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Abstract

In this paper we prove new results about
the extremal structure of paths in directed
graphs. Say we are given a directed graph
G = (V, E) on n nodes, a set of sources S CV
of size |S| = n'/3, and a subset P C S x V of
pairs (s,t) where s € S, of size O(n?/?), such
that for all pairs (s,t) € P, there is a path
from s to t. Our goal is to remove as many
edges from G as possible while maintaining the
reachability of all pairs in P. How many edges
will we have to keep? Can you always go down
to nite® edges? Or maybe for some nasty
graphs G you cannot even go below the simple
bound of O(n*?) edges? Embarrassingly, in a
world where graph reachability is ubiquitous in
countless scientific fields, the current bounds on
the answer to this question are far from tight.

In this paper, we make polynomial progress
in both the upper and lower bounds for these
Reachability Preservers over bounds that were
implicit in the literature. We show that in
the above scenario, O(n) edges will always be
sufficient, and in general one is even guaranteed
a subgraph on O(n + y/n - |P| - |S|) edges that
preserves the reachability of all pairs in P.
We complement this with a lower bound graph
construction, establishing that the above result
fully characterizes the settings in which we are
guaranteed a preserver of size O(n). Moreover,
we design an efficient algorithm that can always
compute a preserver of existentially optimal
size.

The second contribution of this paper is a
new connection between extremal graph spar-
sification results and classical Steiner Network
Design problems. Surprisingly, prior to this
work, the osmosis of techniques between these
two fields had been superficial. This allows us

to improve the state of the art approximation
algorithms for the most basic Steiner-type prob-
lem in directed graphs from the O(n°5%¢) of
Chlamatac, Dinitz, Kortsarz, and Laekhanukit
(SODA’17) to O(n®577F¢).

1 Introduction

In this paper we prove new results about the ex-
tremal structure of paths in directed graphs. Suppose
we are given a directed graph on n nodes, a set of
sources S of size |S| = n'/3, and a subset P C S x V
of pairs (s,t) where s € S, of size O(n?/3), such that
for all pairs there is a path from s to ¢ in G. Our
goal is to remove as many edges from G as possible
while maintaining the reachability for all pairs in P,
i.e. for all (s,t) € P there is still a path from s to
t. How many edges will we have to keep? It is not
hard to see that O(n*/?) edges will be sufficient: for
each source s € S we can keep a BF'S tree at the cost
of O(n) edges, and this will guarantee that s still
reaches all the nodes it used to reach. In general this
observation gives an upper bound of O(n|S]). An-
other simple observation is that €(n) edges might be
necessary, if for example, the entire graph G is a path
of length n and the endpoints are in the set P. But
can we improve the O(n*/3) bound to O(n)? Or are
there graphs G with sets S, P that will force us to
keep Q(n*/3) edges?

Graph reachability is almost as basic of a notion
as directed graphs themselves. It is ubiquitous
in math, science, and technology. Computational
questions related to graph reachability are central
to various fields. For example, the classical NL
vs. L open question asks if one can find a directed
path using small space. We would arguably be in a
much better shape for tackling all the fundamental
questions involving reachability if we could give good
answers to basic structural questions like the one
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1.1 A New Extremal Upper Bound Our main
positive result is the following theorem, which im-
proves on all previously known upper bounds by
polynomial factors. It was known that all dis-
tances can be preserved (not just reachability) with
O(min{n?/3|P|,n|P|'/?}) edges [10, 21]. For the pa-
rameters above, those bounds do not beat the n*/3
bound — yet ours show that O(n) edges are suffi-
cient. In general, our theorem states that whenever
|P| = o(n|S]), one can do much better than keeping
spanning trees out of every source.

THEOREM 1.1. For any graph G = (V,E) on n
nodes, set of sources S C V, and set of pairs P C
S x V, there is a subgraph H of G with O(n +
Vn-|P|-|S|) edges that preserves the reachability of
all pairs in P. That is, all pairs in P are connected
by a path in H iff they are in G.

It is interesting to compare our bounds for these
reachability preservers to the ones known for distance
preservers in undirected graphs. If we fix n, |P| = p,
and |S| = s, which one should be sparser, in the
extremal sense? On the one hand, reachability is a
much easier requirement than distance. On the other
hand, directed graphs can be much more difficult to
handle than undirected graphs.

Combining Theorem [I.I]with previous results, we
obtain an unconditional separation between the two,
asserting that reachability preservers are extremally
sparser than distance preservers, at least in some
range of parameters. Consider the setting where
s = n'/3 and p = n?/3. Theorem implies that
there will always be a reachability preserver with
O(n) edges, while the lower bounds of Coppersmith
and Elkin [21] show that n'™¢ edges are sometimes
necessary (for some absolute ¢ > 0) to preserve
distances, even in undirected graphs.

An ostensible drawback of the proof of The-
orem [[1] is that it is non-constructive: while we
prove ezistence of reachability preservers below our
claimed sparsity threshold, the proof does not sug-
gest a method for computing them efficiently (we re-
mark that there are trivial algorithms that run in un-
desirably large polynomial time). We overcome this
problem — even in a highly generalized setting — by
showing the following complimentary algorithmic re-
sult:

THEOREM 1.2. Let f(n,|P|,|S|) be a function such
that every n-node graph G = (V, E) and pair set P C
S x V has a subgraph on at most f(n,|P|,|S|) edges
that preserves the reachability of all pairs in P. Then
there is a randomized algorithm that always returns
a reachability preserver of any G,P C S XV on
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O(f(n,|P|,|S])) edges, and terminates in O(|E||S|)
time with high probability.

Thus the preservers promised by Theorem [1.1| can
indeed be computed efficiently. Moreover, if any of
our reachability preserver bounds are later improved
by follow-up work, this algorithm immediately im-
plies that the new preservers will be efficiently con-
structible, even if the new proof is non-constructive.
Our algorithm utilizes known data structures for
decremental single source reachability [37 [43] [49] and
crucially relies on a parallelization trick.

1.2 Approximation Algorithms: The Di-
rected Steiner Network Problem Let us con-
sider the setting where we have a graph on n nodes
with a set of pairs P C S x V for which we care
about preserving the reachability, with parameters
|S| = n®/4,|P| = n®/* so that Theorem [1.1| guaran-
tees the existence of a preserver on O(n1'5) edges.
Moreover, our algorithm can efficiently find such a
preserver. But what if we could get an even better
reachability preserver — say, O(n) size? It is easy
to observe that, in the worst case over all graphs
Q(|P]) = Q(n°/*) edges could be necessary, e.g. if
the graph is a biclique. However, from a real-world
point of view, why should we expect our graphs to
be worst case? It could be that our particular graph
and sets P, S enjoys a reachability preserver on much
smaller size than what the extremal results guarantee.
Denote the number of edges in the sparsest possible
reachability preserver of our given graph by OPT.
Are there efficient algorithms that can find a reacha-
bility preserver with density close to OPT?

This question is the most basic out of the many
“Steiner” problems in directed graphs. Steiner-type
problems are a central topic of study in combinato-
rial optimization. Perhaps the most well-known such
problem is the Steiner Tree problem in undirected
graphs, from Karp’s original NP-complete problems:
Given a weighted undirected graph G and a set of
terminals 7' C V(G) return a minimum weight sub-
graph H in which all the terminals are connected. A
constant factor approximation algorithm for Steiner
Tree is a mainstream topic in advanced algorithms
courses. In directed graphs, Steiner-type problems
become much harder to approximate. Perhaps the
most natural and well-studied version is the Directed
Steiner Network problem (DSN), also known as Di-
rected Steiner Forest.

DEFINITION 1. (DIRECTED STEINER NETWORK)

Given a weighted directed graph G = (V,E) with
nonnegative weights on the edges w : E — N and a
set of k pairs P C V x V, find the subgraph H of
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minimum total weight 3 c gy w(e) such that for

all pairs (s,t) € P there exists a path from s to t in
H.

Dozens of generalizations and special cases of
DSN have been studied in the literature. We refer
the reader to the survey of Kortsarz and Nutov [40].
It arises naturally when we have to satisfy certain
connectivity demands at the lowest possible cost.

