amortized time, and answer Set Cover queries in
O(m1−ε) amortized time with an approximation factor of t .

We can state the following corollary in terms of the frequency

bound f .

Corollary 1. Assuming SETH, any dynamic algorithm for Set
Cover onn elements and frequency bound f , wherenω(1) < f < 2

o(n),
that has polynomial time preprocessing and amortized update and
query timeO(f 1−ε), for some ε > 0, must have approximation factor
at least (n/log f)Ω(1).

Proof. Without assuming anything about the instances in Theo-

rem 3 we can conclude that f ≤ m whilem ≤ nf < f 2. Therefore,

any approximation algorithm with factor O((n/log f)δ) also gets

an approximation of O((n/2 log f)δ) = O((n/log f 2)δ) which is

smaller than O((n/logm)δ) and it is enough to refute SETH via

Theorem 3. □
The rest of this section is dedicated to the proof of Theorem 3.

Our starting point is the following SETH-based hardness of ap-

proximation result, which was proven first in [1] with a slightly

smaller approximation factor, and was strengthened in [16] using,

in part, the technique of [35]. These results use the distributed PCP

framework of [1] for hardness of approximation results in P, and

ours is the first application of this framework to dynamic problems.

Theorem 4 ([1, 16, 35]). Let nω(1) < m < 2
o(n) and t ≥ 2, such

that t = (n/logm)o(1). Given two collections ofm sets A,B over a
universe [n], no algorithm can distinguish the following two cases in
O(m2−ε) time, for any ε > 0, unless SETH is false:
YES case there exist A ∈ A,B ∈ B such that B ⊆ A; and
NO case for every A ∈ A,B ∈ B we have |A ∩ B | < |B |/t .

From this theorem and standard manipulations it is easy to con-

clude the following statement. There are two differences in the

statement below: first, the sizes of A and B are asymmetric, and

second, the approximation is in terms of the number of sets required

to cover a single b ∈ B, rather than the size of the overlap.

Lemma 15. Let nω(1) < m < 2
o(n) and t ≥ 2, such that t =

(n/logm)o(1), and for all 0 < a ≤ 1. Given two collections of sets
A,B over a universe [n], where |B| =m and |A| =ma , no algorithm
can distinguish the following two cases in O(m1+a−ε) time, for any
ε > 0, unless SETH is false:
YES case there exist A ∈ A,B ∈ B such that B ⊆ A; and
NO case there do not exist t sets A1, . . . ,At ∈ A, and a set B ∈ B

such that B ⊆ A1 ∪ · · · ∪At .

Proof. Assume for contradiction that such an algorithm exists. Given

an instance A,B of the problem in Theorem 4 we show how to

solve it in O(m2−ε) time. Partition A into k = m1−a
collections

123

Dynamic Set Cover: Improved Algorithms and Lower Bounds STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

A1, . . . ,Ak of sizema
each, and invoke our algorithm on the asym-

metric instance Ai , B for each i = 1 · · ·k . The total time will be

k ·O(m1+a−ε) = O(m2−ε). If the original (symmetric) instance was

a YES case, then clearly at least one of the k asymmetric instances

is a YES case. On the other hand, if it was a NO case, then any

A ∈ A cannot cover more than a 1/t fraction of any set B ∈ B and

therefore all the asymmetric instances are NO cases. □
Next we take this static set-containment problem and reduce it

to dynamic Set Cover. We show two distinct reductions, a simpler

one for the element updates case, and then a more complicated one

with set updates.

5.1 Element Updates
Given an instance A,B of the problem in Lemma 15, we construct

an instance of dynamic Set Cover with approximation factor (t − 1)

as follows. The universe [n] will be the same, and all sets in A will

appear in the instance. However, the sets in B will not, and they

will be implemented implicitly in a dynamic way. Initially, all the

universe elements are activated, and the algorithm may preprocess

the instance. Note that the number of sets is onlyma
.

For each set Bi ∈ B we will have a stage. We start the stage by

removing from the universe all elements e ∈ Bi that belong to Bi .
After we do these O(n) updates, we ask a Set Cover query. If the

answer is less than t then we can stop and answer YES. Otherwise,

we finish the stage by adding back all the elements that we removed

and move on to the next stage. After we finish allm stages for all

the sets in B, we answer NO.

