Fine-Grained Complexity Lecture 1: Overview

October 25, 2021

Instructor: Amir Abboud

TA: Tomer Grossman

Website: http://www.weizmann.ac.il/math/AmirAbboud/course-fine-grained-complexity

HW every other week, final take-home exam.

Participation in class encouraged and expected.

Starting point: NP-Hardness is great!

NP-hard

Protein Folding

Travelling Salesman

Subset Sum

k-SAT

• • •

in P

Linear Programming

All Pairs Shortest Paths

Fourier Transform

CFG Parsing

Edit-Distance

• • •

What about the problems inside P?

Is "polynomial = efficient" true?

Why care about O(n), $O(n^{1.5})$, $O(n^2)$, ...? Here's one example where it matters...

Local Alignment

Input: two (DNA) sequences of length n and a scoring matrix.

AGCCCGTCTACGTGCAACCGGGGAAAGTATA AAACGTGACGAGAGAGAGAACCCATTACGAA

Output: The optimal alignment of two substrings.

C C G - T C T A C G C C C A T - T A C G +1+1-0.5-1+1-1+1+1+1+1=+4.5

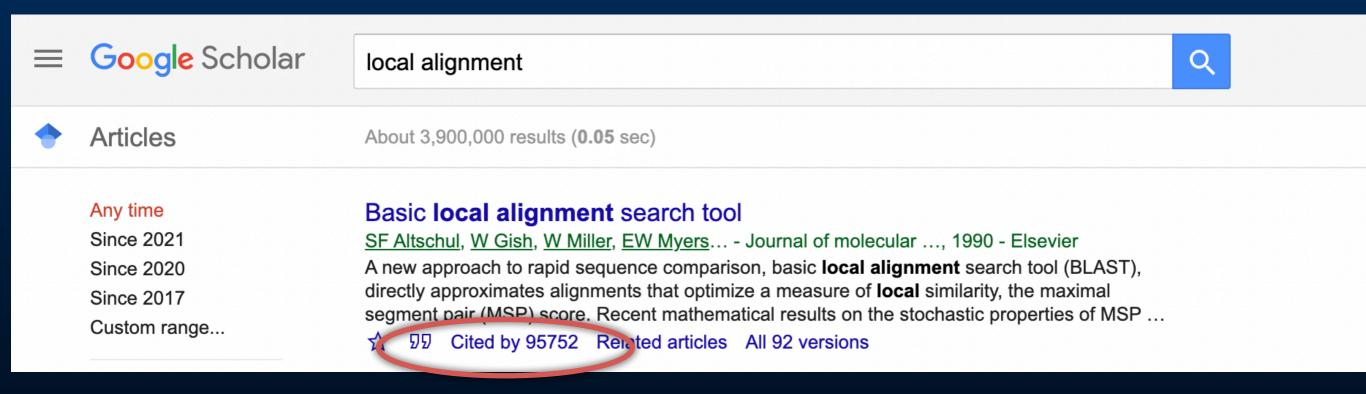
	Α	С	G	Т	-
Α	+1	-1.4	-1.8	-0.7	-1
С	-1.4	+1	-0.5	-1	-1
G	-1.8	-0.5	+1	-1.9	-1
Т	-0.7	-1	-1.9	+1	-1
-	-1	-1	-1	-1	-00

Typically: *n* >> 10⁶

[Smith-Waterman '81] $O(n^2)$ with dynamic programming - too slow!

Why care about O(n), $O(n^{1.5})$, $O(n^2)$, ...?

BLAST: A heuristic, linear time algorithm for Local Alignment.