There is a long history of approximation algo-
rithms for DSN. Charikar et al. [14] gave an O(k%/3)
approximation, where k& = |P|, which was later im-
proved by Chekuri, Even, Gupta, and Segev [I5]
to O(k'/2%¢), where they introduced the influential
notion of junction trees. Since k could be Q(n?),
none of these algorithms achieve a sublinear in n
approximation factor. The first sublinear algorithm
was achieved by Feldman, Kortsarz, and Nutov [30]
who achieved an O(n?/°¢) approximation (for any
e > 0). Most recently, Berman, Bhattacharyya,
Makarychev, Raskhodnikova, and Yaroslavtsev [g] re-
duced the approximation factor to O(n?/3+¢). The
most fundamental case of DSN, which captures the
essence of its difficulty, is when all the weights are
the same, or equivalently, if the graph is unweighted
(the UDSN problem). In a recent breakthrough,
Chlamtac, Dinitz, Kortsarz, and Laekhanukit [I§]
achieved a better approximation factor of O(n3/5+¢)
for UDSN. On the negative side, it is quasi-NP-hard
to approximate UDSN to within 218" " for all e > 0
[25].

Tying this back to the discussion in the begin-
ning of this subsection, regarding extremal bounds
versus approximation algorithms: The algorithm of
Chlamtac et al. is guaranteed to find a sparsifier that
has O(n®/°t¢ . OPT) edges, which could potentially
be much less than our extremal bounds. Perhaps
surprisingly, this difference between extremal upper
bounds and approximation algorithms does not stop
us from applying Theorem in a rather simple way
to break beyond the n*/° bound achieved by Chlam-
tac et al.

THEOREM 1.3. For all € > 0, there is a polynomial
time algorithm for the Directed Steiner Network prob-

lem in unweighted graphs with approximation factor
O(n3/5—1/45+5) —_ O(n0'5777+5).

We believe that our approach for improving these
bounds will have further consequences for approxima-
tion algorithms and beyond. The previous algorithms
use a procedure that attempts to connect a pair set
P at a low cost, under the assumption that the pairs
in P have many paths between them (called “thick”
pairs; the “thin” pairs are handled using Linear Pro-
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gramming.) To do this, the algorithm randomly sam-
ples a small subset of the nodes S that is guaranteed
to intersect at least one path for each pair in P, with
high probability, and then it connects all nodes ap-
pearing in P to-and-from each node in S. All previ-
ous papers that follow this approach for Steiner-type
problems (e.g. [30} 8 18] 24]) upper bound the cost
of this step by O(n|S|), and our improvement comes
from applying the upper bound of Theorem in-
stead. Since such hitting-set arguments are ubiqui-
tous in algorithm design, we envision that our ap-
proach will have further use.

Our new approximation algorithm is probably
not the final say on this fundamental problem; rather,
it is a proof of concept that approximation algorithms
can benefit from extremal results. Notably, all previ-
ous progress on this problem [30} 8 (18] 24] has come
from better rounding and analysis of the complicated
LP hammers, instead of tackling the simple extremal
question about reachability preservers.

It is natural to ask: how far can our approach be
pushed? A natural bound to hope for, suggested by
Feldman et al. is O(y/n) approximation: this would
match the algorithm of Gupta et al. for Steiner-
Network in wundirected graphs [36], and undirected
graphs seem better understood. Our approach would
get an O(y/n) approximation for UDSN, if we can get
a positive answer to the fundamental extremal ques-
tion, which we address in the next subsection: Are
linear size reachability preservers always possible?

1.3 Linear Size Reachability Preservers Re-
call that the upper bound of Theorem [1.1] was O(n +

Vn-|P|-|S|). Perhaps fewer edges are always suffi-
cient? Most optimistically:

Does any n-node graph and set of node pairs P
admit a subgraph on O(n + |P|) edges that preserves
the reachability of all pairs in P?

Note that this is certainly possible in undirected
graphs via a spanning tree. In the case of distance
preservers in undirected graphs, the possibility of
such linear size distance preservers was refuted by
Coppersmith and Elkin [21], and the construction
for refutation has been crucial to the resolution of
longstanding open questions in the field of spanners
2, [3].

One approach is to try to adapt the lower bounds
for distances. This is challenging; the lower bounds
are based on a construction of a graph on the inte-
ger lattice and a large subset of pairs P such that
each pair in P has a unique shortest path, all these
paths are edge-disjoint, and they are long. The den-
sity of the construction comes from the disjointness
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and length of these paths. The lower bound for dis-
tance preservers follows from the uniqueness of these
shortest paths: removing any edge will have to in-
crease the distance by +1. On the other hand, for
reachability preservers, we do not care if paths in-
crease by +1 or +100 or even +n, as long as a path
still exists. Indeed, the Coppersmith and Elkin dis-
tance preserver lower bound instances admit linear
size reachability preservers.

One can apply known gap amplification tech-
niques to increase this gap from +1 to +n, such as
simple layering or the recently introduced obstacle
product framework [2] B]. However, this only results
in weak lower bounds that can rule out linear size
preservers for a restricted range of parameters, and
that are far from the upper bound in Theorem [I.T]

The most technical result in this paper is an al-
most matching lower bound to Theorem refuting
the possibility of linear size reachability preservers.

THEOREM 1.4. For any desired p and s = O(n'/3)
(possibly depending on n) satisfying ps = w(n), there
is an infinite family of n-node graphs G and sets P
of p node pairs, with P C S x 'V for some set S of s
nodes, such that any subgraph of G' that preservers the
reachability for all pairs in P must have w(n) edges.

The starting point for our construction are the
same integer lattices of [2I], but we take our con-
struction in a different direction. While in [21I] the
edges are simply defined by the convex hull of points
in the ball of radius r away from the node, our choice
of edges is much more delicate. We only allow edges
that correspond to vectors in certain restricted cones
within the ball, which allows us to have much more
control over the structure of paths in the graph. In
particular, we show that leaving one edge out from a
path in our set P will force us to take a detour that is
so long that we will have to “exit” the relevant piece
of the grid. The full argument is quite lengthy and
includes more ingredients from discrete geometry. A
more detailed overview of the proof will be given in
the next section.

An intriguing open question is to connect ex-
tremal results and approximation algorithms in an-
other direction: Can we use our constructions of hard
graphs to improve the inapproximability bounds for
DSN?

Discussion. To highlight the tightness of our
bounds, let us present what we consider the most
gratifying corollary of this paper: for any choice of |S]|
and | P| that someone gives us and asks us whether for
this particular pair of parameters, an extremal linear
size bound of O(n) is possible, our two theorems
provide a confident and precise answer on whether
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the answer is positive or negative!

Of course, our results above are specific to the
setting where P C S x V, and are not as tight in
other interesting settings (e.g. when the restriction
P C 8§ xV is dropped) that we discuss in the next
subsection. Let us argue why our setting, in which
we parametrize by |S|, is natural and important.

First, this is the relevant setting for our appli-
cations to approximation algorithms for Steiner-type
problems. Like in our algorithm above, it is common
for one to sample a set of nodes S that “hit” all paths
with certain properties.

And second, we like to think of our Theorem [1.1
for the S x V setting as a generalization of the no-
tion of single-source reachability trees (such as BFS
or DFS). When P = S x V, the naive O(n|S|) bound
for reachability preservers is tight and it follows from
the easy fact that a single-source reachability tree has
O(n) edges. Our results offer a generalization for the
P C S x V setting: when |P| = ©(n|S|) our The-
orem still gives the correct O(n|S|) bound, but
when |P| = o(n|S]) it offers a new bound that is non-
trivially improved. Our lower bound suggests that
our “generalization” might be the qualitatively right
one, since it is tight in the two extreme settings: when
P is as large (P = S x V), there is a simple Q(n|S])
lower bound (a biclique) establishing tightness, and
when P is small, the lower bound of Theorem
suggests that we have correctly captured the settings
in which O(n) size preservers are possible. Moreover,
note that we also obtain a nice generalization in terms
of the running time for computing these structures.
The standard way to build a reachability preserver in
the “large P” (P = S x V) case is with a BFS/DFS
search, which takes O(|E||S|) time. Our (more in-
volved) algorithm in Theorem achieves essentially
the same runtime, while achieving the sparser struc-
ture guaranteed by Theorem

1.4 Reachability Preservers and Related Ob-
jects In slightly more general terms, the object we
study can be defined as follows:

DEFINITION 2. For a graph G = (V, E) and a pair-
set P C V x V, a reachability preserver H =
(V,E"),E" C E is a subgraph of G that preservers the
reachability of all pairs in P. That is, for all pairs
(s,t) € P the subgraph H contains a path from s to t
if and only if G contains one.

