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Abstract

We consider the problem of mixed linear regression (MLR), where each observed
sample belongs to one of K unknown linear models. In practical applications, the
mixture of the K models may be imbalanced with a significantly different number
of samples from each model. Unfortunately, most MLR methods do not perform
well in such settings. Motivated by this practical challenge, in this work we propose
Mix-IRLS, a novel, simple and fast algorithm for MLR with excellent performance
on both balanced and imbalanced mixtures. In contrast to popular approaches
that recover the K models simultaneously, Mix-IRLS does it sequentially using
tools from robust regression. Empirically, beyond imbalanced mixtures, Mix-IRLS
succeeds in a broad range of additional settings where other methods fail, including
small sample sizes, presence of outliers, and an unknown number of models K.
Furthermore, Mix-IRLS outperforms competing methods on several real-world
datasets, in some cases by a large margin. We complement our empirical results
by deriving a recovery guarantee for Mix-IRLS, which highlights its advantage on
imbalanced mixtures.

1 Introduction

In this paper, we consider a simple generalization of the linear regression problem, known as mixed
linear regression (MLR) [5, Chapter 14]. In MLR, each sample belongs to one of K unknown linear
models, but it is not known to which one. MLR can thus be viewed as a combination of regression
and clustering. Despite its simplicity, the presence of multiple linear components makes MLR highly
expressive and thus a useful data representation model in various applications, including trajectory
clustering [20], health care analysis [16], market segmentation [49], face recognition [7], population
clustering [29], drug sensitivity prediction [37] and relating genes to disease phenotypes [8, 47].

Several methods were developed to solve MLR, including expectation maximization [15, 5], alternat-
ing minimization [52, 53] and gradient descent [56]. These methods share three common features:
they all (i) require as input the number of components K; (ii) estimate the K models simultaneously;
and (iii) tend to perform better on balanced mixtures, where the number of samples from each of
the K models are approximately equal. As illustrated in Section 4, given data from an imbalanced
mixture, these methods may fail. In addition, most of the theoretical guarantees in the literature
assume a balanced mixture. Since imbalanced mixtures are ubiquitous in applications, it is of practical
interest to develop MLR methods that are able to handle such settings, as well as corresponding
recovery guarantees.

In this paper, we present Mix-IRLS, a novel and conceptually different iterative algorithm for MLR,
able to handle both balanced and imbalanced mixtures. Mix-IRLS is computationally efficient, simple
to implement, and scalable to high-dimensional settings. In addition, Mix-IRLS successfully recovers
the underlying components with relatively few samples, is robust to noise and outliers, and does
not require as input the number of components K. In Sections 4 and 5 we illustrate the competitive
advantage of Mix-IRLS over several other methods, on both synthetic and real data.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Figure 1: Illustration of Mix-IRLS. The data is a mixture of K = 3 components. At each round,
Mix-IRLS excludes samples with poor and moderate fit (marked by ‘X’ and ‘?’, respectively), and
performs linear regression on the good fit samples. The poor fit samples are passed to the next round.

To motivate our approach, let us consider a highly imbalanced mixture, where most samples belong
to one model. In this case, the samples that belong to the other models may be regarded as outliers
with respect to the dominant one. The problem of finding the dominant model may thus be viewed as
a specific case of robust linear regression, a problem for which there exist several effective algorithms,
see e.g. [27, 50]. After finding the dominant model, we remove its associated samples from the
observation set and repeat the process to find the next dominant model. This way, the K linear models
are found sequentially rather than simultaneously as in the aforementioned methods.

For our Mix-IRLS sequential approach to succeed, we found it important to allow in its intermediate
rounds an “I don't know” assignment to some of the samples. Specifically, given an estimate of the
dominant model, we partition the samples to three classes, according to their fit to the estimated
model: good, moderate and poor fit; see Figure 1. The samples with good fit are used to re-estimate
the model coefficients; those with poor fit are assumed to belong to a yet undiscovered model, and
hence are passed to the next round; the moderate fit samples, on whose model identity we have only
low confidence (“I don't know”), are ignored, but used later in a refinement phase.