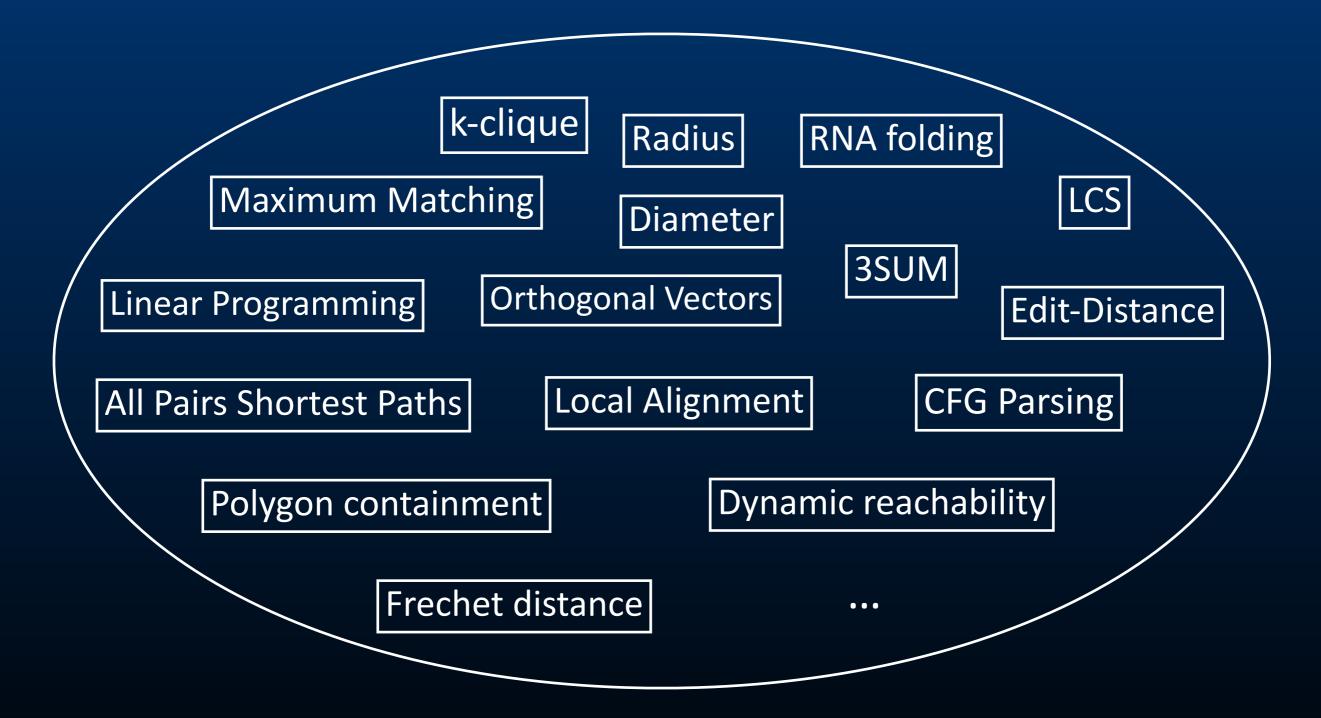


95k citations!

Are there fast algorithms with optimality guarantees?

Fine-Grained Complexity has the answers.

The Class P



<u>Goal:</u> Understand the time complexity of important problems.

Fine-Grained Complexity or: Hardness in P

Take a problem X in P, say in $O(n^2)$ time.

And prove that:

" X probably cannot be solved in $O(n^{2-arepsilon})$ time. "

How do we get n^2 and n^3 lower bounds?

NP-hardness is not fine-grained enough...

Lower bounds for restricted algorithms?

e.g. $\Omega(n \log n)$ for sorting in the comparisons-only model.

Not general enough, and only gives partial answers.

Unconditional polynomial lower bounds?

"Any Turing Machine has to spend $\Omega(n^2)$ time..."

Time Hierarchy Thm (1965): Some (artificial) problems require $\Omega(n^2)$ time.

But $\Omega(n^2)$ for natural problems, even for SAT, is far out of reach of current techniques. Best lower bound is 3.1n.

Fine-Grained Complexity

Take a problem X in P, say in $O(n^2)$ time.

And prove that:

" X probably cannot be solved in $O(n^{2-\varepsilon})$ time."

Approach: imitate NP-hardness!

<u>Theorem</u>: Problem X is NP-hard.

X is in P

Every NP-complete problem is in P

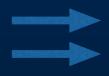
(unlikely)

<u>Conclusion</u>: "X is probably not in P"

Approach: imitate NP-hardness!

To prove "lower bounds", reduce famous problems to your problem.

An *O*(*n*^{1.9}) algorithm for problem Y (surprisingly fast)



Unexpected breakthroughs in different areas of CS

(some conjecture is refuted)

<u>Conclusion</u>: "Probably no O(n^{1.9}) algorithm for Y"

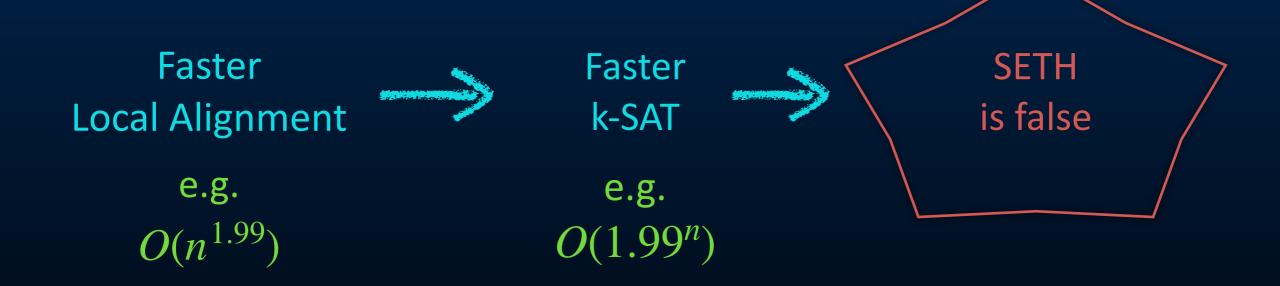
Next: Many examples of this approach in action.

An Example of a Fine-Grained Lower Bound

"No provably exact, fast algorithm."