The general extremal question is: If G has n
nodes, and P contains p pairs, what sparsity can
we guarantee for the sparsest reachability preserver
of G, P? This problem has been implicitly studied
before, as it is a more basic version of many exten-
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sively studied graph sparsification and compression
problems in theoretical computer science. A distance
preserver of a graph G and pair set P is a sparse
subgraph that preserves all distances of pairs in P
[12, 21), 111, 10, 1 2]. A pairwise spanner must pre-
serve all distances of pairs in P approzimately [53, 23]
39, 45, 38, [2]. A distance preserving minor is a small
minor of G that preservers all distances in P approx-
imately [35] T3] 271 (5 29] 4T, 17, 34, B3], 42}, 1], 31].

Other notions of sparsification for directed
graphs have been studied. A roundtrip spanner is a
sparse subgraph in which all pairwise roundtrip dis-
tances (v to v plus v to u) are approximately pre-
served [22, 50, [44]. Very recently, there has been
progress on spectral sparsifiers of directed graphs [20].
Perhaps most related to ours are the Transitive Clo-
sure Spanners [0, 48] in which one also tries to pre-
serve the reachability among pairs of nodes. How-
ever, the main objective there is to have a spanner
with small diameter (by possibly adding edges to the
graph) rather than make it sparse.

In the special case of P = {s} xV, there has been
exciting recent progress in the fault-tolerant setting
[477, 46, [6, [19] which essentially studied the following
question: Given a graph G and a source s, what is
the sparsest subgraph H such that for all nodes in v
there are at least k node (or edge) disjoint paths in
H iff there are in G. The questions we study are the
special case of £ = 1, but we consider more than
one source. A related question for planar graphs
was studied by Thorup [52] in his seminal work on
distance oracles. There is also a lot of recent interest
in terminal embeddings where one tries to embed from
one metric to another while approximately preserving
the distances of a given set of terminals (see [28] and
the references therein).

We remark that an alternative way to ask the
extremal question is as follows. What is the densest
graph that you can construct if you have n nodes
and you get to add p paths, all of them starting
from a set of sources of size s, such that every path
is the unique path between its endpoints? (The
extremal equivalence between this problem and the
reachability preserver problem is slightly nontrivial,
but can be shown.)

Our results above essentially settle the case of
P C S x V. For the more general case of arbi-
trary P C V x V we get the following bounds,
which improve by polynomial factors both the up-
per and lower bounds that were known from previ-
ous work. The known upper bound for the more de-
manding problem of directed distance preservers is
O(min{n?/3|P|,n|P|'/?}) edges [10, 21]. There was
no non-trivial lower bound known for reachability
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preservers.

THEOREM 1.5. Given any n-node graph G = (V, E)
and pair set P C V x V, there is a reachability
preserver of G, P on O(n + (n|P|)?/?) edges.

For any integer d > 2, for any p = p(n), there
exists an infinite family of graphs G = (V,E) and
sets of node pairs P CV xV of size |P| = O(p) such
that every reachability preserver H of G, P has

0 <n2/(d+1)p(d—1)/d>
edges.

The lower bound part of this theorem follows as
a corollary of a lower bound proved by Coppersmith
and Elkin [2I]. To obtain the best possible lower
bound from this theorem, one must choose the setting
of the parameter d that maximizes the lower bound
for the particular pair set size p = p(n) being
considered. For example, in the range p = O(n), the
lower bound is optimized at € (n?/3p'/2) by setting
d = 2. We note that this implies that O(n)-size
reachability preservers are not possible in general if
p = w(n??); however, the upper bound portion of
the above theorem only implies that they are possible
when p = O(n'/?). We consider this non-tightness to
be an interesting open question.

New ideas seem to be required to close the
embarrassing gaps in our understanding of this basic
setting. Another particularly interesting setting that
remains wide open is the possibility of linear size
preservers under the P = S x T restriction.

OPEN QUESTION 1. Can we always preserve the
reachability among a set of pairs S x T in a graph
on n nodes with O(n + |S| - |T|) edges?

2 Reachability Preservers and Technical
Overview

The main focus of this section is on proving
Theorems and We split this section into
three parts. First, we (non-constructively) prove that
reachability preservers as promised in Theorem[I.1]al-
ways exist. Next, we complement our proof with an
algorithm that constructs existentially optimal reach-
ability preservers of a given instance G = (V, E), P C
S x V in O(|E||S|logn) time. In other words, if
every G,P C S x V has a reachability preserver
on f(n,|P|,|S]) edges, then our algorithm builds a
reachability preserver on O(f(n,|P|,|S])) edges for
any given G, P. This algorithm is the opposite of our
non-constructive existential proof, in the sense that it
is “purely constructive:” we have existential optimal-
ity for the output graph produced by the algorithm,
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but the algorithm itself does not suggest what the
right existential bound should be.

In the last part of this section, we give a brief
overview of our results and techniques for our other
existential bounds on reachability preservers. These
proofs are more complicated and technically involved,
so we defer full proofs to Section[d} giving only a flavor
of them here.

2.1 An Existential Proof of Theorem [I.1] Let
H = (V,E) be the sparsest possible reachability
preserver of some input graph and pair set G =
(V,E"),P C SxV where E C E'. For each (s,t) € P,
arbitrarily choose some canonical s ~~ 1E| path in
H and denote this path by 7(s,t); we may clearly
assume that each 7(s,t) is acyclic. Additionally,
for every edge e € E there must be some pair
(s,t) € P such that s /4~ t in H \ {e}; else we could
safely delete the edge e from H without changing
its salient reachability properties, thus obtaining a
sparser reachability preserver of G, P. We may thus
assign ownership of each edge e to some pair (s,t)
with this property. Let D be the average in-degree
of H. Say that an edge (u,v) is light if the in-degree
of v is at most D/2 + 1, or heavy otherwise. Denote
by Eg,t) the set of heavy edges owned by the pair

(s,t) € P.

CrLAaM 1.

2|5
‘E(I'Sl,t)‘ < % for all (s,t) € P

Proof. Suppose towards a contradiction that

28]

EH
‘ =0~ D

>

for some (s,t) € P. Let

Floyp = {(a,b) € F | there is an edge (a’,b) € Eg)t),

For any heavy edge (a’,b) € Eg » on the path
m(s,t), there are at least D/2 + 1 other edges (a,b)
that are incoming to b, and all such edges belong to

Fs,1)- We then have
D I DY [2|S]
|Flay| > <2> ‘E(s,t) > <2> (D) = |S].

So |F(S,t)‘ > |S|+ 1, and by the pigeonhole principle,
there are two distinct edges f1 := (a1,b1) # fo =

TWe use the standard s ~» t notation throughout this paper
to mean that there exists a directed path from s to ¢. Similarly,
s v t means that no such path exists.
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as bg

Figure 1: In the proof of Claim |1, we show that
it |BH,
leaving a common source u that intersect m(s,t) at
two different nodes b1, by; additionally, the latter path
owns the incoming edge (az2,b2). This is used to
derive a contradiction.

is too large, then there are two paths

(az,b2) € F(sy that are owned by pairs from a
common source; that is,

f1€E(H

u,v1)

and fs € E@Uz)

for some u € S and (u,v1),(u,v2) € P. We also
assume without loss of generality that b; precedes by
in7(s,t). See Figurefor a picture of what our paths
must look like if these constraints are all satisfied.
We now argue a contradiction as follows. Since
the pair (u,v2) owns the edge (as,bs), every u ~> by
path in H must include the edge (ag,b2). One
possible u ~~ by path can be found by joining the
prefix 7(u, v1)[u ~» by] with the suffix 7 (s, t)[b; ~ ba].
Thus (ag,be) € w(s,t). Since m(s,t) is acyclic it
or;lg ¢ ntains one edge entering by. Since (ag,bs) €
¥4, ?t' follows by definition of F{; ;) that (s,t) owns
its edge entering by, so (ag,b2) is owned by (s,t).
However, we note that F(, ;) is disjoint from Eg » by
its definition, since for any edge (a,b) € F(, ;) there
is a different edge (a’,b) € Eg 4 and (by acyclicty of
7(s,t)) E(Z’t) only contains at most one edge entering
any given node. So this implies that (az,bz) & Fs ).
We thus have a contradiction and the claim follows.

At most n(% + 1) edges are light. If D > 3
then this is a constant fraction of the total number
of edges, and we may now complete the proof of
Theorem [I.1] by some straightforward algebra. We
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have

El=0| > |B,

(s,t)eP

S
OZ%

(s,t)eP
5|P|n>
o
E|

|E* = O (|S||P|n)
|E| =0 (\/\supm).

Alternately, if D < 3 then by definition of D the
graph has O(n) edges. Putting these together, we
have

and so

B =0 (n+ /ISIPIn)

as claimed.

