The serpentine representation of the infinite symmetric group and the basic representation of $\widehat{\mathfrak{sl}}_2$

Natalia Tsilevich
St. Petersburg Department of Steklov Institute of Mathematics
visiting Weizmann Institute of Science

Midsummer Day Dream Workshop Weizmann Institute of Science June 27, 2022

$$\underline{\mathsf{Classical Schur}\mathsf{-Weyl duality}}\colon \left(\mathbb{C}^\ell)^{\otimes N} = \bigoplus_{\lambda \in \mathbb{Y}_N^\ell} \rho_\lambda \otimes \pi_\lambda \right),$$

- ightharpoonup
 brack
 brack
- \blacktriangleright π_{λ} = irreducible representation of \mathfrak{S}_N with Young diagram λ ,
- ρ_{λ} = irreducible representation of $GL(\ell, \mathbb{C})$ with signature λ .

$$\underline{\text{Classical Schur-Weyl duality}} \colon \boxed{(\mathbb{C}^{\ell})^{\otimes N} = \bigoplus_{\lambda \in \mathbb{Y}_N^{\ell}} \rho_{\lambda} \otimes \pi_{\lambda}},$$

- $\mathbb{Y}_{N}^{\ell} = \{ \text{Young diagrams with } N \text{ cells, } \leq \ell \text{ rows} \},$
- \blacktriangleright π_{λ} = irreducible representation of \mathfrak{S}_{N} with Young diagram λ ,
- ρ_{λ} = irreducible representation of $GL(\ell,\mathbb{C})$ with signature λ .
- \P Let us look on this 'dynamically': fix ℓ (= 2) and let $N o \infty$.

Classical Schur–Weyl duality ($\ell = 2$, N = 2n):

$$\boxed{(\mathbb{C}^2)^{\otimes N} = \bigoplus_{k=0}^n M_{2k+1} \otimes \pi_{(n+k,n-k)}},$$

- $\pi_{(n+k,n-k)} = \mathfrak{S}_N$ -irrep with Young diagram (n+k,n-k),
- $M_{2k+1} = (2k+1)$ -dimensional $SL(2,\mathbb{C})$ -irrep.

Classical Schur–Weyl duality ($\ell = 2$, N = 2n):

$$\boxed{(\mathbb{C}^2)^{\otimes N} = \bigoplus_{k=0}^n M_{2k+1} \otimes \pi_{(n+k,n-k)}},$$

- $\pi_{(n+k,n-k)} = \mathfrak{S}_N$ -irrep with Young diagram (n+k,n-k),
- $M_{2k+1} = (2k+1)$ -dimensional $SL(2,\mathbb{C})$ -irrep.

Schur–Weyl embedding: $\alpha_N : (\mathbb{C}^2)^{\otimes N} \hookrightarrow (\mathbb{C}^2)^{\otimes (N+2)}$ respecting both the actions of $SL(2,\mathbb{C})$ and \mathfrak{S}_N .

In the inductive limit we have an action of $SL(2,\mathbb{C})$ and an action of \mathfrak{S}_{∞} .

Schur–Weyl representations

Schur–Weyl representation $\Pi^{\{\alpha_N\}}$ of \mathfrak{S}_{∞} : inductive limit of representations of \mathfrak{S}_N wrt Schur–Weyl embeddings

$$(\mathbb{C}^2)^{\otimes 0} \stackrel{\alpha_0}{\hookrightarrow} (\mathbb{C}^2)^{\otimes 2} \stackrel{\alpha_2}{\hookrightarrow} (\mathbb{C}^2)^{\otimes 4} \stackrel{\alpha_4}{\hookrightarrow} \dots$$

Theorem (Ts.-Vershik 2014)

$$\Pi^{\{\alpha_N\}} = \bigoplus_{k=0}^{\infty} M_{2k+1} \otimes \Pi_k^{\{\alpha_N\}},$$

- M_{2k+1} is still the (2k+1)-dimensional irrep of \mathfrak{sl}_2 ,
- ▶ $\Pi_k^{\{\alpha_N\}}$ is an irrep of \mathfrak{S}_{∞} (an inductive limit of irreps of \mathfrak{S}_{2k} , \mathfrak{S}_{2k+2} , ... with Young diagrams (2k), (2k+1,1), (2k+2,2), ...).