In total we have O(nm) updates and queries, and so the final

runtime is P(n,ma)+O(nm)·(T (n,ma)+Q(n,ma)). Assumewe have

an algorithm with update and query time T (n,ma) + Q(n,ma) =

O(ma ·(1−ε)) and polynomial preprocessing, P(n,ma) = O(ma ·c) for

some c ≥ 1, then we can choose a = 1/c and get an algorithm for

the problem in Lemma 15 with runtime O(m1+a−εa), contradicting

SETH.

Finally, let us show the correctness of the answer. If we are in

the YES case, then there is a set B ∈ B that is contained in some set

in A. When we ask a query at the stage corresponding to this set

B, the size of the minimum set cover is 1. To see this note that all

active universe elements are the elements of B and so we can cover

all of them with some set inA. Therefore, our (t −1) approximation

algorithm must output an answer that is less than t and we will

output YES. On the other hand, if we are in the NO case, then in

all stages, the size of the minimum set cover is at least t since at
least t sets from A are required to cover any set in B. Thus, the

approximation algorithm will always return an answer that is at

least t and we will never output YES.

5.2 Set Updates
The previous reduction fails in this case becausewe are only allowed

to update sets, not elements. A natural approach for extending it is

to have all sets from B in our instance and then at each stage we

activate one of them. This would work, except that the number of

sets grows tom which would only give us a weaker lower bound.

Indeed such a simple reduction can rule outO(m1−ε) update times if

the preprocessing is restricted to take subquadratic time. A different

idea is to add n auxiliary sets, one per element, so that this set only

contains that element. Then, if we want to remove an element, we

can add this set and somehow ensure that it is a part of the solution

so that, effectively, the corresponding element is removed. This is

the approach we take. The main challenge, however, is that these

auxiliary sets have to be picked in our set cover solution and so

they contribute to the size of the optimal solution. That is, we will

no longer have a set cover of size 1 in the YES case and the gap

between the YES and NO cases changes. To overcome this issue, we

introduce another idea where we create many copies of everything

and combine them into one instance in a certain way.

Given an instance A,B of the problem in Lemma 15, we con-

struct an instance of dynamic Set Cover with approximation factor

(t − 1) as follows.

Our universe will be k := n2 times larger, and for each element

e ∈ [n] in the universe of the original instance we will add k

elements e1, . . . , ek to our instance. (So, our universe is isomorphic

to [kn].)
For each setA ∈ A we construct t setsA1, . . . ,Ak in our dynamic

instance. All of these sets will remain activated throughout the

reduction. The set Ai contains all elements ei such that e ∈ A. That
is, Ai contains the ith copy of all the elements that were in A. Note
that Ai does not contain e j for any i , j.

We also add sets S1, . . . , Sn which will be activated dynamically,

and we let Se contain all copies of the element e ∈ [n]. That is,

Se contains e1, . . . , ek . These sets will allow us to simulate the

deactivation of a set B.
Next we explain the dynamic part of the reduction. For each set

B ∈ B we have a stage where we effectively deactivate all universe

elements that are not in B. To do this, we activate the set Se for all

e < B such that e is not in B. Note that we have activated up to n
sets Se , and that together they cover all copies of all elements that

are in the complement of B. After we perform these O(n) updates,
we ask a Set Cover query. If the answer to the query is at most

(n + k) · (t − 1) we return YES. Otherwise, we undo the changes we

made in this stage and we move on to the next B ∈ B. After all the

stages are done, we return NO.

The runtime analysis is similar to before since the only difference

is in the universe size which increased fromn tokn = n3 but it is still
mo(1)

. We haveO(nm) updates and queries, and so the final runtime

is P(nk,ma) +O(nm) · (T (nk,ma) + Q(nk,ma)). Assume we have

an algorithm with update and query timeT (nk,ma) +Q(nk,ma) =

O(ma ·(1−ε)) and polynomial preprocessing, P(nk,ma) = O(ma ·c)

for some c ≥ 1, then we can choose a = 1/c and get an algorithm for

the problem in Lemma 15 with runtime O(m1+a−εa), contradicting

SETH.

Finally, we show the correctness of the answer. For the YES case,

there is a set B ∈ B that is contained in some set in A. When we

ask a query at the stage corresponding to this set B, the size of the
minimum set cover is at most n+k . This is because of the following
set cover: Choose all sets Se that are active in this stage; this cover

all copies of all universe elements that are not in B. Then choose

all copies Ai of the set A ∈ A that contains B; this covers all copies
of all elements that are in B. Therefore, our (t − 1) approximation

algorithm must output an answer that is at most (n + k)(t − 1) and

we will output YES. On the other hand, in the NO case, the size of

the minimum set cover is at least k · t in every stage. This is because

at least t sets from A are required to cover any set in B, and in a

124

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA A. Abboud, R. Addanki, F. Grandoni, D. Panigrahi and B. Saha

stage of some set B the only way we can cover copies of elements

that belong to B is by choosing copies of sets A that contain them.