2.2 Constructing Reachability Preservers
Here we observe that one can construct asymptoti-
cally existentially optimal reachability preservers in
O(E| - |S|logn) time. Specifically:

THEOREM 2.1. Suppose that every n-node graph G =
(V,E) and set P C S x V of node pairs (for some
S C V) has a reachability preserver on at most
f(n,|P|,|S|) edges. Then there is a randomized algo-
rithm that always constructs a reachability preserver
of any input G, P on O(f(n,|P|,|S])) edges and ter-
minates in time O (|E||S|logn)) with high probabil-
ty.

Let G = (V,E),P C S x V be an n-node graph and
pair set taken on input. We assume that |E| = Q(n)
and that P is nonempty, since otherwise we may
return G or the empty graph (V, ), respectively.
Step 1: Contracting Cycles. The first step
is to convert G to a DAG. To accomplish this, we
run an algorithm to detect the strongly connected
components of G in O(|E|) time (e.g. [51]), and then
we build a graph G’ = (V’, E’) whose nodes are the
strongly connected components of H and which has
directed edges (Cy,C5) iff there is a directed edge
(c1,¢2) in G where ¢; € C and ¢3 € Cy. Additionally,
for each pair (s,t) € P, we have a pair (Cs,Cy) in
our new pair set P’ (where Cy, C; are the strongly
connected components holding s, ¢ respectively). We
will then compute an existentially optimal preserver
of G’, P’, and then complete the construction by “un-
contracting” the strongly connected components of
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G. That is, for each strongly connected component
in G we include any sparse directed skeleton of
the component that preserves its all-pairs strong
reachability (it is easy to see that these skeletons for
each strongly connected component cost only O(n)
edges in total), and then for each edge (C1,C5) €
E’ we arbitrarily choose representative nodes ¢; €
C1,c2 € Cy and include the edge (¢1, c2) in our final
preserver. The total cost is thus

O(n) + O(f(n',|P'[,|S"]));

since n’ < n,|P'| < |P|,|S] < |S| and f is clearly
weakly increasing in all of its parameters, the total
cost is then

O(n) + O(f(n,|P|,|S]))

which is asymptotically optimal (since clearly
f(n,|P|,|S]) = Q(n)). It now “only” remains to
compute an existentially optimal preserver of G', P’,
which is a DAG. For simplicity of notation we will
drop the primes, and simply assume that G itself is
a DAG.

Step 2: Building the Reachability Pre-
server. We now construct our reachability preserver
of G, P decrementally; that is, we initially set H < G
and we will iteratively delete edges of H. We use as
a subroutine an algorithm of Italiano [37].

THEOREM 2.2. ([37]) There is a deterministic algo-
rithm that, given a DAG G = (V,E) and a source
node s € V., explicitly maintains the set of nodes
reachable from s over a sequence of edge deletions.

The total amount of time needed to maintain this list
is O(|E|).

For the sake of building intuition, we first con-
sider Algorithm which is perhaps the most nat-
ural method for sparsifying H while preserving its
salient reachability properties (this is not the final
algorithm that we use).

ALGORITHM 2.1. (WARMUP)

1. Initialize H < G
2. For each s € S:

(a) Initialize a data structure Dj as in Theorem

3. While H has more than f(n,|P|,|S]|) edges re-
maining:

(a) Choose an edge e still in H uniformly at
random
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(b) Delete e from H and update each data
structure D accordingly, and record the
changes made to each D during this pro-
cess

(c) Let SUCCESSFUL «+— A s St
(s,t)eP

(d) If not SUCCESSFUL:

i. Add e back to H and undo the changes
made to all data structures Dy

4. Return H

It is clear that Algorithm is correct, in the
sense that it eventually terminates within the spar-
sity bound f(n,|P|,|S|) (since, by definition of f, at
all times there exists a subgraph of the current graph
H on f(n,|P|,|S]) edges that is a reachability pre-
server of G, P). The trouble is that the runtime of
Algorithm [2:1] is not very good. The successful iter-
ations are not a problem: by Theorem they take
O(|E||S]) time in total, which is good. However, with
high probably have at least f(n,|P|,|S|) unsuccess-
ful iterations (possibly far more), and each of these
might take Q(|E||S|) time. That is, because the worst
case update time per deletion in Theorem is still
O(|E)|), it is conceivable that we will pay Q(|E||S|)
work for a single unsuccessful deletion, but then we
have to unwind all of this work and so we are not able
to amortize this work over the runtime of the entire
algorithm.

This failed attempt gives us the intuition that
we are willing to perform some extra work in order
to avoid unsuccessful iterations. The key insight here
is that parallelization is useful. In particular, our
final algorithm (Algorithm works by maintaining
O(logn) different “universes” at a time, and it runs
each loop through Algorithm simultaneously in
all universes. This is our key idea: we progress the
computation in each universe in alternating steps so
that none lags behind the others.

ALGORITHM 2.2. (FINAL)

1. Initialize H < G
2. For each source s € S:

(a) Initialize 100logn identical data structures
D! from Theorem (¢ € [1001logn])

3. While H has more than 2f(n,|P|,|S|) edges

remaining:

(a) Let R be arandom sample of 100 log n edges
still in H
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(b) For each edge r; € R in parallel:

i. Update the data structures D! with the
deletion of r; for each s € S
ii. Let SUCCESSFUL; + A s @H\{n} t
(s,t)eP
iii. If SUCCESSFUL:
A. For each j # i € [100logn]:
¢ Halt the parallel process corre-
sponding to the edge r;

e For each s € S:

— Unwind the updates to DJ dur-
ing this parallel process

— Update DJ by deleting r;
4. Return H

The argument proceeds as follows.

Proof. [Proof of Theorem We claim that Algo-
rithm 2.2]terminates in O(|E||S|log n) time with high
probability. As in the intuition given above, we say
that an iteration of Algorithm [2.2)is a single round of
computation through its main while loop, that each
i € [100logn] represents a universe, and that a uni-
verse is successful in a given iteration if SUCCESSFUL;
is set to true (or if it would be set to true, if the par-
allel computation in this universe were allowed to run
to completion).

We first note that, with high probability, at least
one of the i universes will be successful in each
iteration. This holds because at least half of the
remaining edges can be successfully deleted in each
iteration (since H has more than 2f(n, | P|, |S]|) edges)
and we choose ©(logn) of these edges independently
at random. We thus assume that some universe
is successful in each iteration, and we let ¢ be the
successful universe whose data structure updates D’
are completed the fastest. Let t; be the total amount
of time taken by these updates. It follows that the
total work done over all universes in this iteration is
O(t;logn), since each of ©(logn) universes performs
at most O(t;) work, then unwinds it, and then re-
updates based on the deletion of the edge r;. Here, it
is important to note that SUCCESSFUL; does not
need to be computed explicitly (which would take
O(|P|logn) time per iteration, possibly exceeding
our claimed runtime); since the data structure from
Theorem [2.2] explicitly maintains a reachable list, we
may simply check each deletion as it occurs to see if it
destroys reachability of a pair in P. That is, whenever
the data structure updates its explicit output to
indicate that some pair is no longer reachable, we
check whether this pair belongs to P.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited



Downloaded 03/17/21 to 132.76.61.51. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

Let L be the total number of loops through the
main while loop executed by Algorithm [2.2] Its total
runtime is then

Z O(t] logn) = O(logn) - Z t)

1<G<L 1<G<L

(where # is the value of ; in iteration 5). Note that

> th=0(m|s))

1<5<L

since the left-hand side describes the runtime needed
to maintain |S| data structures from Theorem
over the sequence of edge deletions {r]} (without any
rewinding). The runtime follows.

2.3 Overview of Remaining Existential Re-
sults

Matching Lower Bounds for Theorem
An interesting implication of Theorem is that any
G, P C SxV admits a reachability preserver on O(n)
edges whenever |P| - |S| = O(n). Clearly this O(n)
can’t be improved to o(n), due to the trivial lower
bound of a path. However, it is conceivable that this
could be improved along another dimension: maybe
O(n) size reachability preservers still always exist
even in some broader range where |P| - |S| = w(n)?

Our most important additional result is a refuta-
tion of this possibility in a broad range of values for
|P|, ]S, establishing the optimality of Theorem [1.1]in
the regime of linear-size reachability preservers. We
show:

THEOREM 2.3. For any desired p = p,,s = O(n'/?)
with p-s = w(n), there is an infinite family of n-node
graphs G = (V,E) and sets P C S xV of |P| =p
node pairs (for some S CV with |S| = s) such that
every reachability preserver G, P has w(n) edges.