To recover the dominant model at each of the K rounds, we perform robust regression using
iteratively reweighted least squares (IRLS) [24, 10, 40]. IRLS iteratively solves weighted least
squares subproblems, where the weight of each sample depends on its residual with respect to the
current model estimate. As the iterations proceed, outliers are hopefully assigned smaller and smaller
weights, and ultimately ignored; see Figure F.1 for an illustration of this mechanism.

On the theoretical front, in Section 6 we present a recovery guarantee for our method. Specifically,
we show that in a population setting with an imbalanced mixture of two components, Mix-IRLS
successfully recovers the linear models. A key novelty in our result is that it holds for a sufficiently
imbalanced mixture rather than a sufficiently balanced one (or even a perfectly balanced one) as is
common in the literature [52, 2, 35]. In addition, unlike most available guarantees, our guarantee
allows an unknown K, and it is insensitive to the initialization, allowing it to be arbitrary.

To the best of our knowledge, our work is the first to specifically handle imbalance in the MLR
problem, providing both a practical algorithm as well as a theoretical recovery guarantee. Furthermore,
we are the first to propose and analyze an adaptation of IRLS to the MLR problem. A related sequential
approach to solve MLR using robust regression was proposed by [3]. They used random sample
consensus (RANSAC) instead of IRLS, and without our “I don't know” concept. To find a component,
[3] randomly pick (d+ 2) samples from the data and run ordinary least squares (OLS) on them, in
hope that they all belong to the same component. As discussed by the authors of [3], their approach
is feasible only in low dimensional settings, as the probability that all d+ 2 chosen samples belong
to the same component decreases exponentially with the dimension d; specifically, [3] considered
only d ≤ 5. In addition, [3] did not provide a theoretical guarantee for their method. In contrast, our
Mix-IRLS method is scalable to high dimensions, and enjoys a theoretical guarantee.

Notation. For a positive integer K, denote [K] = {1, . . . ,K}, and the set of all permutations over
[K] by [K]!. For a vector u, denote its Euclidean norm by ∥u∥. For a matrix X , denote its spectral
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Algorithm 1: Mix-IRLS: main phase
input : samples {(xi, yi)}ni=1, number of components K, parameters wth, ρ, η, T1

output : estimates βphase-I
1 , . . . , βphase-I

K
1 set S1 = [n]
2 for k = 1 to K do
3 initialize βk randomly
4 repeat T1 times
5 compute ri,k = |x⊤

i βk − yi|, ∀i ∈ Sk

6 compute wi,k = (1 + ηr2i,k/r̄
2
k)

−1, ∀i ∈ Sk

7 compute βk = (X⊤
Sk
WkXSk

)−1X⊤
Sk
Wk ySk

8 end
9 set Sk+1 = {i ∈ Sk : wi,k ≤ wth}

10 set S′
k = {ρ · d samples in Sk with largest wi,k}

11 if k < K and |Sk+1| < ρ · d then
12 restart Mix-IRLS with wth ← wth + 0.1
13 end
14 compute βphase-I

k = (X⊤
S′
k
XS′

k
)−1X⊤

S′
k
yS′

k

15 end

norm by ∥X∥ and its smallest singular value by σmin(X). Given a matrix X ∈ Rn×d and an index
set S ⊆ [n], XS ∈ R|S|×d is the submatrix of X that corresponds to the rows in S. Denote by
diag(w) the diagonal matrix W whose entries are Wii = wi. The probability of an event A is P[A].
Denote the expectation and the variance of a random variable x by E[x] and Var[x], respectively. The
cumulative distribution function of the standard normal distribution N (0, 1) is Φ(·).