Theorem [AVW'14]:

"If for some $\varepsilon>0$, we can solve Local Alignment in $O(n^{2-\varepsilon})$ time, then we can solve k-SAT in $O((2-\delta)^n)$ time for some $\delta>0$ and all k>0."



P≠NP: "k-SAT cannot be solved in polynomial time."

The Strong Exponential Time Hypothesis (SETH):

"k-SAT cannot be solved even in $O(1.99^n)$ time."

Today's Lecture

- Motivation
- Intro to Fine-Grained Complexity
- The Basics (Part 1: weeks 2 to 8)
- About this course
- Advanced topics (Part 2: weeks 8 to 14)

SEIH

k-SAT: given a k-CNF formula on *n* variables and *m* clauses, is it satisfiable?

$$\phi = (x_1 \lor x_2 \lor \bar{x_3} \lor x_{10}) \land \cdots \land (x_2 \lor \bar{x_1} \lor x_4)$$

Fastest algorithms: [based on PPSZ'05]

$$O\left(2^{\left(1-\frac{1}{ck}\right)\cdot n}\right) \quad \begin{array}{c} \mathsf{k=4:} \ 1.504^n \\ \mathsf{k=5:} \ 1.592^n \end{array}$$

 $k=3:1.308^n$

 $\dots k \to \infty : 2^n$

The Strong Exponential Time Hypothesis (SETH):

[Impagliazzo-Paturi'01]

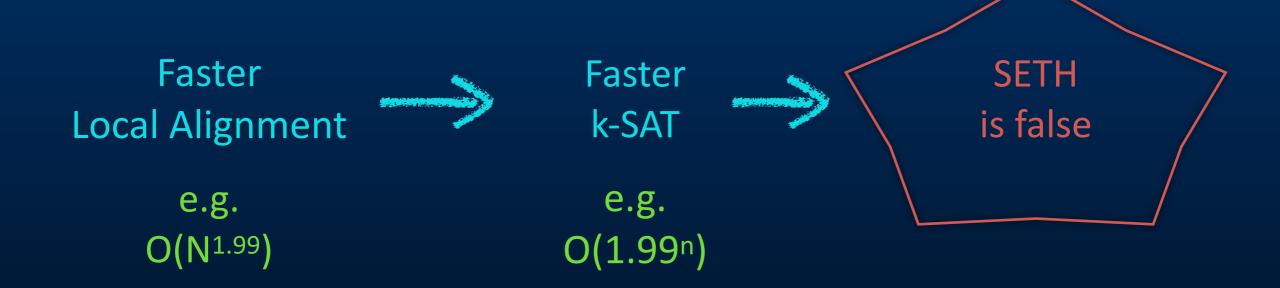
There is no $\varepsilon > 0$ such that for all k > 2,

k-SAT can be solved in $O(2-\varepsilon)^n$ time.

SETH: "k-SAT cannot be solved in *O(1.99ⁿ)* time."

Theorem [AVW'14]:

"If for some $\varepsilon>0$, we can solve Local Alignment in $O(n^{2-\varepsilon})$ time, then we can solve k-SAT in $O((2-\delta)^n)$ time for some $\delta>0$ and all k>0."



P ≠ NP: "k-SAT cannot be solved in polynomial time."
The Strong Exponential Time Hypothesis (SETH):

"k-SAT cannot be solved even in $O(1.99^n)$ time."

Longest Common Subsequence (LCS)

Input: two sequences of length n

S = cddcabbabcbaa /// | | \ T = adbdbbcabacdd

Output: the length of the longest common subsequence

Classic Dynamic Programming: O(n²)

[Masek - Paterson '80] O(n²/log²n)

Longstanding open question: Can we solve LCS in near-linear time?

Edit Distance

Input: two sequences of length n

 $S = cddcabbabcbaa \longrightarrow T = adbdbbcabacdd$

Output: the min number of insertions/deletions/substitutions needed to transform one to the other

[Masek - Paterson '80] $O(n^2 / log^2 n)$

Theorem [AVW'14]:

"If for some $\varepsilon>0$, we can solve Local Alignment in $O(n^{2-\varepsilon})$ time, then we can solve k-SAT in $O((2-\delta)^n)$ time for some $\delta>0$ and all k>0."

[BI'15] Same for Edit Distance.

[ABV '15, BK'15] Same for LCS.