Serpentine representation

 T_N := the set of Young tableaux with N cells, ≤ 2 rows.

Embedding $i_N: T_N \to T_{N+2}$: put N+1 to 1st row and N+2 to 2nd row:

Definition

Serpentine representation Π : Schur–Weyl representation of \mathfrak{S}_{∞} constructed from the sequence of embeddings i_N .

Structure:

$$\Pi = \sum_{k=0}^{\infty} M_{2k+1} \otimes \Pi_k,$$

- $ightharpoonup \Pi_k$ = irreducible *k*-serpentine representation,
- $M_{2k+1} = (2k+1)$ -dimensional \mathfrak{sl}_2 -irrep.

k-Serpentine representation

k-vacuum tableau (k = 0, 1, ...):

$$\tau_k = \begin{bmatrix} 1 & 2 & \cdots & 2k & 2k+1 & 2k+3 & \cdots \\ 2k+2 & 2k+4 & \cdots & & & & & & \end{bmatrix}$$

In particular,

$$\tau_0 = \begin{array}{|c|c|c|c|c|c|}\hline 1 & 3 & 5 & \cdots \\ \hline 2 & 4 & 6 & \cdots \\ \hline \end{array}$$

k-serpentine tableau = an infinite tableau tail-equivalent to τ_k .

 Π_k acts in $\ell^2(\{k\text{-serpentine tableaux}\})$ via Young's orthogonal form.

Major index

Major index of a finite Young tableau:

$$\mathsf{maj}(\tau) = \sum_{i \in \mathsf{des}(\tau)} i,$$

where

$$\operatorname{des}(\tau) = \{i \le N - 1 : i + 1 \text{ in } \tau \text{ is lower than } i\}.$$

Example:

Major index

Major index of a finite Young tableau:

$$\mathsf{maj}(\tau) = \sum_{i \in \mathsf{des}(\tau)} i,$$

where $\operatorname{des}(\tau) = \{i \leq N - 1 : i + 1 \text{ in } \tau \text{ is lower than } i\}$. Example:

Observation: $maj(i_{2n}(\tau)) = maj(\tau) + (2n + 1)$.

Major index

Major index of a finite Young tableau:

$$\mathsf{maj}(\tau) = \sum_{i \in \mathsf{des}(\tau)} i,$$

where $des(\tau) = \{i \leq N - 1 : i + 1 \text{ in } \tau \text{ is lower than } i\}$. Example:

Observation:
$$maj(i_{2n}(\tau)) = maj(\tau) + (2n+1)$$
.

Another observation:
$$2n + 1 = (n + 1)^2 - n^2 \implies$$

$$\boxed{(n+1)^2-\mathsf{maj}(i_{2n}(\tau))=n^2-\mathsf{maj}(\tau)}$$

Stable major index

Stable major index (well defined for all serpentine tableaux):

$$\mathsf{smaj}(\tau) = \lim_{n \to \infty} (n^2 - \mathsf{maj}([\tau]_{2n})),$$

where $[\tau]_{\ell}$ is obtained from τ by removing cells with entries $k > \ell$.

Example:

For the vacuum tableaux, smaj $(\tau_k) = k^2$.

Stable major index

Stable major index (well defined for all serpentine tableaux):

$$\operatorname{smaj}(\tau) = \lim_{n \to \infty} (n^2 - \operatorname{maj}([\tau]_{2n})),$$

where $[\tau]_{\ell}$ is obtained from τ by removing cells with entries $k > \ell$.