2 Problem Setup

Let {(xi, yi)}ni=1 be n pairs of explanatory variables xi ∈ Rd and corresponding responses yi ∈ R.
In standard linear regression, one assumes a linear relation between the response and the explanatory
variables, namely yi = x⊤

i β
∗ + ϵi where ϵi ∈ R are random noise terms with zero mean. A common

goal is to estimate the coefficient vector β∗ ∈ Rd. In mixed linear regression (MLR), in contrast, the
assumption is that each response yi belongs to one of K different linear models {β∗

k}Kk=1. Formally,

yi = x⊤
i β

∗
c∗i

+ ϵi, i = 1, . . . , n, (1)

where c∗ = (c∗1, . . . , c
∗
n)

⊤ ∈ [K]n is the label vector. Importantly, we do not know to which
component each pair (xi, yi) belongs, namely c∗ is unknown. For simplicity, we assume the number
of components K is known, and later on discuss the case where it is unknown. Given the n samples
{(xi, yi)}ni=1, the goal is to estimate β∗ ≡ {β∗

1 , . . . , β
∗
K} ⊂ Rd, possibly by estimating also c∗. See

Figure 4(left) for a real-data visualization of MLR in the simplest setting of d = 1 and K = 2.

For the K regression vectors β∗ to be identifiable, sufficiently many samples from each component
must be observed. The minimal total number of samples depends on the dimension and the mixture
proportions. Denote the vector of mixture proportions by p = (p1, . . . , pK), with pk = |{i ∈
[n] : c∗i = k}|/n. Then the information limit on the sample size, namely the minimal number of
observations n required to recover β∗ in the absence of noise, is ninfo = d/min(p). As formally
proven in Appendix B, no method can recover all K models given fewer samples.

The lack of knowledge of the labels c∗ makes MLR significantly more challenging than standard
linear regression. Even in the simplified setting of K = 2 with perfect balance (p1 = p2 = 1/2)
and no noise (ϵ = 0), the problem is in general NP-hard [52]. However, as detailed in Section 6,
various assumptions render the problem computationally tractable, and enable to derive theoretical
guarantees.
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3 The Mix-IRLS Method

For simplicity, we present our algorithm assuming K is known; the case of an unknown K is discussed
in Remark 3.3. Mix-IRLS consists of two phases. In its first (main) phase, Mix-IRLS recursively
recovers each of the K components β∗

1 , . . . , β
∗
K by treating the remaining components as outliers.

The sequential recovery is the core idea that distinguishes Mix-IRLS from most other methods. In the
second phase, we refine the estimates of the first phase by optimizing them simultaneously, similar to
existing methods. As discussed below, in many cases accurate estimates are already found in the first
phase, in which case the second phase is not necessary. For brevity, we defer the description of the
second phase to Appendix C.

Before we dive into details, let us give a brief overview of the main phase mechanism. At each round
of this phase, Mix-IRLS uses techniques from robust regression to estimate the largest component
present in the data. Then, it partitions the samples to three subsets, according to their fit to the found
component: good, moderate and poor. Mix-IRLS refines the component estimate using only the
samples with good fit, and proceeds to the next round with the poor fit samples. The moderate fit
samples are ignored in the main phase, as we have high uncertainty in their component assignment -
they either may or may not belong to the found component. As detailed below Mix-IRLS depends on
four parameters: a model fit threshold wth ∈ (0, 1), an oversampling ration ρ ≥ 1, a tuning parameter
η and the number of IRLS iterations T1 ≥ 1.

Importantly, the robust regression used by Mix-IRLS succeeds even if the dominant component
consists less than 50% of the data. The well-known “breakdown point” of robust regression at 50%
assumes nothing on the data samples, and in particular allows for adversarial outliers. In our case,
the ’outliers’, namely the samples that belong to a yet undiscovered component, follow an MLR
model. As such, standard high-dimensional robust regression methods can recover the underlying
linear model even with 70% and 80% outliers; see Appendix H for an empirical illustration.