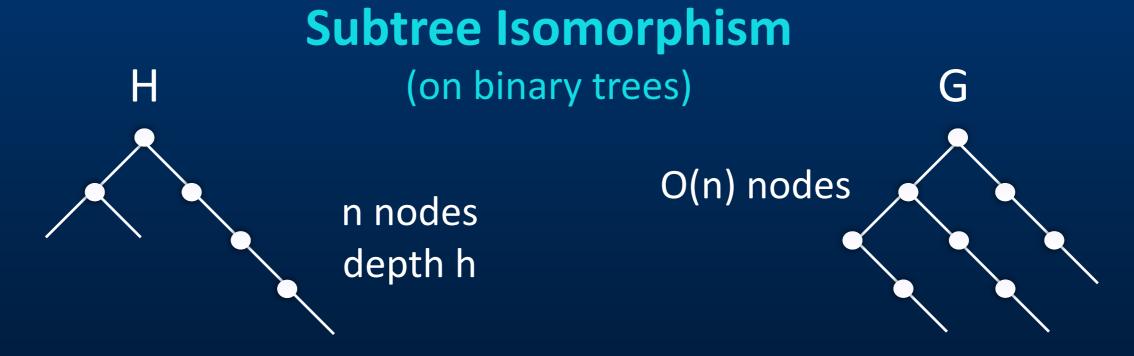
P ≠ NP: "k-SAT cannot be solved in polynomial time."
The Strong Exponential Time Hypothesis (SETH):

"k-SAT cannot be solved even in $O(1.99^n)$ time."

Some More SETH-based Lower Bounds

Problem domains:

Graph Algorithms,
Pattern Matching,
Computational Geometry,
High-dimensional Geometry,
Machine Learning,
Computational Biology,
Time-series analysis,



"is H contained in G?"

Simple upper bound: O(n²)

[ABHVZ'16]

<u>Theorem</u>: Subtree Isomorphism on binary trees in $O(n^{1.99})$ time refutes our SETH.

Dynamic Problems

Dynamic (undirected) Connectivity

Input: an undirected graph G

<u>Updates:</u> Add or remove edges.

Query: Are s and t connected?

Trivial algorithm: O(m) update/query time.

[Henzinger-King '95]:

 $O(\log^2 n)$ amortized time per update.

Dynamic Problems

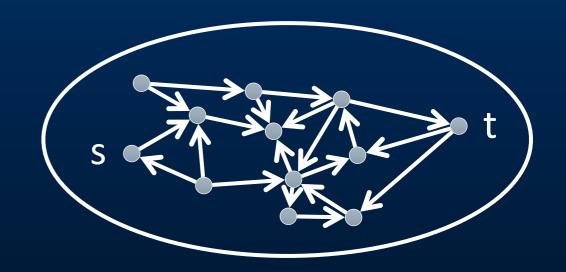
Dynamic (directed) Reachability

Input: A directed graph G.

Updates: Add or remove edges.

Query:

#SSR: How many nodes can s reach?



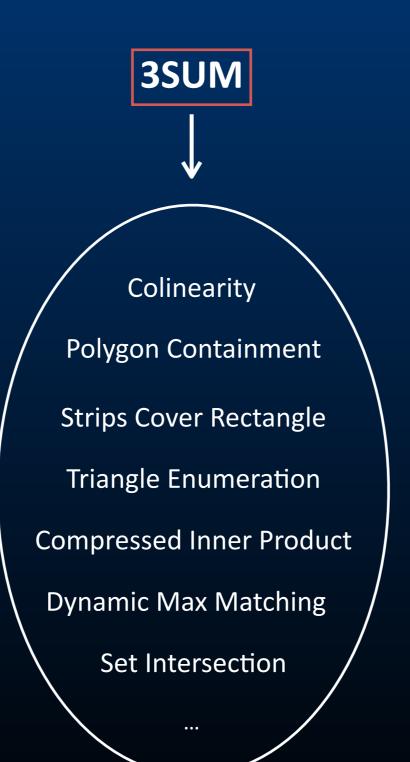
Trivial algorithm: O(m) time updates

[AV'14]

Theorem: If dynamic #SSR can be solved with $O(m^{0.99})$ amortized update time then SETH is false.

Subclasses within P

k-SAT Diameter **Closest Pair** Local Alignment **Dynamic Reachability** Single-Source Max-Flow Subtree Isomorphism **Stable Matching Edit-Distance** Frechet LCS



3SUM

This is where it all started...

3SUM: Given *n* integers, are there 3 that sum to 0?

Naive alg: $O(n^3)$ Simple alg: $O(n^2)$

A famous conjecture in computational geometry:

The 3-SUM Conjecture:

"3-SUM cannot be solved in $O(n^{1.99})$ time."

Best known [BDP '05, GP'14]:
$$O\left(\frac{n^2}{(\log n/\log\log n)^2}\right)$$

Subclasses within P

3SUM: Given *n* integers, are there 3 that sum to 0?

abc-3SUM: Given a set S of *n* integers, are there $x, y, z \in S$ such that $a \cdot x + b \cdot y + c \cdot z = 0$?

(3SUM is 111-3SUM)

For next week:

Try to prove subquadratic-equivalence for all $a, b, c \neq 0$:

"If one is in $O(n^{1.99})$ time then any other is in $O(n^{1.999})$ time"

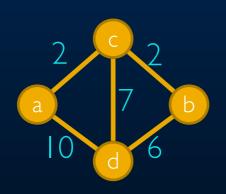
Subclasses within P

k-SAT Diameter **Closest Pair** Local Alignment **Dynamic Reachability** Single-Source Max-Flow Subtree Isomorphism **Stable Matching Edit-Distance** Frechet LCS

All Pairs Shortest Paths

This is where we saw the full power of fine-grained reductions...