Example:

Now, smaj \rightsquigarrow a grading on Π : for $w = u \otimes v \in M_{2k+1} \otimes \Pi_k$,

$$\deg_s(w) := \operatorname{smaj}(v).$$

Thus we have a graded space (Π, \deg_s) with an action of \mathfrak{sl}_2 .

The affine Lie algebra $\widehat{\mathfrak{sl}}_2$

- Lie algebra $\mathfrak{sl}_2 = \mathfrak{sl}_2(\mathbb{C})$: standard generators $e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, relations [e, f] = h, [h, e] = 2e, [f, e] = -2f.
- Affine Lie algebra $\widehat{\mathfrak{sl}_2} = \mathfrak{sl}_2 \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}c$, where c is a central element and

$$[a \otimes t^n, b \otimes t^m] = [a, b] \otimes t^{n+m} + n \operatorname{tr}(ab) \delta_{n+m,0} c.$$

Homogeneous grading on $\widehat{\mathfrak{sl}}_2$: $\deg_H(x \otimes t^n) = n$.

Natural embedding: $\mathfrak{sl}_2 \supset x \mapsto x \otimes 1 \in \widehat{\mathfrak{sl}_2}$.

Main theorem

So, we have two spaces with an action of \mathfrak{sl}_2 :

- ▶ (Π, \deg_s) = the serpentine representation of \mathfrak{S}_{∞} with stable major index grading,
- ▶ $L_{0,1}$ = the basic representation of $\widehat{\mathfrak{sl}}_2$ (level 1 highest weight rep with fundamental weight Λ_0) with homogeneous grading.

Main theorem

So, we have two spaces with an action of \mathfrak{sl}_2 :

- (Π, \deg_s) = the serpentine representation of \mathfrak{S}_{∞} with stable major index grading,
- ▶ $L_{0,1}$ = the basic representation of $\widehat{\mathfrak{sl}}_2$ (level 1 highest weight rep with fundamental weight Λ_0) with homogeneous grading.

Theorem (Ts.-Vershik 2015)

There is a grading-preserving unitary isomorphism of \mathfrak{sl}_2 -modules between $(L_{0,1}, \deg_H)$ and (Π, \deg_s) .

Fusion product

- Pepresentation ρ of \mathfrak{sl}_2 , $z \in \mathbb{C}$ \rightsquigarrow evaluation rep. ρ_z of $\mathfrak{sl}_2 \otimes \mathbb{C}[t]$: $\rho_z(x \otimes t^i)v = z^i \cdot \rho(v)$;
- ▶ irreps $\rho^1, ..., \rho^N$ with cyclic vectors $v_1, ..., v_N$ and pairwise distinct $z_1, ..., z_N \in \mathbb{C} \leadsto$ representation $V_N := \rho^1_{z_1} \otimes ... \otimes \rho^N_{z_N}$ of $\mathfrak{sl}_2 \otimes \mathbb{C}[t]$;
- $U^{(m)} \subset \mathfrak{sl}_2 \otimes \mathbb{C}[t]$ is spanned by monomials $e_{i_1} \dots e_{i_k}$ with $i_1 + \dots + i_k = m$, where $e_i = e \otimes t^j$;
- $\bigvee_{N}^{(m)} = U^{(m)}(v_1 \otimes \ldots \otimes v_N) \subset V_N;$
- $filtration V_N^{(\leq m)} = \sum_{k \leq m} V_N^{(k)}.$