Next, we present in details the main phase of Mix-IRLS. A pseudocode appears in Algorithm 1.
Given X = (x1 · · · xn)

⊤ and y = (y1 · · · yn)
⊤, we initialize the set of active samples to the

entire dataset, S1 = [n]. Next, we perform the following procedure for K rounds. At round k ∈ [K],
starting from a random guess βk for the k-th vector, we run T1 iterations of IRLS [24]:

ri,k =
∣∣x⊤

i βk − yi
∣∣ , ∀i ∈ Sk, (update residuals) (2a)

wi,k =
1

1 + η · r2i,k/r̄2k
, ∀i ∈ Sk, (update weights) (2b)

βk = (X⊤
Sk
WkXSk

)−1X⊤
Sk
Wk ySk

, (update estimate) (2c)

where r̄k = median{ri,k | i ∈ Sk}, and Wk = diag(w1,k, w2,k, . . . ). The updated estimate (2c) is
the minimizer of the weighted least squares objective ∥W 1

2 (ySk
−XSk

βk) ∥2. Intuitively, if βk is
close to some β∗

i , then samples from other components receive a lower weight and the updated βk is
even closer to β∗

i . After T1 iterations of (2a)-(2c), we define the subset Sk+1 of ‘poor fit’ samples
that seem to belong to other components,

Sk+1 = {i ∈ Sk : wi,k ≤ wth} . (3)

This serves as the set of active samples for the next round. In addition, for some ρ ≥ 1 whose choice
is discussed below, we define the subset S′

k of samples with a ‘good fit’ to the k-th component,

S′
k = {ρ · d samples in Sk with largest weights wi,k} . (4)

We then refine the estimate of βk by performing OLS on this subset,

βphase-I
k = (X⊤

S′
k
XS′

k
)−1X⊤

S′
k
yS′

k
. (5)

The subsets S′
k and Sk+1 are in general disjoint, unless the threshold wth or the oversampling ratio ρ

are too high. The choice for the value of wth is discussed in Remark 3.1 and Section 6. A suitable value
for ρ depends on the ratio between the sample size n and the information limit ninfo = d/min(p). In
the challenging setting of n ≈ ninfo, ρ should be set close to 1, confining the algorithm to use the
least possible number of samples at each round. If n ≫ ninfo, then ρ can be set to a higher value,
allowing the algorithm to estimate each component more accurately and more robustly to noise by
using more samples.
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Figure 2: Comparison of various MLR algorithms. Depicted is the failure rate, out of 50 random
initializations, for which Flatent > 2σ (see (6)), as a function of the sample size n. The dimension and
noise level are fixed at d = 300 and σ = 10−2. Mixture: K = 3 with p = (0.7, 0.2, 0.1) (left panel);
K = 5 with p = (0.63, 0.2, 0.1, 0.05, 0.02) (right panel).

This concludes the main phase of Mix-IRLS. The second (refinement) phase, described in Appendix C,
improves the estimates βphase-I

k using also the moderate fit samples that were ignored in the first phase.
Yet, empirically in many cases the second phase is not needed, since the main phase already outputs
highly accurate estimates of β∗. This is in accordance with the theoretical result in Section 6.
Remark 3.1 (Threshold adaptation). If the threshold wth is too small, the number of poor fit samples
|Sk+1| of (3) may be insufficient to estimate the (k+1)-th component. To avoid the tuning of wth, we
use the following scheme: Mix-IRLS gets as input an initial value for wth, and if needed, it increases
its value and starts over; see Lines 11 to 13 in Algorithm 1. The value 0.1 is heuristic, and a more
theoretically grounded update rule is an open question for future research.
Remark 3.2 (Parameter tuning). Mix-IRLS has four input parameters: η, ρ, T1 and an initial value
for wth (see Remark 3.1). As empirically demonstrated in Sections 4 and 5, there is no need to
carefully tune these parameters; see Appendix F for an explanation of this point. The values used in
our experiments are specified in Appendix G.
Remark 3.3 (Unknown/overestimated K). If K is unknown, or only an upper bound Kmax is given,
Mix-IRLS can automatically find the true K without cross validation. To find it, we ignore the
resetting criterion (Lines 11 to 13 in Algorithm 1), and instead run Mix-IRLS until there are too
few samples to estimate the next component, namely |Sk+1| < ρd. We then set K to the number of
components with at least ρd associated samples, and proceed to the second phase.