There are k copies of the universe elements, and for each such copy

we have to choose at least t sets from A to cover the elements of

that copy, and these sets do not contain any elements from any

other copy of the universe. Thus, the approximation algorithm will

always return an answer that is at least kt , which is larger than

(n + k)(t − 1) since k = n2 and t = no(1), and we will never output

YES.

ACKNOWLEDGEMENTS
The authors are grateful to Shay Solomon for pointing out an

error in a preliminary version of this paper. The authors would

also like to thank the anonymous reviewers for their insightful

comments. F. Grandoni is partially supported by the SNSF grants

200021_159697/1 and 200020B_ 182865/1. D. Panigrahi is partially

supported by NSF contracts CCF 1535972, CCF 1527084, an NSF

CAREER Award CCF 1750140, and the Indo-US Virtual Networked

Joint Center on Algorithms under Uncertainty. B. Saha is partially

supported by an NSF CRII grant CCF 1464310, an NSF CAREER

Award CCF 1652303, and an Alfred P. Sloan fellowship.

REFERENCES
[1] Amir Abboud, Aviad Rubinstein, and R. Ryan Williams. 2017. Distributed PCP

Theorems for Hardness of Approximation in P. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17,
2017. 25–36.

[2] Amir Abboud and Virginia VassilevskaWilliams. 2014. Popular conjectures imply

strong lower bounds for dynamic problems. In Foundations of Computer Science
(FOCS). 434–443.

[3] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. 2018. Matching

triangles and basing hardness on an extremely popular conjecture. SIAM J.
Comput. 47, 3 (2018), 1098–1122.

[4] Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. 2017. Fully dynamic

all-pairs shortest paths with worst-case update-time revisited. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,

440–452.

[5] Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. 2017. Fully dynamic

all-pairs shortest paths with worst-case update-time revisited. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,

440–452.

[6] Sepehr Assadi and Sanjeev Khanna. 2018. Tight bounds on the round complexity

of the distributed maximum coverage problem. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2412–2431.

[7] Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. 2018. Fully

dynamic maximal independent set with sublinear update time. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing. ACM,

815–826.

[8] Surender Baswana, Manoj Gupta, and Sandeep Sen. 2015. Fully DynamicMaximal

Matching in O (logn) Update Time. SIAM J. Comput. 44, 1 (2015), 88–113.
[9] Aaron Bernstein and Cliff Stein. 2016. Faster fully dynamic matchings with small

approximation ratios. In Proceedings of the twenty-seventh annual ACM-SIAM
symposium onDiscrete algorithms. Society for Industrial andAppliedMathematics,

692–711.

[10] Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. 2017. De-

terministic fully dynamic approximate vertex cover and fractional matching in

O (1) amortized update time. In International Conference on Integer Programming
and Combinatorial Optimization. Springer, 86–98.

[11] Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon

Nanongkai. 2018. Dynamic Algorithms for Graph Coloring. In Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,

1–20.

[12] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F Italiano. 2015. Design

of dynamic algorithms via primal-dual method. In International Colloquium on
Automata, Languages, and Programming. Springer, 206–218.

[13] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F Italiano. 2015. Determin-

istic fully dynamic data structures for vertex cover and matching. In Proceedings
of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms. Society
for Industrial and Applied Mathematics, 785–804.

[14] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2016. New

deterministic approximation algorithms for fully dynamic matching. In Proceed-
ings of the forty-eighth annual ACM symposium on Theory of Computing. ACM,

398–411.

[15] Shiri Chechik, Thomas Dueholm Hansen, Giuseppe F. Italiano, Jakub Lacki, and

Nikos Parotsidis. 2016. Decremental Single-Source Reachability and Strongly

Connected Components in Õ(m

√
n) Total Update Time. In IEEE 57th Annual

Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA. 315–324.

[16] Lijie Chen. 2018. On The Hardness of Approximate and Exact (Bichromatic)

Maximum Inner Product. In 33rd Computational Complexity Conference, CCC
2018, June 22-24, 2018, San Diego, CA, USA. 14:1–14:45.

[17] Camil Demetrescu and Giuseppe F. Italiano. 2004. A New Approach to Dynamic

All Pairs Shortest Paths. J. ACM 51, 6 (Nov. 2004), 968–992.