Fusion product

- Representation ρ of \mathfrak{sl}_2 , $z \in \mathbb{C} \leadsto \text{evaluation rep. } \rho_z \text{ of } \mathfrak{sl}_2 \otimes \mathbb{C}[t]$: $\rho_z(x \otimes t^i)v = z^i \cdot \rho(v)$;
- irreps ρ^1, \ldots, ρ^N with cyclic vectors v_1, \ldots, v_N and pairwise distinct $z_1, \ldots, z_N \in \mathbb{C} \leadsto$ representation $V_N := \rho^1_{z_1} \otimes \ldots \otimes \rho^N_{z_N}$ of $\mathfrak{sl}_2 \otimes \mathbb{C}[t]$;
- $U^{(m)} \subset \mathfrak{sl}_2 \otimes \mathbb{C}[t]$ is spanned by monomials $e_{i_1} \dots e_{i_k}$ with $i_1 + \dots + i_k = m$, where $e_i = e \otimes t^j$;
- $V_N^{(m)} = U^{(m)}(v_1 \otimes \ldots \otimes v_N) \subset V_N;$
- filtration $V_N^{(\leq m)} = \sum_{k \leq m} V_N^{(k)}$.

Definition (B. Feigin-Loktev 1999)

The **fusion product** of ρ^1, \ldots, ρ^N is the graded representation in

$$V_N^* = V_N^{(\le 0)} \oplus V_N^{(\le 1)} / V_N^{(\le 0)} \oplus V_N^{(\le 2)} / V_N^{(\le 1)} \oplus \dots$$

Denote the degree wrt this grading by deg.

Finite-dimensional approximation of $L_{0,1}$

Definition (B. Feigin-Loktev 1999)

The fusion product of ρ^1, \ldots, ρ^N is the adjoint graded representation in

$$V_N^* = V_N^{(\le 0)} \oplus V_N^{(\le 1)} / V_N^{(\le 0)} \oplus V_N^{(\le 2)} / V_N^{(\le 1)} \oplus \dots$$

Theorem (B. Feigin-Loktev 1999)

 V_N^* is an $\mathfrak{sl}_2 \otimes (\mathbb{C}[t]/t^N)$ -module that does not depend on z_1, \ldots, z_N provided they are pairwise distinct.

Remark: V_N^* is isomorphic to $\rho^1 \otimes \ldots \otimes \rho^N$ as an \mathfrak{sl}_2 -module.

Finite-dimensional approximation of $L_{0,1}$

Theorem (B. Feigin-Loktev 1999)

 V_N^* is an $\mathfrak{sl}_2 \otimes (\mathbb{C}[t]/t^N)$ -module that does not depend on z_1, \ldots, z_N provided they are pairwise distinct.

Remark: V_N^* is isomorphic to $\rho^1 \otimes \ldots \otimes \rho^N$ as an \mathfrak{sl}_2 -module.

► Take $\rho^1 = \ldots = \rho^N = \mathbb{C}^2$ with the natural action of \mathfrak{sl}_2 $\implies V_N^* \simeq (\mathbb{C}^2)^{\otimes N}$ as an \mathfrak{sl}_2 -module.

Theorem (B. Feigin-E. Feigin 2003)

An inductive limit of V_N^* is isomorphic to the basic representation $L_{0,1}$ of $\widehat{\mathfrak{sl}}_2$.

Decompose
$$V_N^*$$
 into \mathfrak{sl}_2 -irreducibles: $V_N^* = \bigoplus_{k=0}^n M_{2k+1} \otimes \mathcal{M}_k$.

Fusion product grading $\rightsquigarrow \mathcal{M}_k = \bigoplus_{i \geq 0} \mathcal{M}_k[i]$, where $\mathcal{M}_k[i]$ consists of elements of degree i.

Decompose V_N^* into \mathfrak{sl}_2 -irreducibles: $V_N^* = \bigoplus_{k=0}^n M_{2k+1} \otimes \mathcal{M}_k$.

Fusion product grading $\rightsquigarrow \mathcal{M}_k = \bigoplus_{i \geq 0} \mathcal{M}_k[i]$, where $\mathcal{M}_k[i]$ consists of elements of degree i.

Lemma

There is a grading-preserving unitary isomorphism of \mathfrak{sl}_2 -modules between (V_N^*, \deg) and $((\mathbb{C}^2)^{\otimes N}, \operatorname{maj})$ such that $\mathcal{M}_k[i]$ is spanned by the standard Young tableaux τ of shape (n+k,n-k) with $\operatorname{maj}(\tau)=i$.