<u>APSP</u>: Given a graph on n nodes and n² edges, compute the distance between every pair of nodes.



[Floyd-Warshall '62] *O(n³)* time.

All Pairs Shortest Paths

<u>APSP</u>: Given a graph on n nodes and n² edges, compute the distance between every pair of nodes.

Author	Runtime	Year
Fredman	n³ log log1/3 n / log1/3	1976
Takaoka	n³ log log¹/2 n / log¹/2	1992
Dobosiewicz	n³ / log¹/2 n	1992
Han	n³ log log ^{5/7} n / log ^{5/7}	2004
Takaoka	n³ log log² n / log n	2004
Zwick	n³ log log1/2 n / log n	2004
Chan	n³ / log n	2005
Han	n³ log log5/4 n / log5/4	2006
Chan	n³ log log³ n / log² n	2007
Han, Takaoka	n³ log log n / log² n	2012
Williams	$n^3 / 2\Omega(\sqrt{\log n})$	2014

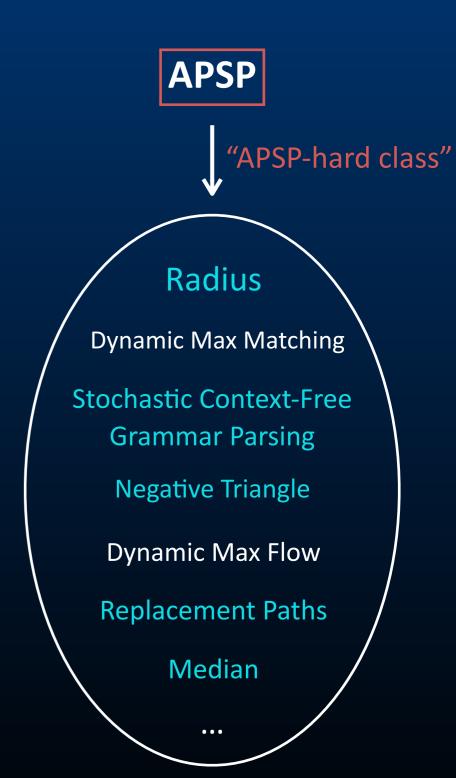
Classical Algs: $O(n^3)$

Floyd-Warshall, n*Dijkstra,...

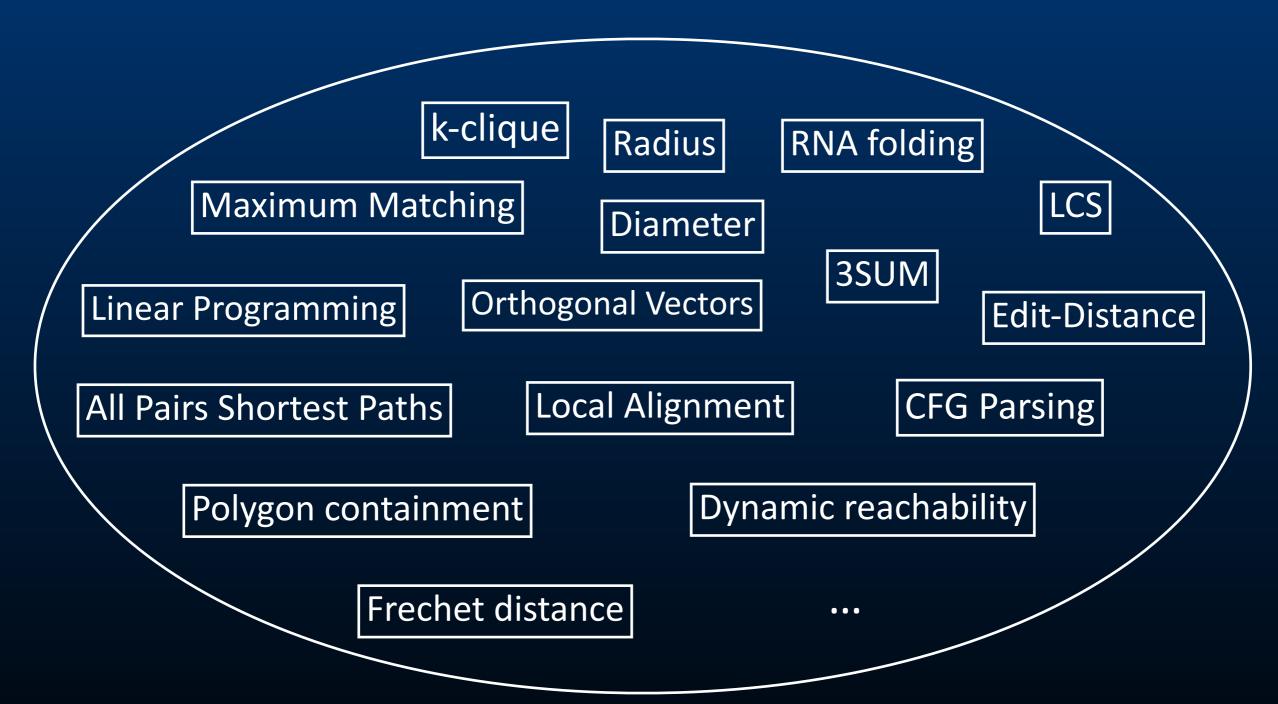
Conjecture:

 $\overline{\text{APSP}}$ cannot be solved in $O(n^{3-e})$ time.