The proof of Theorem is very involved and it
constitutes one of the main technical contributions of
this paper. The high-level idea is as follows. We build
a graph whose nodes are represented as points in the
integer lattice Z2, arranged in a long thin rectangle.
We design P by choosing certain pairs of points (s, t)
at either end of the rectangle. We then choose the
edges of the graph using a fairly complicated method
that we forgo in this overview. The key properties
of our choice of edges are that (1) there is a unique
shortest path from s to ¢, and (2) every single edge
in the graph, viewed as a vector in Euclidean space,

has a very large projection onto the vector ;t We
then argue that the shortest s ~» ¢ path is in fact the
only s ~» t path in the graph. This holds because any
alternate s ~» t path must use at least one more edge
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than the shortest path; however, since each edge in
this path still makes considerable Euclidean progress

in the desired s_;ﬁ direction, we argue that such a path
will necessarily overshoot ¢t. Thus no edges in the
unique shortest s ~» ¢t path may be removed from
G by covering the edges of G with a small number
of s ~» t paths, we get our claimed sparsity bound.
The last step in the proof uses some more involved
arguments from discrete geometry to make the proof
work with a pair set of the form P C S x V.

The formalisms of this proof involve some
careful trigonometric arguments alongside a high-
dimensional parameter balance, since there is an im-
plicit tension between the density of the graph and
the worst-case projection of one edge onto another.
However, with lots of care this can indeed be accom-
plished, yielding Theorem [2.3

Upper Bounds in the General Pairwise
Setting. In Theorem we write P C § x V and
allow our bounds to depend on the parameter |S|. It
is also natural to consider the settting where no such
guarantee is made, and we may only parametrize our
upper bounds by n and |P|. In this setting, we show:

THEOREM 2.4. Fvery n-node graph G and set P

of mode pairs has a reachability preserver on
O (n+ (n|P|)*3) edges.

The proof bears some similarity to that of Theorem
in the sense it also follows from the observation
that we may choose paths 7(s,t) for pairs (s,t) € P
in such a way that no three paths form a “triangle.”
However, it differs from Theorem [I.]] in that the
density bound ultimately follows from a partition of
pairs in P into families, where the common trait of
a family is: there is a path m(s,t) for some pair
(s,t) € P such that every pair in the family admits
a path between its endpoints that intersects 7(s,t).
We then “batch process” a family at a time, which we
show can be done using only O(n) edges. This differs
from the old approach of bounding the contribution of
one path at a time (as in the proof of Theorem [1.1)).
This new and coarser-grained view of the problem
leads to our claimed existential bound.

For the sake of marking the current state of
the art of reachability preservers, we also remark
that the following result is implied directly from a
corresponding theorem for distance preservers in [10]:

THEOREM 2.5. ([I0]) Let RS(n) be the largest value
such that every graph G = (V,E) whose edge set
can be partitioned into n induced matchings has

O(#@) edges. Then all G,P has a reacha-
bility preserver on O(|P|) edges whenever |P| =
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It is known that 290°8"") < grg(p) < 20(Viogn)
32, 26, [7], so this result improves on the trivial
statement that O(|P|) edges suffice when |P| =
Q(n?). Thus it also improves on Theorem in a
narrow regime of sufficiently large |P|. We omit the
proof here, as it is no different from the one known
for distance preservers.

Lower Bounds in the General Pairwise Set-
ting. Finally, we observe that distance preserver
lower bounds can be converted into reachability pre-
server lower bounds of [21], yielding:

THEOREM 2.6. For any integer d > 2, there is an
infinite family of n-node graphs and pair sets P for
which every reachability preserver of G, P has

0 (n2/(d+1) |P|(d71)/d>

edges.

The basic idea behind this theorem is simple: one can
take an lower bound graph for unweighted distance
preservers and “layer” it by copying the base graph
many times and directing edges along these copies.
This yields a sparser graph, but it now functions as a
reachability lower bound, since for any non-shortest
path 7(s,t) in the original graph G for a pair (s,t) €
P, the corresponding path m(s,t) in the layered
version of G will overshoot its “destination layer.”
Hence, one merely needs to demand reachability to
enforce that the edges of 7(s,t) are kept in the
preserver.

Informally, it seems at first that the number of
nodes in G will increase by a factor of L (where
L is the length of the paths w(s,t)) when it is
layered, while the edge count of G will not increase
at all. Here, we introdue a trick: with a more careful
layering setup, it is possible to ensure that the edge
count of G also increases by a factor of L. This is still
a penalty over the original distance preserver lower
bound graph, but it is not nearly as bad as the naive
approach to layering.

We note the following immediate consequence of
Theorems 2.4] and 2.6t

COROLLARY 2.1. Any n-node graph G and set P of
|P| = O(y/n) node pairs has a reachability preserver
of size O(n). This size bound on P could conceivably
be improved up to |P| = O(n?/3), but no further.

We consider it a very interesting open problem to

close this gap.

3 Directed Steiner Network

In this section we obtain new approximation al-
gorithms for a classical network connectivity problem
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with a long history of prior work. Our algorithms
builds on these works by identifying an ingredient
that is common to all of them, and we show how it
can be improved using our results on extremal graph
sparsification.

The algorithm of Chlamatac et al. for UDSN per-
forms two different algorithms, depending on whether
OPT > n*5 or OPT < n*®, and in each case it
achieves a factor k = n3/°t¢ approximation. We show
that using an extremal bound on the worst case den-
sity of reachability preservers, and for some constant
b = 1/45, we can get a factor k = n3/5=b+¢ approxi-
mation whenever OPT > n*/>=3_ Then, we use the
same procedure of previous work for the case of small
OPT, but with a smaller upper bound on how large
OPT could be, and get a k-approximation for that
case as well. For this latter procedure we use the
following lemma from previous work.

LEMMA 3.1. (FoLLOws FROM [I8, [8]) If in an
UDSN instance OPT < O(n*5=%), for some
0 < a < 4/5, then for all ¢ > 0 we can get a
k-approzimation to OPT where k < O(n?/5=a/3+¢)
in polynomial time.

Now let us assume that OPT is at least
Q(n*/5=*). We pick a threshold k and say that a
pair (s,t) € P is k-thick if the set of all s-to-t paths
in G contains at least k nodes, and otherwise the pair
is k-thin.

The following lemma shows that all thin pairs can
be handled with a k-factor approximation. The proof
relies on considering an LP relaxation of the problem,
and then performing a randomized rounding strategy
to pick an approximate integral solution.

LEMMA 3.2. (FOLLOWS FROM [8]) For all k > 1,
given an instance of UDSN we can find a subgraph
on O(k - OPT) edges, in which all k-thin pairs are
connected with high probability.

This allows us to focus on k-thick pairs. All
previous works for DSN and related problems [30]
8, [18] [24] where this thin/thick pairs framework was
used, handled the thick pairs in an extremely naive
strategy: they sample a hitting set S of O(n/k)
nodes, and try to connect every terminal in the pair
set P to every node in S. For instance, Chlamatac
et al. take BFS trees in and out of each node in the
hitting set. In their algorithm, k is set to n®/5 and
so their hitting set has size O(n?/%), which makes the
cost of this stage O(n7/?).

But do we really need O(n"/%) edges in order to
connect all the terminals to the hitting set? This
is where our work comes in: we use the extremal
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results to argue that fewer edges are always sufficient.
For example, say that OPT is n*/® and that we have
n*/® terminals that we want to connect to n?/® other
nodes. Our Theorem says that O(n'3/19) edges
are sufficient, as opposed to the naive bound of n'4/19.
More concretely, set k = O(n3/5=%/3) and chose
a hitting set S of size O(n?/5t2/3). Let T be the
set of all terminals participating in k-thick pairs in
P. We know that |T| < OPT since any solution
must keep at least one edge adjacent to each terminal
in P. Now our goal is to connect all nodes in T
to and from all nodes in S (if possible), that is, we
consider the pair set P’ = {(z,y) € (S x T) U (T x
S) | there is a path from z to y in G}, and ask for a
Reachability Preserver in G for P’. Since our pair set
has the P’ C S x T structure, our Theorem gives
us an upper bound of O(y/n|S|?|T|) on the number
of edges necessary, which can be upper bounded by

9/10+a/3
10 <\/n (n2/5+a/3)2 . OPT) -0 <”) .OPT

VvOPT
— O(n1/2+5a/6> . OPT,

where the last step follows because OPT =
Q(n*/5=). By choosing o < 3/45 we get that this
bound is smaller than k - OPT, since 1/2 + 5a/6 <
3/5 — a/3.