Lemma

There is a grading-preserving unitary isomorphism of \mathfrak{sl}_2 -modules between (V_N^*, \deg) and $((\mathbb{C}^2)^{\otimes N}, \operatorname{maj})$ such that $\mathcal{M}_k[i]$ is spanned by the standard Young tableaux τ of shape (n+k, n-k) with $\operatorname{maj}(\tau)=i$.

Kedem 2004:

$$\sum_{i>0} q^{i} \dim \mathcal{M}_{k}[i] = q^{\frac{N(N-1)}{2}} \cdot K_{(n+k,n-k),1^{N}}(1/q),$$

where $K_{\lambda,\mu}$ is the Kostka–Foulkes polynomial.

Lascoux–Schützenberger combinatorial description of $K_{\lambda,\mu}$: for two-row λ ,

$$\mathcal{K}_{\lambda,1^N}(q) = \sum_{ au ext{ of shape } \lambda} q^{c(au)},$$

where $c(\tau)$ is the charge of τ , defined as the sum of $i \leq N-1$ such that in τ the element i+1 lies to the right of i.

Lemma

There is a grading-preserving unitary isomorphism of \mathfrak{sl}_2 -modules between $(V_N^*, \widetilde{\deg})$ and $((\mathbb{C}^2)^{\otimes N}, \operatorname{maj})$ such that $\mathcal{M}_k[i]$ is spanned by the standard Young tableaux τ of shape (n+k,n-k) with $\operatorname{maj}(\tau)=i$.

Feigin–Feigin theorem + approximation argument ⇒

Theorem

There is a grading-preserving unitary isomorphism of \mathfrak{sl}_2 -modules between $(L_{0,1}, \deg_H)$ and (Π, \deg_s) .

Fock space: fermions

Fermionic Fock space $\mathcal{F} = \bigwedge^{\frac{\infty}{2}}(V)$: infinite wedge space over V with basis $\{u_k\}_{k\in\mathbb{Z}} \cup \{v_k\}_{k\in\mathbb{Z}}$, spanned by

$$u_{i_1} \wedge \ldots \wedge u_{i_k} \wedge v_{j_1} \wedge \ldots \wedge v_{j_l} \wedge u_N \wedge v_N \wedge u_{N-1} \wedge v_{N-1} \wedge \ldots,$$

 $N \in \mathbb{Z}, \quad i_1 > \ldots > i_k > N, \quad j_1 > \ldots > j_l > N.$

Fermions ϕ_k (resp. ψ_k) = exterior multiplication by u_k (resp. v_k).

Canonical anticommutation relations:

$$\{\phi_{\textit{n}},\phi_{\textit{m}}^*\}=\delta_{\textit{nm}},\quad \{\psi_{\textit{n}},\psi_{\textit{m}}^*\}=\delta_{\textit{nm}},\quad \text{others}=0.$$

Generating functions:

$$\phi(\mathbf{z}) = \sum_{i \in \mathbb{Z}} \phi_i \mathbf{z}^{-(i+1)}, \qquad \phi^*(\mathbf{z}) = \sum_{i \in \mathbb{Z}} \phi_i^* \mathbf{z}^i, \quad \text{the same for } \psi.$$

Vacuum vector in \mathcal{F} :

$$\Omega = u_{-1} \wedge v_{-1} \wedge u_{-2} \wedge v_{-2} \wedge \dots$$

Fock space: free bosons and the vacuum

Bosons:

$$a_n^\phi = \sum_{k \in \mathbb{Z}} \phi_k \phi_{k+n}^* \text{ for } n \neq 0;$$

$$a_0^{\phi} = \sum_{n=1}^{\infty} \phi_n \phi_n^* - \sum_{n=0}^{\infty} \phi_{-n}^* \phi_{-n}.$$

Canonical commutation relations:

$$[a_n^\phi, a_m^\phi] = m\delta_{m+n,0}, \quad [a_n^\psi, a_m^\psi] = m\delta_{m+n,0}.$$

Generating functions: $a^{\phi}(z) = \sum_{n \in \mathbb{Z}} a_n^{\phi} z^{-(n+1)}$, the same for a_n^{ψ} .