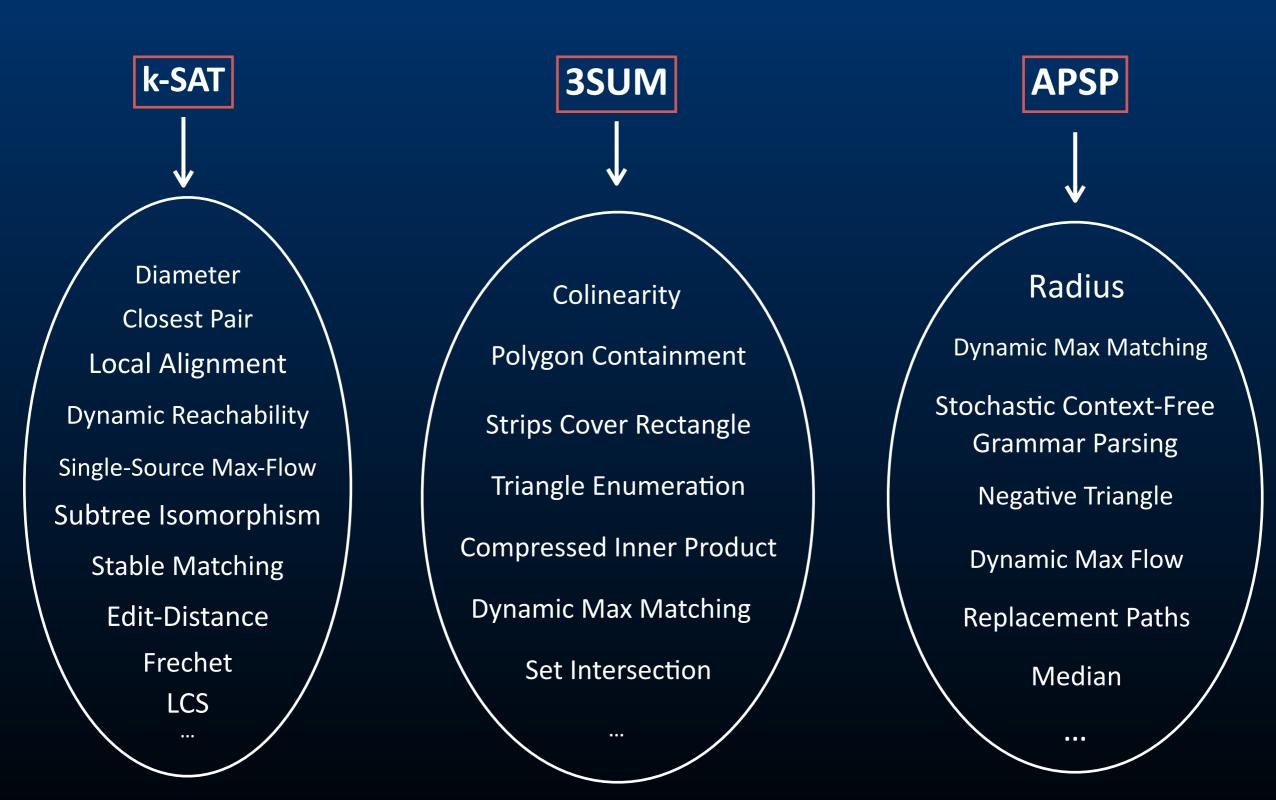
Many of these are subcubic-equivalent



The Class P (before)



The Class P (after)



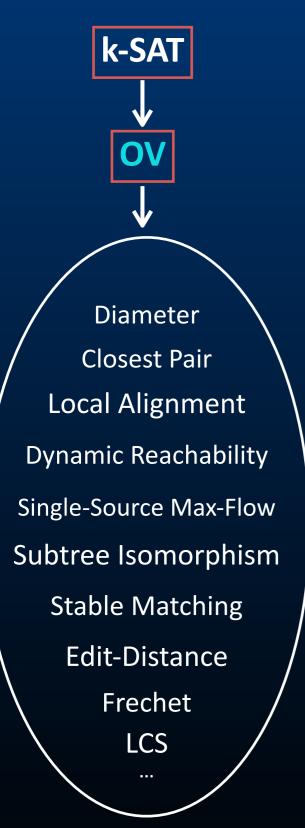
We are starting to understand the structure within P