LEMMA 3.3. (NEW) For all 0 < o < 3/45, if in an
UDSN instance OPT > Q(n*/>=%) then we can get
a k-approzimation to OPT where k < O(n3/5=/3+¢)
in polynomial time.

Finally, we can run both algorithms for small and
large OPT, and return the sparser solution. This
gives our new approximation algorithm for UDSN
which breaks the 73/ barrier.

THEOREM 3.1. For any fized constant € > 0, there is
a polynomial time algorithm for UDSN with approz-
imation factor O(n3/5=1/45+e) = O(n0-5777+e),

4 Extremal Bounds for
Preservers

Reachability

Here, we formally prove the extremal results for
reachability preservers overviewed in Section [2.3

4.1 Lower Bounds in the P C § x V Setting
We now prove Theorem We remark that we have
only concerned ourselves in this proof with establish-
ing the best possible lower bound of the form w(n);
we have not tried to optimize (or even compute) the
quality of the lower bound at superlinear preserver
sizes. This is because the lower bound is quite com-
plicated in its current state, and these optimizations
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would introduce considerable additional complexity
that we believe would distract more than it adds.

Geometric Setting and Definitions. Let R
be a rectangle in R? with width w and height h (we
will set these parameters later, and have w < h).
We do not align R with the axes of R?; rather, it is
rotated such that the angle between the z-axis and
the long side of the rectangle is a parameter ¢ that
we will choose later. Its shift in space is unimportant
(i.e. it doesn’t matter where the bottom-left point
of the rectangle is placed). The start zone Z of R is
defined as the nested sub-rectangle of R with width
w and height h, < w, positioned such that one of
the w-length sides of Z is also a w-length side of R.

The following geometric definitions will be useful:
CH(s,r) is the convex hull of the set of points in R
within distance 7 of lattice node s, and Cs 4 denote
the cone with apex s and internal line of symmetry
positioned parallel to the h-length side of R and
directed away from the start zone Z (we will interpret
Cs,4 to include its interior).

See Figure [2| for a picture of all of the above
definitions (as well as a picture of a pair (s, t) included
in the pair set of the construction; this process is
described below).

Construction of the Lower Bound In-
stance.

e The nodes of G are precisely the points in the
integer lattice Z¢ in the interior of R. In an
abuse of notation, throughout this construction
we will use the names of nodes interchangeably
with their vectors; for example, given nodes
u,v we write v — u to denote the vector in R?
between them. In particular, we will commonly
write |ju — v||2 to denote the Euclidean distance
between the vectors wu,wv; by contrast, we will
exclusively use the notation dist(u,v) to mean
the shortest path distance in G from the node
u to the node v. We will also try to make this
distinction clear in context.

e The edges of G are defined: for each node
s, we add a directed edge to each node t €
CH(s,7) N Cs,4 N R (here ¢ is a new parameter
of the construction that we will choose later).

e The pairs of P are defined as follows. For each
s € Z and each edge (s,a) leaving s, we let
t = s+ k(a — s) (interpreting the points here
as vectors in R?), where k is the largest integer
such that t € R. We then include the pair (s,t)
in P. By symmetry of the construction, note
that there is a s ~~ t path of length k obtained by
starting at s repeatedly stepping in the direction
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a — s until one reaches t. We shall call this the
canonical path for the pair (s,t), and we denote
it by m(s,t).

One critical step in the construction remains:
we will later add additional nodes S to the graph,
connecting each s € S to the start point of many
pairs p € P, thus yielding the desired P C S x
V' property for the construction. However, many
technical details need to be stated before this step
can be appropriately de-mystified. Thus, for now,
our goal is simply to argue that G, P requires an
w(n) size reachability preserver, and we will revisit
this step later.

Density of the Construction. First, we an-
alyze the choice of parameters necessary to ensure
that our lower bound construction has a superlinear
number of edges.

TueoreM 4.1. ([]) |CH(s,r)| = © (r¥?). More-
over, all points x € CH(s,r) satisfy

r=00 %) < (s, 2)ll2 < 7

for some sufficiently large absolute constant hidden in
the ©.

LEMMA 4.1. Suppose that the skew 1) is chosen uni-
formly at random. If ¢ = c1r—2/3, then in expecta-
tion, we have CH(u,r)NC,y, 4 = co (note that this in-
tersection includes nodes outside R) for any u and for
some co that can be made arbitrarily large by choice

of c1.

Proof. Let B(s,r) denote the r-ball in Euclidean
space centered at the node s. Note that B(s,r)NCs, ¢
gives a shape whose area is O(¢) times the area of
B(s,r). Since we have ©(r?/3) points in CH(s,r),
which have essentially been randomly rotated by
the skew 1), the expected number of these points
contained in C(s, ¢) is

) (q’) : 7“2/3) =0 (clr_2/3 '9"2/3) =0(c1) =: ca.

We now set ¢ to any value such that obtains deg(u) =
co. This lemma yields our first parameter constraint:
we will ultimately set ¢ = © (r~2/3). This pa-
rameter setting is assumed in the proofs that follow.

Analysis of Canonical Paths. Our next goal
is to enforce that each canonical path is the unique
path in G between its endpoints. Uniqueness of these
paths is not immediate from the construction; rather,
we take on some constraints on the construction
parameters that must be satisfied in order for this
desired uniqueness property to hold.
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Let us fix attention on some canonical path with
endpoints (s, z), and suppose this path contains k
edges. The following notion will be useful in this
part of the argument:

DEFINITION 3. (PROGRESS) The progress of a node
w s defined as

progress(w) := || proj (z — w)||2-
zZ—S
Less formally, progress(w) is the distance along the
s — z direction one has traveled so far in Fuclidean
space if one is currently sitting at the node w.

We have:

LEMMA 4.2. (SIMILAR TO AN ARGUMENT IN [21])

The path 7(s, z) is the unique shortest (s,z) path in
G.

Proof. First, by construction, if (w,x) is any edge on
the canonical path (s, z) then the number of edges
the number of edges in 7 (s, 2) is
|z = sll2

L |

EE

On the other hand, we can compare vector pro-
jections

[proj(a’ —w)llz < || proj(x — w)ll2
r—w r—w

from the fact that z,2’ € CH(w,r). Since x —w =
A(z—s) for some scalar A, and the operation of vector
projection is sensitive only to the direction but not
the magnitude of the base vector, we then have

Iproj(z’ —w)ll2 < | proj(z — w)]l2.
z—s z—s

Thus, considering a non-canonical s ~» z path includ-
ing the edge (w,z’), the progress of its k" (or less)
node a is

progress(a) < k- ||z —wl|l2 = ||z — sl|2.

Thus a # z (since progress(z) = ||z — s||2), so the
length of the non-canonical path is strictly greater
than k.

We have just shown a lower bound on the number
of edges in any non-canonical s ~» z path. We next
show an upper bound on the same quantity:

LEMMA 4.3. If k = O(r*/3) with a sufficiently small
implicit constant in the O, then any (s, z) path in G
contains at most k edges.
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Figure 2: The (partial) lower bound construction. The nodes of G are the integer lattice points inside the
entire rectangle R. All edges incident to s have been pictured; the edges leaving all other nodes are generated
in the same way (the edge is omitted if the other endpoint leaves R). One of the pairs in P will be (s, ).
The canonical path 7(s,t) is two edges long and is pictured here. The second step of the construction, in
which source nodes are added, has not been described yet and is not pictured here.

Proof. Given any two edges (u,v), (u,v"), the length
of the Euclidean projection of one onto the other is

| proj(v' —u)|l2 > |[v" — ul| - cos(¢)

(using the standard formula for vector projection),
since by construction the angle between these vectors
is at most ¢. Using the standard small-angle approxi-
mation cos(¢) = 1—0(¢?), observing that ||v/ —ul|| >
r—©(r~1/3) (from Theorem [4.1), and substituting in
our previous parameter setting ¢ = ©(r~2/3) we can
write
lproj(v' —u)lla > (r = O(r~"/%)) - (1 = r=*/%)

=r— 6(7’71/3).
Thus
o =wullz = | proj (v’ = w)lls = OG=*?)

from the above inequality and the fact that
[ proj, (v —u)ll2 < lv—wull2 <.

Let us now consider the value of progress(x) for
any node z that is the endpoint of an s ~» x path
containing k41 or more edges. We may lower bound:

progress(x) > (k+1)(Jv — ulla = O(r~7?)).