Fock space realization of $L_{0,1}$

Given
$$x \in \mathfrak{sl}_2$$
, denote $X(z) = \sum_{n \in \mathbb{Z}} x_n z^{-(n+1)}$.

Canonical representation of $\widehat{\mathfrak{sl}_2}$ in \mathcal{F} :

$$E(z) = \psi(z)\phi^*(z), \qquad F(z) = \phi(z)\psi^*(z),$$
 $h_n = a_{-n}^{\psi} - a_{-n}^{\phi}, \qquad c = 1.$

Then

$$\mathcal{F} = \mathcal{H}_0 \otimes \mathcal{K}_0 + \mathcal{H}_1 \otimes \mathcal{K}_1$$

where $\mathcal{H}_0 \simeq \mathcal{L}_{0,1}$ and $\mathcal{H}_1 \simeq \mathcal{L}_{1,1}$.

Recall: $L_{0,1}$ is isomorphic to the serpentine representation of \mathfrak{S}_{∞} .

Heisenberg algebra

 $\frac{1}{\sqrt{2}}h_n$ generate the Heisenberg algebra \leadsto we have a representation of the Heisenberg algebra in $\mathcal{H}_0 \leadsto$ irreducible decomposition

$$\mathcal{H}_0 = \bigoplus_{k \in \mathbb{Z}} \mathcal{H}_0[2k],$$

where $\mathcal{H}_0[2k] = \{v \in \mathcal{H}_0 : h_0v = 2kv\}$ is the charge 2k subspace.

Heisenberg algebra

 $\frac{1}{\sqrt{2}}h_n$ generate the Heisenberg algebra \leadsto we have a representation of the Heisenberg algebra in $\mathcal{H}_0 \leadsto$ irreducible decomposition

$$\mathcal{H}_0 = \bigoplus_{k \in \mathbb{Z}} \mathcal{H}_0[2k],$$

where $\mathcal{H}_0[2k] = \{v \in \mathcal{H}_0 : h_0v = 2kv\}$ is the charge 2k subspace.

Corollary

The multiplicity-free serpentine representation $\Pi[0] := \bigoplus_{k=0}^{\infty} \Pi_k$ (spanned by all serpentine tableaux) has a structure of the zero charge representation of the Heisenberg algebra.

Thus we have an action of the Heisenberg algebra on serpentine tableaux.

Virasoro algebra

Virasoro algebra Vir: generated by L_n , $n \in \mathbb{Z}$, and a central element c,

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{m^3 - m}{12}\delta_{m+n,0}c.$$

Sugawara construction: given free bosons $a_n \ (= \frac{1}{\sqrt{2}} h_n)$,

$$L_n = \frac{1}{2} \sum_{j \in \mathbb{Z}} a_{-j} a_{j+n}, \quad n \neq 0; \quad L_0 = \sum_{j=1}^{\infty} a_{-j} a_j.$$

Thus we have a representation of Vir in \mathcal{H}_0 .

Virasoro algebra

Virasoro algebra Vir: generated by L_n , $n \in \mathbb{Z}$, and a central element c,

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{m^3 - m}{12}\delta_{m+n,0}c.$$

Sugawara construction: given free bosons $a_n (= \frac{1}{\sqrt{2}} h_n)$,

$$L_n = \frac{1}{2} \sum_{j \in \mathbb{Z}} a_{-j} a_{j+n}, \quad n \neq 0; \quad L_0 = \sum_{j=1}^{\infty} a_{-j} a_j.$$

Thus we have a representation of Vir in \mathcal{H}_0 .