Today's Lecture

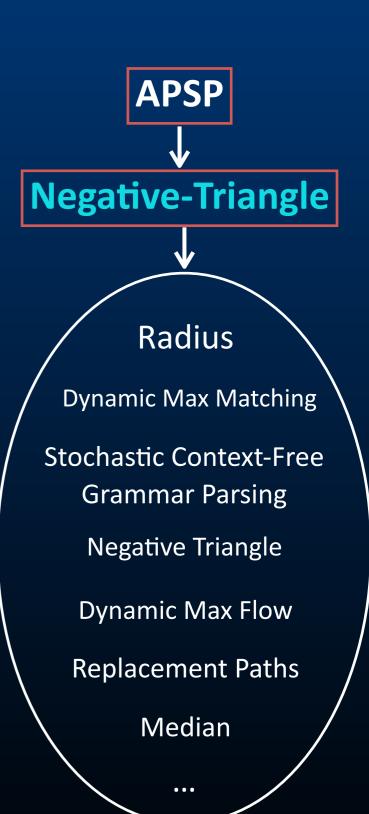
- Motivation
- Intro to Fine-Grained Complexity
- The Basics (Part 1: weeks 2 to 8)
- About this course
- Advanced topics (Part 2: weeks 8 to 14)

Course Objectives and Focus

- Goal 0: The ability to understand FGC results.
- Goal 1: The ability to prove your own FGC results.
 - We will highlight the simplest hard problems (Part 1)







Course Objectives and Focus

- Goal 0: The ability to understand FGC results.
- Goal 1: The ability to prove your own FGC results.
 - We will highlight the simplest hard problems (Part 1)
 - We will see new conjectures and variants (Part 2).
 - Algorithms given for enrichment, and to know the limits.
- Goal 2: Intimacy with the theory and with current research.
 - ▶ This is the purpose of the advanced topics (Part 2).
- Most importantly: To have fun thinking about basic problems!

Technical Remarks

- We will ignore $\log n$, $\log^{O(1)} n$, $2^{\sqrt{\log n}}$ or any $n^{O(1)}$ factors.
 - Many reductions have such overheads.
- We allow randomness.
 - ▶ The conjectures are assumed to holds against randomized algorithms too.
 - Many reductions use randomness.
- We use the (standard) Word RAM model with $w = O(\log n)$.
 - You can do any operations on words in constant time: addition, multiplication, random access, hashing, etc.
 - Since we allow log factors and randomness, this is not too important.
- Numbers are assumed to be in a polynomial range.
 - Integers in $\{-n^{O(1)}, ..., +n^{O(1)}\}$, real numbers with precision $1/n^{O(1)}$.

Today's Lecture

- Motivation
- Intro to Fine-Grained Complexity
- The Basics (Part 1: weeks 2 to 8)
- About this course
- Advanced topics (Part 2: weeks 8 to 14)

On The Conjectures

- Why do we need 3+? Can we reduce them to one another?
 - Nonreducibility Results.
 - Some connections and partial unifications.
- What happens if they fail? Can we use more reliable conjectures?
 - Better conjectures and the consequences of breaking them.

k-SAT Diameter k-Dominating-Set Dynamic reachability Stable Matching Local Alignment **Edit-Distance** Frechet LCS

[AHVW '16]

Lower bounds under a better "SETH"

Circuit-SAT

e.g.

 $O(N^2/log^{100}N)$

Faster LCS Ci

Circuit-SAT

breaks crypto

Faster

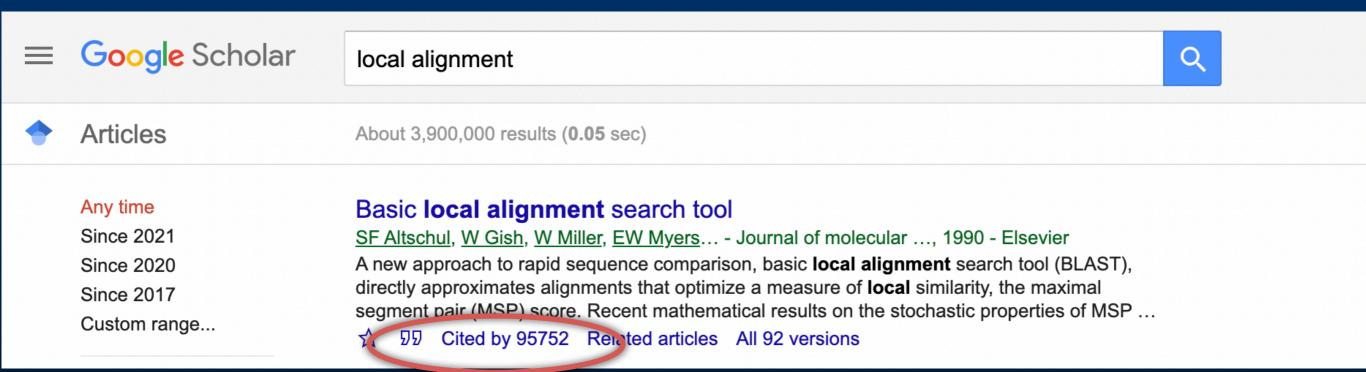
one-way functions...