4 Simulation Results

We present simulation results on synthetic data in this section, and on several real-world datasets in
the next one. We compare the performance of Mix-IRLS to the following algorithms: (i) AltMin -
alternating minimization [52, 53]; (ii) EM - expectation maximization [5, Chapter 14], [19]; and (iii)
GD - gradient descent on a factorized objective [56]. We implemented all methods in MATLAB.1 In
some of the simulations, we additionally ran a version of EM for which the mixture proportions p are
given as prior knowledge, but it hardly improved its performance and we did not include it in our
results. In addition, we plot the performance of an oracle which is provided with the vector c∗ of the
true labels of all n samples and separately computes the OLS solution for each component.

All methods were given the same random initialization, as described shortly. Other initializations
did not qualitatively change the results. For EM and GD we added an AltMin refinement step at
the end of each algorithm to improve their estimates. In principle, Mix-IRLS has several tuning
parameters. However, Mix-IRLS performs well with a fixed set of values (see Remark 3.2). Hence,
in the following, we show the results for a tuning-free variant of our method. Further technical details,
including maximal number of iterations, early stopping criteria and parameter tuning of GD appear in
Appendix G.

Similar to [56, 21], in each simulation we sampled the entries of the explanatory variables X and
of the regression vectors β∗ from the standard normal distribution N (0, 1). In this section, the
dimension is fixed at d = 300. The additive noise terms are Gaussian, ϵi ∼ N (0, σ2). Additional
simulations with other values of d and σ, including different noise levels for the K components (i.e.,

1MATLAB and Python code implementations of Mix-IRLS are available at github.com/pizilber/MLR.
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Figure 3: Robustness of several MLR algorithms to outliers (left panel) and to overparameterization
(right panel). Values of d, σ,K and p are the same as in Figure 2(left), and n = 12000. Qualitatively
similar results for a balanced mixture appear in Figures H.15 and H.16. X-axis on left panel is fraction
of outliers; X-axis on right panel is the difference between the number of components K given to the
algorithms and the true K∗.

different σ1, . . . , σK ), as well as simulations with different separation levels between the components,
appear in Appendix H. As discussed in the introduction, a central motivation for the development
of Mix-IRLS is dealing with imbalanced mixtures. Hence, in this section, the labels c∗i were drawn
from a multinomial distribution with highly imbalanced proportions. In Appendix H, we present
results for balanced and moderately imbalanced mixtures.

We measure the accuracy of an estimate β ≡ {β1, . . . , βK} by the following quantity:

Flatent(β;β
∗) = min

σ∈[K]!
max

k=1,...,K
∥βσ(k) − β∗

k∥. (6)

The minimization above is over all K! permutations, which makes the accuracy measure invariant to
the order of the regression vectors in β. A similar objective was used by [53, 56].

All algorithms were initialized with the same random vectors β1, . . . , βK , whose entries were sampled
from the standard normal distribution N (0, 1). For each simulation, we performed 50 independent
realizations, each with a different random initialization β, and report the median errors and the failure
probability. The latter quantity is defined as the percentage of runs whose error Flatent (6) is above
2σ; see an explanation for this choice in Appendix G. Due to space limits, some figures appear in
Appendix H.

In the first simulation, we examine the performance of the algorithms as a function of the sample size
n. The results are depicted in Figure 2, and the corresponding runtimes in Figure H.3. Mix-IRLS is
shown to recover the components with sample size very close to the oracle's minimum. All competing
methods, in contrast, get stuck in bad local minima unless the sample size is much larger. Importantly,
this behavior does not follow from the presence of noise, and as shown in Appendix H, the result does
not qualitatively change in a noiseless setting. Moreover, as shown in Figure H.8, the nearly optimal
performance of Mix-IRLS seems to be independent of the dimension d. It does depend, however, on
the mixture proportions: for a moderately imbalanced mixture, Mix-IRLS does not match the oracle
performance. Yet, even in this case, Mix-IRLS still markedly outperforms the other methods; see
Figure H.6.

