Name: Gal Arnon

1 Amplifying the Success Probability of Randomized Algorithms

1.1 Item a

We define the algorithm \mathcal{A}' as follows: On input a graph G the algorithm runs A(G) for $t = 180 \log n$ times independently with fresh randomness and outputs the majority decision of these repetitions. The algorithm runs in time $O(T(n) \cdot \log n)$.

Let X_1, \ldots, X_t be the random variables describing each independent execution where $X_i = 1$ if the algorithm answered correctly in execution i (note that we are doing both the YES and NO cases simultaneously so we refer to success rather than the actual output of the algorithm). Notice that, by assumption, $\mathbb{E}[X_i] = 2/3$ for every $i \in [t]$.

Define $X := \sum_{i=1}^{t} X_i$. By linearity of expectation, we have that $\mathbb{E}[X] = \sum_{i=1}^{t} \mathbb{E}[X_i] = 2t/3$. Thus, by the Chernoff bound, for all a > 0:

$$\Pr\left[X \le 2t/3 - a\right] \le \exp\left\{-\frac{2a^2}{t}\right\} .$$

Setting a = t/6, we get

$$\Pr[X \le t/2] \le \exp\left\{-\frac{-2(t/6)^2}{t}\right\} = \exp\left\{-t/18\right\} = \exp\left\{-10\log n\right\} = 1/n^{-10}.$$

Whenever X > t/2 the algorithm answers correctly since the majority of the executions give the correct answer. Therefore the probability that the algorithm is correct is at least $1 - 1/n^{-10}$ as required.

1.2 Item b

We describe the algorithm \mathcal{A}'' on input a graph G = ([n], E) and k = O(1):

- 1. If $n = \Theta(k)$ then brute-force test for a k-clique: go over all possible choices of k nodes and test whether they are a clique. If one is found then output "TRUE" and exit and otherwise output "FALSE" and exit.
- 2. If the algorithm has not exited, then partition the n nodes of the graph into k+1 arbitrary non-intersecting subsets V_1, \ldots, V_{k+1} .
- 3. For i = 1 to k + 1 do:
 - (a) Let $V := \bigcup_{i \in [k+1] \setminus \{i\}} V_i$ and G' := (V, E') where $E' := \{(u, v) \in E \mid u, v \in V\}$.
 - (b) Let $b \leftarrow \mathcal{A}'(G')$ (where \mathcal{A}' is the algorithm from the previous question).
 - (c) If b = "TRUE", return $\mathcal{A}''(G')$.
- 4. If the algorithm has not exited yet, return "FALSE".

Analysis. We begin by analysing the running time of \mathcal{A}'' . Notice that G' is a graph on $k/(k+1) \cdot n$ nodes. Let t(n) be the running time of the algorithm given a graph with n nodes. We observe that (when n is not constant)

$$t(n) \le O(k \cdot T(n) \log n) + t\left(\frac{k}{k+1} \cdot n\right)$$
.

Solving this recursion when k = O(1), and where the base layer takes time O(1) we get that $t(n) = O(T(n) \log^2 n)$ as required.

We now analyse the correctness of the algorithm. First, note that the algorithm only ever returns "TRUE" at the base lever of the recursion when it has found a k-clique. Since, by construction, this clique is a subset of the original graph if the algorithm, indeed, returns "TRUE" then the graph must contain a k-clique.

We now show that the algorithm errs with probability at most $1/n^9$. Since we have already explained why the algorithm cannot err when there is no k-clique in the graph, we need only analyse the YES case. Any k-clique in the graph must be in at least one of the choices of V since it contains k nodes. If \mathcal{A}' fails on this choice of V then the algorithm will err. \mathcal{A}' errs with probability $1/n^{10}$. This is true separately for every recursion level. By the union-bound, the probability that one of the critical executions of \mathcal{A}' fails is at most m/n^{10} where m is the recursion depth. Since we are cutting the number of nodes by a multiplicative constant (k/(k+1)) in every round, the recursion depth is $O(\log n)$. Therefore \mathcal{A}'' errs with probability at most $O(\log n)/n^{10} < 1/n^9$.