Breakthroughs in Complexity
Theory

Beyond Worst Case

Approximations?

BLAST: A heuristic, linear time algorithm for Local Alignment.



95k citations!

No fast exact algorithm under SETH.

Are there fast algorithms with some optimality guarantees?

Hardness of Approximation in P

Big open questions:

Best Approximation for LCS and Edit Distance in $O(n^{2-e})$ time?

Most optimistically:

(1.0001)-approximation in linear time?

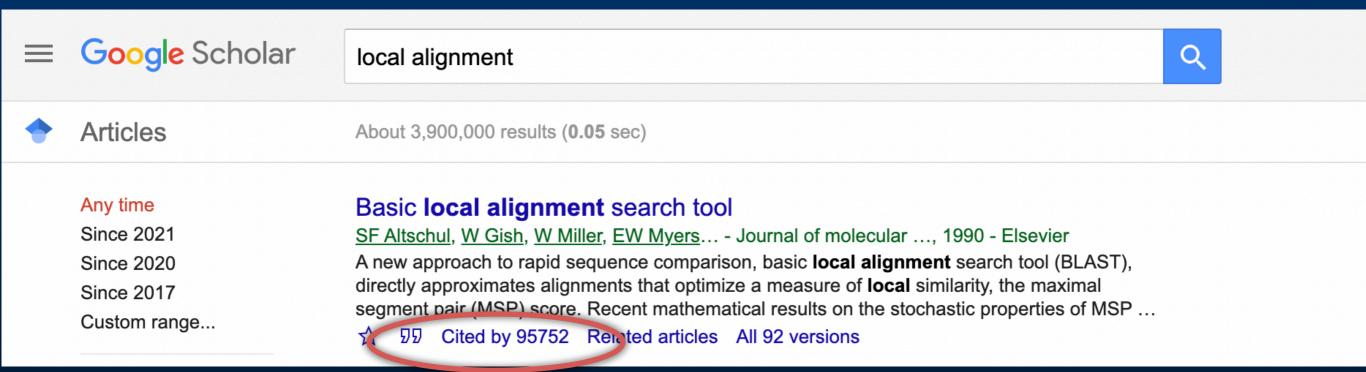
After a very long sequence of works [DCGKS'18, AN'20]: Near-linear time O(1) approximation for Edit Distance.

Big open question: Prove any 1.00001 lower bound.

Beyond Worst Case

- Approximations?
 - Some techniques for hardness of approximation (including a fine-grained "distributed PCP" result).
- Average-case?
 - Some techniques, with applications in cryptography.
- Restricted inputs?
 - Tight results in terms of multiple parameters.

BLAST: A heuristic, linear time algorithm for Local Alignment.



95k citations!

No fast exact algorithm under SETH.

What is the parameterized complexity under natural parameters?

Parameterized Complexity in P

[Bringmann-Kunnemann]

parameters for LCS:

```
m = |x| ... length of longer string m = |y| ... length of shorter string L = LCS(x,y) ... length of LCS |\Sigma| ... size of alphabet \Sigma ... number of deletions in X ... number of deletions in X ... number of matching pairs M ... number of dominant pairs ... number of dominant pairs
```

multivariate algorithms: $\tilde{O}(n + \min\{d, \delta m, \delta \Delta\})$

under SETH, this is **optimal** for any relations $m = \Theta(n^{\alpha_m}), L = \Theta(n^{\alpha_L}), ...$

Beyond Worst Case

- Approximations?
 - Some techniques for hardness of approximation (including a fine-grained "distributed PCP" result).
- Average-case?
 - Some techniques, with applications in cryptography.
- Restricted inputs?
 - Tight results in terms of multiple parameters.
 - Results for restricted input families.

Beyond (Classical) Time Complexity

- Fine-grained complexity in a quantum world?
 - Grover's search helps but not by too much (Quantum-SETH) and not always.

Quantum Time Complexity via Grover's Search

Recap

Popular since 1970's

(Traditional) Complexity: Polynomial vs. exponential?

My problem is in P

↓

P = NP (very unlikely!)

 $O(n^c)$ or $O(c^n)$?

"Polynomial = efficient"

A theory for Small Data

Popular since 2010's

Fine-Grained Complexity: Linear vs. super-linear?

My problem is linear

SETH is false (unlikely!)

 $O(n), O(n^{1.5}), O(n^2), \dots$?

"Near-linear = efficient"

A theory for Big Data

3SUM: Given *n* integers, are there 3 that sum to 0?

abc-3SUM: Given a set S of *n* integers, are there $x, y, z \in S$ such that $a \cdot x + b \cdot y + c \cdot z = 0$?

(3SUM is 111-3SUM)

For next week:

Try to prove subquadratic-equivalence for all $a, b, c \neq 0$:

"If one is in $O(n^{1.99})$ time then any other is in $O(n^{1.999})$ time"