Substituting in the parameter setting k = O(r*/3),
we may write

progress(x) = kllv — ullz + (v — ulla = O(r)).
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Since we also have (loosely) |lv — ull2 > r — 1, we
may choose our implicit constants small enough that
(Jlv — u|l2 — O(r) is positive. Thus

progress(x) > k|lv — ulla = progress(z)

and so x # z. Thus z is not the endpoint of any path
starting at s containing k£ 4+ 1 or more edges.

This gives our next parameter setting: we will
set r such that k& = O(r*/?) for all canonical
paths (with an implicit constant small enough to
push Lemma [4.3] through). Combining the previous
two lemmas, we have

LEMMA 4.4. The canonical (s, z) path is the unique
(s, z) path in G.

Proof. The canonical path has k edges, and since it is
the unique shortest path by Lemmal[4.2] any alternate
path has k+1 edges or more. But by Lemma[4.3]and
our setting of r, there is no s ~» z path with k41
edges or more. Thus 7(s, z) is the unique s ~ z path.

Pairwise Lower Bound Quality. We have:

LEMMA 4.5. If w = cshr=2/3 for a large enough
constant c4, then any reachability preserver of G, P
contains at least a constant fraction of the edges in

G.
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Proof. Fix a node u, and look at the set of edges
(v,u) with endpoint w. Say that an edge is left-
leaning if the angle of the vector v — v with the z-
axis exceeds 9 (i.e. it points more towards the “top”
of the rectangle than the bottom), or right-leaning
otherwise. By construction, a constant fraction of the
edges incident to u are left- or right-leaning. Since
no edge in a canonical path may be deleted in a
reachability preserver, it then suffices to show that
for each node u, either all left- or all right-leaning
edges are contained in a canonical path.

Let us suppose that there exists a left-leaning
edge (v,u) that is not part of any canonical path
(otherwise we are done). It follows from the construc-
tion that the line ¢, , in Euclidean space through v, u
does not intersect any node in the start zone Z. More
specifically, since (v,u) is left-leaning, we must have
that ¢, , misses the start zone to its right-hand side.
Thus, by standard trigonometry, the Euclidean dis-
tance from u to its closest point on the long side of the
rectangle R (of length h) is at most htan ¢. Substi-
tuting in the small angle approximation tan ¢ = O(¢)
and the parameter setting ¢ = ©(r~2/3), the distance
is ©(hr=2/3).

By a symmetric argument, if (v,u) is right-
leaning then the distance from u to the closest point
on the left-hand side of R is also ©(hr~2/3). Note,
however, that the sum of the distance from wu to
the closest points on the left- and right-hand sides
of R is precisely the parameter w. Thus, if we
have w = Q(hr—2/3) with a sufficiently large implicit
constant, then either every left-leaning edge ending at
u is part of a canonical path, or every right-leaning
edge ending at u is part of a canonical path. The
lemma follows.

This gives our third parameter constraint: we
will set w = © (hr=2/3).

Let us recap the progress made so far in the
argument. We have proved that our construction
is a good lower bound against O(n)-size pairwise
reachability preservers: by setting the parameters of
the construction within the constraints specified so
far, we have that:

o CH(u,7) N Cy,y = co for some constant ¢ that
we can make arbitrarily large,

e It is easy to see that for a constant fraction of the
nodes v in G, a constant fraction of the nodes in
CH (u,r)NCy,e; thus the density of G is nc), for
some constant ¢, that we can make arbitrarily
large, and

e A constant fraction of the edges in G belong to
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canonical paths and thus may not be removed in
a reachability preserver of G, P. Therefore any
reachability preserver has density ncj for some
constant ¢4 that we can make arbitrarily large.

Intuitively, this argument lets us refute the gen-
eral possibility of reachability preserver constructions
of |P| = w(n?/3) pairs on O(n) edges (because, as we
shall see later, a setting of |P| = O(n?/3) is compati-
ble with the parameter restrictions we have made so
far). Specifically, by pushing the implicit constant
in the |P| = O(n?/?) arbitrarily high, we may push
the constant ¢j in the density lower bound arbitrar-
ily high until it exceeds whatever implicit constant is
used in a claimed O(n) sparsity upper bound.

What remains is to modify the construction so
that the pair set P only uses a small set .S of sources.
Currently, every node in the start zone appears in a
pair in P, and this is far too many.

Augmenting the Construction with Source
Nodes. We will now add “source nodes” S to the
graph by the following process. Choose a representa-
tive node u € Z for which all edges in CH (u,r)NCy 4
lie in R. For each edge (u,v), define the vector
a, € R? by the following process: let (u,vy), (u,vR)
be the nodes immediately to the left (counterclock-
wise) and right (clockwise), respectively, from (u,v)
in the plane. Define a, := vy — vg. For the two
left- and right-extreme values of v with no suitable
vr,, VR (respectively), we define a,, by temporarily in-
creasing ¢ so that CH (u,r) N Cy,e includes a few ad-
ditional edges on either side; we use these edges to
define a, and then restore ¢ to its usual value and
discard them.

For each possible a, and any given node = € Z,
we define the line /; in Euclidean space in the
direction a, passing through x. Let L be the set of
all such lines. For each ¢ € L, we add a node sy € S,
and for each node z € Z on the line £ we add an
edge (s¢,x) to the graph. For each pair of the form
(z,2) € P, we replace it with the pair (s¢, z). The set
of all such nodes sy is denoted by S. One should not
think of the nodes in S as being vectors in the plane;
they are abstract.

This completes the construction. Two tasks
remain in this part of the proof: first we will confirm
that we still have unique pairs in P, and then we will
count the size of S.

LEMMA 4.6. Assuming h, = O(r) with a sufficiently
small implicit constant, the unique path in G for a
new pair (s,z) € P that replaced an old pair (z,z) is
found by first walking the edge (s, x) and then walking
the canonical path 7(z, z).

Proof. The goal here is to generalize Lemmas 1.2 and
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to apply the same upper- and lower-bounds on
any path of the form 2z’ ~ z, where x # z’ lie on the
same ¢ € L. This will imply that no path 2’ ~ z
exists, and thus the unique s; ~~» z path in G uses
m(x, z) as a subpath, and so the density analysis given
above still applies. We once again let k be the number
of edges in 7(z, 2).

The upper bound argument, showing that any
2’ ~ z path has length % or less, is nearly identical to
the one given before, and we will not restate it fully.
There is only one additional piece to the argument,
which is the (only) place we use the restriction h, =
O(r). Since we have h, = O(r), it is immediate
that the progress of the node 2’ is at least (say)
r/2, assuming the constant in the O(r) is chosen
sufficiently small. Thus, after walking any one edge
from 2’ our progress (measured with respect to z —x)
is Q(r) (assuming h, is a sufficiently small constant
fraction of 7). The rest of the proof can then continue
as before: intuitively, the same calculations show that
after taking k + 1 or more steps from z’, the total
progress made exceeds ||z — z||2 and so no path of
length £ + 1 or more ends at the node z.

The lower bound argument, needs significant new
ideas. Observe that some of the nodes on ¢ start
with positive progress, which means that arguments
based on upper bounding total progress, as before,
will break. Instead, we argue:

Let k- CH(z,r) denote the vectors in Z? (not
necessarily in R) of the form z + k - o where a €
CH(z,r). It is clear that these vectors are a convex
set in Z2, and that their convex hull encloses any
node y for which there is a y ~» z path in G of k
steps or fewer. We observe that £ is a supporting line
of this convex point set; that is, it intersects exactly
one point (x) in k- CH(z,r) and all other points in
CH(z,r) lie strictly on one side of £. It is immediate
that € £ and it is demonstrated by the existence of
w(x,z) that © € CH(z,r). By standard structure
of convex sets, it suffices to show that zp,zp lie
(strictly) on the same side of ¢, where x,, xr are the
points in CH (z,r) immediately to the left and right of
z. Recall from the construction that the direction of
£ is the vector a,, and in fact we have k-a, = x;, —xR.
Thus the slope of a, is strictly between the slopes of
x;, —z and x — xR, and so £ is a supporting line of
k-CH(z,7r). From this, it is immediate that there
is no 2’ ~» 2z path containing k or fewer edges where
x' € ¢ (unless ' = ). Hence any s ~» z path must
first walk the edge (s,z), and from there the unique
z ~ z path is m(z, z) by Lemma[{.4]

We now work towards counting the size of S.
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LEMMA 4.7. For any line £ € L, if the Euclidean

length of the line segment N Z is d, then the number
of nodes in Z intersected by € is Q(dr—1/3),

Proof. The line ¢ has some direction a,. Recall that
this direction was obtained as a, = vy — vgr, where
vr,vgr are both endpoints of edges starting at some
node u. Since the angle between vy, — u and vg — u
is at most ¢ = ©(r~2/3), and their magnitudes are
llor —ull2, lvg —ull2 € [r—1,7], some straightforward
trigonometry gives that

loz = vrllz = llay |2 = O(-/?).