2 Convolution 3SUM to 3SUM

We recall that if 3SUM can be solved in time T(n, U), then colourful 3SUM can be solved in time O(n) + T(O(n), O(U)). We will show that convolution 3SUM with sets of size n and universe U can be reduced in linear time to colourful 3SUM with sets of size n and universe O(nU). Together with the previous statement, this shows that if 3SUM can be solved in time T(n, U) then convolution 3SUM can be solved in time O(n) + T(O(n), O(nU)).

Construction. Given a convolution 3SUM instance $A, B, C \subseteq [-U, U]$ of size n we output the following colourful 3SUM instance $A', B', C' \subseteq [-U', U']$ of size n where $U' = \Theta(nU)$.

$$A' := \{ 4Ui + A[i] \mid i \in [n] \}$$

$$B' := \{ 4Ui + B[i] \mid i \in [n] \}$$

$$C' := \{ -4Ui + C[i] \mid i \in [n] \}$$

Time and range analysis. Notice first that, indeed, $A', B', C' \subseteq [-O(nU), O(nU)]$ since the indices are at most n. Further notice that this transformation can be done in linear time given a single scan of each of the sets A, B, C.

Correctness. Suppose that there exist $i, j \in [n]$ such that A[i] + B[j] + C[i+j] = 0. Then:

$$(4Ui + A[i]) + (4Uj + +B[j]) + (-4U(i+j) + C[i+j])$$

$$= 4U(i+j-(i+j)) + (A[i] + B[j] + C[i+j])$$

$$= 0 .$$

Thus, the elements in A', B', C' matching A[i], B[j], C[i+j] sum to zero.

On the other hand, suppose that there exist $a \in A', b \in B', c \in C'$ with a+b+c=0. Due to the way a,b,c were constructed, there exist $i,j,k \in [n]$ such that $a=4Ui+A[i],\ b=4Uj+B[j]$ and c=-4Uk+C[k]. Therefore

$$0 = a + b + c$$

= $4Ui + A[i] + 4Uj + B[j] - 4Uk + C[k]$
= $4U(i + j - k) + (A[i] + B[j] + C[k])$.

If $i+j-k \neq 0$, then $|4U(i+j-k)| \geq 4U > 3U$. Since $A[i]+B[j]+C[k] \in [-3U,3U]$, this sum cannot zero out the expression. In other words, in order for the above expression to be equal to 0 it must be that i+j=k. Once we zero out the expression 4U(i+j-k) we are left with the requirement that A[i]+B[j]+C[k]=A[i]+B[j]+C[i+j]=0, completing the proof of correctness.

3 Triangle Detection to 3SUM

Recall that if 3SUM can be solved in time T(n, U), then colourful 3SUM can be solved in time O(n) + T(O(n), O(U)). We will show that convolution 3SUM with sets of size n and universe U can be reduced in linear time to colourful 3SUM with sets of size n and universe O(nU). Therefore, we work with colourful 3SUM rather than vanilla 3SUM.

Construction. We transform a graph G = ([n], E) with |E| = m into a colourful 3SUM instance as follows:¹

$$A := \left\{ 6n^2 \cdot i + 2n \cdot j \mid (i, j) \in E \land i > j \right\}$$

$$B := \left\{ -6n \cdot i + j \mid (i, j) \in E \land i > j \right\}$$

$$C := \left\{ -6n^2 \cdot i - j \mid (i, j) \in E \land i > j \right\}$$

Time and range analysis. Since $i, j \in [n]$, we have that $A, B, C \subseteq [-O(n^3), O(n^3)]$ and since an element is added to one of the sets if and only if there exists an edge that corresponds to it, we have that |A|, |B|, |C| = O(|E|) = O(m). Notice that this transformation can be done in linear time. Therefore, once we show correctness (i.e., that the colourful 3SUM instance is a YES instance if and only if there exists a triangle in the graph) we will have shown, as required, that if 3SUM can be solved in time T(n, U) then triangle detection can be done in time $O(n) + T(O(m), O(n^3))$.

Correctness. We begin by showing that if the graph has a triangle, then the constructed 3SUM instance has a solution. Let $(i, j), (j, k), (i, k) \in E$ be a triangle in the graph with i > j > k and let a, b, c be the matching values in the sets respectively. Then

$$a + b + c = (6n^2 \cdot i + 2n \cdot j) + (-6n \cdot j + k) + (-6n^2 \cdot i - k)$$

= 0

¹Amir: If we start from a colored triangle instance, we can simplify this construction (and analysis) a bit by removing the i < j conditions.