So, in the Fock space:

- \mathfrak{sl}_2 : $\mathcal{F}=\mathcal{H}_0\otimes\mathcal{K}_0+\mathcal{H}_1\otimes\mathcal{K}_1$, where $\mathcal{H}_0\simeq L_{0,1}\simeq\Pi$.
- ▶ Heisenberg: $\mathcal{H}_0 = \bigoplus_{k \in \mathbb{Z}} \mathcal{H}_0[2k]$, where $\mathcal{H}_0[2k] = \text{charge } 2k$ subspace.
- ightharpoonup Virasoro: $\mathcal{H}_0 = \dots$

Vir and $\mathfrak{sl}_2\subset\widehat{\mathfrak{sl}_2}$ are mutual commutants in \mathcal{H}_0 , and

$$\mathcal{H}_0 = \bigoplus_{k=0}^{\infty} M_{2k+1} \otimes L(1, k^2),$$

where $L(1, k^2)$ = irreducible lowest weight rep of Vir with central charge (eigenvalue of c) 1 and conformal dimension (eigenvalue of L_0) k^2 (and M_{2k+1} are still irreducible representations of \mathfrak{sl}_2).

Vir and $\mathfrak{sl}_2\subset\widehat{\mathfrak{sl}_2}$ are mutual commutants in \mathcal{H}_0 , and

$$\boxed{\mathcal{H}_0 = \bigoplus_{k=0}^{\infty} M_{2k+1} \otimes L(1, k^2)},$$

where $L(1, k^2)$ = irreducible lowest weight rep of Vir with central charge (eigenvalue of c) 1 and conformal dimension (eigenvalue of L_0) k^2 (and M_{2k+1} are still irreducible representations of \mathfrak{sl}_2).

Cf. for the serpentine representation:

$$\Pi = \sum_{k=0}^{\infty} M_{2k+1} \otimes \Pi_k.$$

Vir and $\mathfrak{sl}_2\subset\widehat{\mathfrak{sl}_2}$ are mutual commutants in \mathcal{H}_0 , and

$$\boxed{\mathcal{H}_0 = \bigoplus_{k=0}^{\infty} M_{2k+1} \otimes L(1, k^2)},$$

where $L(1, k^2)$ = irreducible lowest weight rep of Vir with central charge (eigenvalue of c) 1 and conformal dimension (eigenvalue of L_0) k^2 (and M_{2k+1} are still irreducible representations of \mathfrak{sl}_2).

Corollary

The k-serpentine representation of the infinite symmetric group has a natural structure of the Virasoro module $L(1, k^2)$.

An action of Vir in Π_k , an action of \mathfrak{S}_{∞} in $L(1, k^2)$.

Corollary

The k-serpentine representation of the infinite symmetric group has a natural structure of the Virasoro module $L(1, k^2)$.

An action of Vir in Π_k , an action of \mathfrak{S}_{∞} in $L(1, k^2)$.

Corollary

In this realization of $L(1, k^2)$, the Young basis of Π_k (consisting of the Young tableaux tail-equivalent to τ_k) is the eigenbasis of L_0 , the eigenvalues being given by the stable major index:

$$L_0 \tau = \operatorname{smaj}(\tau) \tau$$
.

A representation-theoretic meaning of maj!

Symmetric functions realization

 $\Lambda := algebra of symmetric functions.$

Boson-fermion correspondence: $\Lambda \leftrightarrow \mathcal{H}_0[0] \simeq \Pi[0]$.

Representation of the Heisenberg algebra in Λ :

$$h_n \leftrightarrow 2n \frac{\partial}{\partial p_n}, \quad h_{-n} = p_n, \quad n > 0,$$

where p_i are Newton's power sums.