[18] Irit Dinur and David Steurer. 2014. Analytical approach to parallel repetition. In

Proceedings of the forty-sixth annual ACM symposium on Theory of computing.
ACM, 624–633.

[19] Greg N Frederickson. 1985. Data structures for on-line updating of minimum

spanning trees, with applications. SIAM J. Comput. 14, 4 (1985), 781–798.
[20] Michael L. Fredman, János Komlós, and Endre Szemerédi. 1984. Storing a Sparse

Table with 0(1) Worst Case Access Time. J. ACM 31, 3 (1984), 538–544.

[21] Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Pani-

grahi. 2017. Online and dynamic algorithms for set cover. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing. ACM, 537–550.

[22] Manoj Gupta and Richard Peng. 2013. Fully dynamic (1+ e)-approximate match-

ings. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium
on. IEEE, 548–557.

[23] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol

Saranurak. 2015. Unifying and Strengthening Hardness for Dynamic Problems

via the Online Matrix-Vector Multiplication Conjecture. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015. 21–30.

[24] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol

Saranurak. 2015. Unifying and strengthening hardness for dynamic problems via

the online matrix-vector multiplication conjecture. In Proceedings of the forty-
seventh annual ACM symposium on Theory of computing. ACM, 21–30.

[25] Monika R Henzinger and Valerie King. 1999. Randomized fully dynamic graph

algorithms with polylogarithmic time per operation. Journal of the ACM (JACM)
46, 4 (1999), 502–516.

[26] Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. 2001. Poly-logarithmic

deterministic fully-dynamic algorithms for connectivity, minimum spanning tree,

2-edge, and biconnectivity. Journal of the ACM (JACM) 48, 4 (2001), 723–760.
[27] Piotr Indyk, Sepideh Mahabadi, Ronitt Rubinfeld, Jonathan Ullman, Ali Vakilian,

and Anak Yodpinyanee. 2017. Fractional set cover in the streaming model. In

LIPIcs-Leibniz International Proceedings in Informatics, Vol. 81. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

[28] Giuseppe F. Italiano, Adam Karczmarz, Jakub Lacki, and Piotr Sankowski. 2017.

Decremental single-source reachability in planar digraphs. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017. 1108–1121.

[29] Subhash Khot and Oded Regev. 2008. Vertex cover might be hard to approximate

to within 2- ε . J. Comput. System Sci. 74, 3 (2008), 335–349.
[30] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. 2016. Higher Lower Bounds from

the 3SUM Conjecture. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016. 1272–1287.

[31] Andrew McGregor and Hoa T Vu. 2016. Better streaming algorithms for the

maximum coverage problem. arXiv preprint arXiv:1610.06199 (2016).
[32] Ofer Neiman and Shay Solomon. 2016. Simple deterministic algorithms for fully

dynamic maximal matching. ACM Transactions on Algorithms (TALG) 12, 1 (2016),
7.

[33] Krzysztof Onak and Ronitt Rubinfeld. 2010. Maintaining a large matching and a

small vertex cover. In Proceedings of the forty-second ACM symposium on Theory
of computing. ACM, 457–464.

[34] Krzysztof Onak, Baruch Schieber, Shay Solomon, and Nicole Wein. 2018. Fully

Dynamic MIS in Uniformly Sparse Graphs. In 45th International Colloquium on
Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic. 92:1–92:14.

[35] Aviad Rubinstein. 2018. Hardness of approximate nearest neighbor search. In

Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018. 1260–1268.

[36] Shay Solomon. 2016. Fully dynamic maximal matching in constant update time.

In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on.
IEEE, 325–334.

[37] Christian Wulff-Nilsen. 2017. Fully-dynamic minimum spanning forest with im-

proved worst-case update time. In 49th ACM Symposium on Theory of Computing.
ACM, 1130–1143.

125

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 The Decremental Set Cover Algorithm
	2.1 The Algorithm
	2.2 Analysis of the Competitive Ratio
	2.3 Analysis of the Amortized Update Time

	3 The Fully Dynamic Set Cover Algorithm
	3.1 The Algorithm
	3.2 Analysis of the Competitive Ratio
	3.3 Analysis of the Amortized Update Time

	4 Implementation Details and Running Time
	4.1 Decremental Algorithm
	4.2 Fully Dynamic Algorithm

	5 Conditional Lower Bounds for Dynamic Set Cover
	5.1 Element Updates
	5.2 Set Updates

	References