We now show that if the constructed 3SUM instance has a solution then the graph has a triangle. Suppose that there exist $a \in A, b \in B, c \in C$ with a+b+c=0. Then by construction there exist edges $(a_1, a_2), (b_1, b_2), (c_1, c_2) \in E$ where $a = 6n^2 \cdot a_1 + 2n \cdot a_2$ and $a_1 > a_2$. The values b and c are similarly defined. We now show that $a_1 = c_1, a_2 = b_1$ and $b_2 = c_2$. Notice that

$$0 = a + b + c$$

= $6n^2 \cdot a_1 + 2n \cdot a_2 - 2n \cdot b_1 + b_2 - 2n^2 \cdot c_1 - c_2$
= $6n^2(a_1 - c_1) + 2n(a_2 - b_1) + (b_2 - c_2)$

Since $a_1, a_2, b_1, b_2, c_1, c_2 \in [n]$ we have $2n(a_2 - b_1) + (b_2 - c_2) \in [-2n^2 - n, 2n^2 + n]$. It must, therefore, be that $a_1 - c_1 = 0$ since otherwise $|6n^2(a_1 - c_1)| > 2n^2 + n$ and so there is no way for the values to zero out the expression. Similarly, $a_2 - b_1 = 0$ since $b_2 - c_2 \in [-n, n]$ which is not enough to zero out $2n(a_2 - b_1)$ when $|a_2 - b_1| \ge 1$. Finally, this reduces to the requirement that $b_2 - c_2 = 0$. Therefore $a_1 = c_1$, $a_2 = b_1$ and $b_2 = c_2$.

Since $(a_1, a_2), (b_1, b_2), (c_1, c_2) \in E$ and $a_1 = c_1, a_2 = b_1$ and $b_2 = c_2$ we have that $(a_1, a_2), (a_2, b_2), (a_1, b_2) \in E$. We show that this must be a triangle:

- 1. Self-edges: There cannot be a self edge in the triple, since, by construction and by the equalities we have proved: $a_1 > a_2$, $a_2 = b_1 > b_2$ and $a_1 = c_1 > c_2 = b_2$.
- 2. Duplicates:
 - (a) $(a_1, a_2) \neq (a_2, b_2)$ and $(a_2, b_2) \neq (a_1, b_2)$ since $a_1 > a_2$.
 - (b) $(a_1, a_2) \neq (a_1, b_2)$ since this would imply that $a_2 = b_2$, but we know that $a_2 > b_2$.

4 3SUM to Sumset Size

We describe an algorithm that solves 3SUM in given the ability to make 2 oracle calls to a sumset size oracle. For convenience we use the case of 3SUM' with repetitions where we are given a set $S \subseteq [-U, U]$ and need to find $a, b, c \in S$ with a + b = c.

On input a 3SUM' with repetitions instance S:

- 1. If $0 \in S$ output "YES".
- 2. Let $k := \mathsf{SumsetSize}(S + S)$.
- 3. Let $\ell := \mathsf{SumsetSize}(S + (S \cup \{0\}))$.
- 4. Output "YES" if $\ell < k + |S|$. Otherwise output "NO".

Analysis. Clearly this algorithm runs in linear time if oracle calls are unit cost. Therefore we only need to show correctness.

Since we allow repetitions, and, surprisingly, 0+0=0, if $0\in S$ then S is a "YES" instance, and the algorithm indeed outputs "YES". We therefore henceforth assume that $0\notin S$. Notice that in this case $S+(S\cup\{0\})\equiv (S+S)\cup S$.

• "YES" Case: Let $a, b, c \in S$ be a 3SUM' with repetitions solution. Then $a + b \in (S + S)$ and $a + b = c \in S$. Therefore $(S + S) \cap S \neq \emptyset$, implying that $\ell = |S + (S \cup \{0\})| < |S + S| + |S| = k + |S|$, and the algorithm will output "YES".

• "NO" Case: Suppose that for every $a,b,c\in S$: $a+b\neq c$. Then, for every pair $a,b\in S$: $a+b\in (S+S)$ and $a+b\notin S$. Similarly, every $c\in S$ is not in S+S. Therefore $(S+S)\cap S=\emptyset$, implying that $\ell=|S+(S\cup\{0\})|=|(S+S)\cup S|=|S+S|+|S|=k+|S|$, and the algorithm will output "NO".