Inner product: $\langle p_{\lambda}, p_{\mu} \rangle_2 := \delta_{\lambda \mu} \cdot z_{\lambda} \cdot 2^{\ell(\lambda)}$, where $z_{\lambda} = \prod_i i^{m_i} m_i!$ for $\overline{\lambda} = (i^{m_i})$ and $\ell(\lambda)$ is the number of nonzero rows in λ .

The isomorphism in more detail

 Φ := isomorphism between $\Pi[0] = \bigoplus_{k=0}^{\infty} \Pi_k$ and Λ: a serpentine tableau $\tau \mapsto$ a symmetric function with deg = smaj(τ).

Corollary

- The vacuum tableaux correspond to Schur functions with square Young diagrams: $\Phi(\tau_k) = \text{const} \cdot s_{(k^k)}$.
- ▶ $\Pi^{(N)}$:= the subspace in $\Pi[0]$ spanned by the infinite tableaux coinciding with some vacuum tableau from the Nth level. Then $\Phi(\Pi^{(2k)}) = \Lambda_{k \times k}$, where $\Lambda_{k \times k}$ is the subspace in Λ spanned by the Schur functions indexed by Young diagrams in the $k \times k$ square.

The isomorphism in more detail

Let
$$F_{2n} = \mathbb{C}[e_0, ..., e_{-(2n-1)}]\Omega_{-2n}$$
 and $F_{2n}[0] = F_{2n} \cap \mathcal{H}_0[0] \implies \Pi^{(2n)} \simeq F_{2n}[0] \simeq \Lambda_{n \times n}$.

Lemma

A basis in $F_{2n}[0]$ is $\{\prod e_0^{i_0}e_{-1}^{i_1}\dots e_{-n}^{i_n}: i_0+i_1+\dots+i_n=n\}\Omega_{-2n}.$

Theorem

The correspondence between the Schur function basis in $\Lambda_{n\times n}$ and the above basis in $\Pi^{(2n)}\simeq F_{2n}[0]$ is given by the following formula: for $\nu\subset (n^n)$,

$$s_{\nu} = \sum_{\mu \subset (n^n)} \frac{K_{\nu\mu}}{\prod_{j=0}^n r_j!} \cdot e_{-(n-\mu_1)} \dots e_{-(n-\mu_n)} \Omega_{-2n},$$

where $\mu = (0^{r_0}1^{r_1}2^{r_2}...)$ and $K_{\lambda\mu}$ are Kostka numbers.

Examples

smaj(au)	τ	$\Phi(au)$
	-	
0	$ au_0$	$1 = s_{\emptyset}$
1	$\tau_1 = \boxed{1 \ 2}$	$p_1 = s_{(1)}$
	1 2 4	
2	3	p_2
	1 2	
2	3 4	p_1^2
	1 2 3	
3	4	$p_1^3 - p_3$
	1 2 4 6	_
3	3 5	$p_1^3 + 8p_3$
	1 2 4	•
3	3 5 6	$p_{1}p_{2}$
4	$\tau_2 = \boxed{1 \ 2 \ 3 \ 4}$	$p_1^4 + 3p_2^2 - 4p_1p_3 = s_{(2^2)}$
	1 3 4	
4	2 5 6	$p_1^4 - 3p_2^2 + 2p_1p_3$
	1 2 4 6	
4	3 5 7 8	$p_1^4 + 12p_2^2 + 32p_1p_3$
	1 3 4 6	_
4	2 5	$p_1^2p_2 - p_4$
	1 2 4 6 8	
4	3 5 7	$p_1^2p_2 + 4p_4$

Open questions

- Explicit general formulas for $\Phi(\tau) \rightsquigarrow$ a family of symmetric functions orthonormal with respect to $\langle \cdot, \cdot \rangle_2$.
- Explicit formulas for the Virasoro (Heisenberg, $\widehat{\mathfrak{sl}_2}$) action on infinite serpentine Young tableaux (or, conversely, for the \mathfrak{S}_{∞} action in the Fock space).

Thank you for your midsummer day attention!