Since vy, — u,vp — u € Z2, it follows that given any
point = € Z? N ¢, each time we add or subtract a, we
find another such point in Z2N£. Since ||a, ||z = /3,
it follows that any segment of £ of length d contains
Q(dr=1/3) points in Z2. Each point in /N ZNZ?is a
node in Z, and the lemma follows.

LEMMA 4.8. Assuming ¢ = O (%), we have
1S| = O(r'/3hy).

Proof. Partition L into families {F;} of parallel lines;
note that there are O(1) such families since there are
O(1) edges on any node u and thus O(1) different
directions a, that determine lines. It thus suffices to
bound the size of each parallel family F; as |F;| =
O(r'/3h,).

For a given Fj, first note that each node in Z
appears on exactly one line £ € F;. Note that the
angle between ¢ and the short w-length side of R
is in the interval [—¢, ¢]. Thus, by straightforward
trigonometry, if tan(¢) = O(h,/w), then the average
over ¢ € F; of the Euclidean length of the line segment
(N Z will be Q(w). Thus, by Lemma[4.7] the average
¢ € F; holds Q(w - r~/3) nodes. Since there are
O(wh) nodes in total and each node lies on one such
line, we then have

|m:0<$ﬁ%>=00wm)

as desired.

Balancing Parameters. If we choose our pa-
rameters within the constraints specified so far, we
thus have that any reachability preserver H =
(V,Eg) of G, P satisfies |Eg| = Q(n-cq) for some con-
stant ¢y that can be made arbitrarily large by choice
of other implicit constants. This refutes the possibil-
ity of a lower bound of type O(n) for G, P, since the
constant ¢ can be pushed high enough to violate the
implicit constant in this O. It now remains only to
see which values of | P|, |S| can be obtained.
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To recap, our constraints are (dropping the first
constraint on ¢, which is no longer used):

1. Q(r) = h =0 (r"/3) (lower bound must hold for
the graph to be nonempty)
2. 2=Q (r_2/3) (slightly rearranged)
Che = (r23)

and by construction we have
1. n = ©(wh) nodes
2. |P| = 6(Z]) = O(h.w)
3. |S] = O(h.r'/3).

The parameter setting that proves Theorem
in the densest regime is given by

h=nT/12 4 = n5/12, h, =1 =n'/4,

Straightforward algebra then yields |P| = © (n%/?)

and |S| = © (n'/?), as desired. Theorem is given

in its sparsest regime by the parameter setting
h=w=h, = nt/?

which gives |S| = 1 and |P| = n. Since all dependen-

cies are linear, a linear interpolation between these

parameter settings proves Theorem in general.

4.2 Upper Bounds in the General Pairwise
Setting Here we prove Theorem[2.4] As in Theorem
1.1} we may assume that G is a DAG. Let H be a
sparsest reachability preserver of G, P. We then have

H= U 7(s,t)

(s,t)eP

where 7(s, ) is some canonical s ~» ¢ path. We again
say that a pair (s,t) requires an edge (u,v) if every
s ~> t path in H includes the edge (u,v). Since H is
minimal we may assign ownership of each edge to a
pair that requires it.

As a preprocessing step, while there is a pair

p € P that owns at most (LPT% edges, we delete

p from P and we delete all edges that are uniquely
required by p from the graph. We lose at most |P| -
2/3
of remaining edges in the graph is O(n + (n|P])?/3)
then we are done; otherwise, we proceed as follows.
Let D be the (new) average in-degree of H,
and we say that an edge (u,v) is heavy if the in-
degree of v is at least D/2 + 1, or (u,v) is light

= (n|P|)?/3 edges in this way. If the number

otherwise. We assume towards a contradiction that
D=w (1 + %) As before, we define

E(Z’t) = {(u,v) € w(s,t) | (u,v) is heavy and owned by (s,t)}

and

Fiop) = {(a,b) € E | there is an edge (a’,b) € Eg,t),“ # a’} .

Since at least half of all edges are heavy, there is be
a pair (s,t) for which
n2/3
=©({7ws)
and thus

n2/3
Feol =6 (2 s )

|P|2/3 n2/3
= () )
=w (nl/?’\P|1/3) .

H
‘E(s,w

It is clear that no two edges in F{, ) can be required
by the same path. Thus, letting Q) be the set of
paths that own an edge in F{, ), we have |Q(S,t)’ =
‘F(s’t)’. Let R(sy) be the set of (all) edges required
by some path in @, ;). We then have

n2/3

[P
n2/3

= |[Fisl- P/

|Ris.| = Qs

2/3
— 1/31pj1/3) . "
=w (n | P| ) REE

=w(n).
However, following an identical argument to the one

given in Theorem|1.1} no two of these edges may share
an endpoint. By the pigeonhole principle we have

a contradiction, and so D = O (1 + “:B;S) and so
|E| =nD = O (n+ (n|P|)¥?).

4.3 Lower Bounds in the General Pairwise
Setting To prove Theorem we first need:

THEOREM 4.2. (PROVED IN [21]) For any integer
d > 2, for any p = p(n), there exists an infinite
family of undirected unweighted graphs G = (V, E)
0

n
0 <n2d/(d2+1)p(d27d)/(d2+1)>

edges, as well as sets of node pairs P CV xV of size
|P| = O(p), such that

Copyright © 2018 by SIAM
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e For each pair (s,t) € P there is a unique shortest
path in G between s and t,

o These paths are all edge disjoint, and

o The edge set of G is precisely the union of these
paths.

The proof of Theorem is by a natural layering
transformation of the graphs drawn from Theorem
with an optimization over comparable techniques
in prior work (e.g. [I0]) that allows us to squeeze ex-
tra “costly” pairs into the lower bound that improve
its density.

We construct our graph as follows. Start with
an instance G = (V, E), P drawn from Theorem [4.2
with d chosen the same as the desired d in Theorem
By standard tricks ([I0]) we may assume that
all pairs (s,t) € G have the same dist(s,t); call
this common distance L. We now take 2L copies of
{G1,...,Gap} of G, which will serve as layers for our
new graph G' = (V' E’). For any node z € V, let z;
denote the copy of = in the graph G;. For each edge
(u,v) € E, we add edges (u;, vi+1) and (v, ui41) to
G’ (for each 1 < i < 2L —1). Finally, for each pair
(s,t) € P, we add pairs (uj,ujyr) forall 1 <j <L
to P’. This completes the construction. Note that G’
has n’ = ©(nL) nodes and P’ has O(pL) pairs. We
now show:

Proof. [Proof of Theorem By construction, for
each pair (s;,t;+) € P’, we observe that there is
a unique s ~» t path in G’. This holds because
every (s;,t;+r) path in G’ has length exactly L (since
all edges are directed from lower-numbered layers to
higher-numbered layers) so the corresponding (s,t)
path in G has length L; by Theorem there is a
unique s ~» t path of length L in G. Moreover, we
observe that any two of these paths are edge disjoint,
since they correspond to shortest paths in G for pairs
in P which are edge disjoint. Thus, for each pair
p € P, we may identify a set of L — 1 unique edges
in E' such that any reachability preserver of G’, P’
must keep all L — 1 edges. Hence, any reachability
preserver of G', P’ has Q(|P'|L) = Q(pL?) edges.

With this, our lower bound follows from straight-
forward algebra. We compute:

E(G 2 2
I — |E(G)] —-0 <n2d/(d +1) pd(d—1)/(d +1)—1>

—-0 <n2d/(d2+1)p(—d—1)/(d2+1))

and so the number of edges |E’| in any reachability
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reserver of G', P’ satisfies
b

|E'| > pL?
= |E|L

—Q (nQd/(d2+1)p(d27d)/(d2+1)) . (nQd,/(d2+1)p(7d71)/(d2+1))

-0 (n4d/(d2+1)p(d272d71)/(d2+1))

We also have

nl = © (n<d+1)2/(d2+1)p(—d—1>/(d2+1))

and ] 2 2
pL =0 (n2d/(d 1) (4 ~d)/ (d +1))

and so
IE'| = Q ((nL)Z/(d+1)(pL)(d—1)/d>

|E/| Yol <(n/)2/(d+1)<p/>(d—1)/d)

which completes the theorem.
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