Next, we explore the robustness of the algorithms to additive noise, outliers and overestimation.
Figure H.10 shows that all algorithms are stable to additive noise of various levels, but only Mix-IRLS
matches the oracle performance in all runs. To study robustness to outliers, in the following simulation
we artificially corrupt a fraction f ∈ (0, 1) of the observations. A corrupted response ỹi is sampled
from a normal distribution with zero mean and variance

∑n
j=1 y

2
j /n, independently of the original

value yi. Figure 3(left) shows the error (6) of the algorithms as a function of the corruption fraction
f . To let the algorithms cope with outliers while keeping the comparison fair, we made the same
modification in all of them: at each iteration, the estimate β is calculated based on the ⌈(1− f)n⌉
samples with smallest residuals. In Mix-IRLS, we implemented this modification only in the second
phase. As shown in the figure, empirically, Mix-IRLS can deal with a corruption fraction of f = 9%,
which is over 4 times more corrupted samples than the other algorithms. In the balanced setting,
Mix-IRLS can deal with roughly twice as many corrupted samples (f = 17%), which is almost 6
times more outliers than other methods. These results should not be surprising in light of the fact that
robust regression is at the heart of Mix-IRLS 's mechanism.
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Figure 4: Left panel: Mix-IRLS estimate for the music perception data [13], where d = 1 and
n = 150. Right panel: Comparison of several MLR algorithms on the medical insurance dataset.
Note that the y-axis is on a log scale. Median estimation errors are calculated across 50 random
initializations according to (8), and error bars correspond to the median absolute deviation.

The last simulation considered the case of an unknown number of components. Specifically, the
various algorithms were given as input a number of components K ≥ K∗ where K∗ is the true
number of mixture components in the data. Here, the error is defined similar to (6), but with K∗

instead of K. Namely, the error is calculated based on the best K∗ vectors in β, ignoring its other
K −K∗ vectors. Figure 3(right) shows that most algorithms have similar performance at the correct
parameter value K = K∗, and EM succeeds also at small overparameterization, K −K∗ ≤ 3. Only
Mix-IRLS is insensitive to overparameterization, and succeeds with unbounded K. This feature is
attained thanks to the sequential nature of Mix-IRLS (Remark 3.3). Similar results hold for balanced
mixtures; see Appendix H.

5 Real-World Datasets

We begin by analyzing the classical music perception dataset of Cohen [13]. In her thesis, Cohen
investigated the human perception of tones by using newly available electronic equipment. The
n = 150 data points acquired in her experiment are shown in Figure 4(left). Cohen discussed two
music perception theories: One theory predicted that in this experimental setting, the perceived tone
(y-axis) would be fixed at 2.0, while the other theory predicted an identity function (y = x). The
results, depicted in Figure 4(left), support both theories. As a mathematical formulation of this
finding, Cohen proposed the MLR model (1) with K = 2, where the labels c∗ are i.i.d. according to a
Bernoulli distribution; see also [15].

In Figure 4(left), the untuned version of Mix-IRLS is shown to capture the two linear trends in the data.
Notably, untuned Mix-IRLS was not given the number of components, but automatically stopped at
K = 2 with its default parameters. By increasing the sensitivity of Mix-IRLS to new components
via the parameter wth, it is possible to find three or even more components; see Figure I.19.

Next, we compare the performance of Mix-IRLS to the algorithms listed in the previous section on a
more challenging problem: the CO2 emission by vehicles in Canada dataset, available on Kaggle (see
Appendix G). This dataset approximately follows an MLR model, where the samples can be clustered
into components according to their fuel type: regular gasoline, premium gasoline, diesel or ethanol
(K = 4). The mixture is imbalanced, with the proportions p = (0.49, 0.43, 0.05, 0.03). We ask the
following question: given the engine features (engine size, number of cylinders, fuel consumption in
city and highway), how close are the methods’ clusters to the (ground-truth) fuel type clusters?

We measure the performance of the methods with class-wise balanced accuracy, defined as the average
of sensitivity/recall and specificity. We chose this measure as it is considered suitable for imbalanced
mixtures, but other measures yield qualitatively similar results. As clustering is defined only up to
permutation, for each method we choose the permutation that maximizes the overall intersection of
its estimated clusters with the true ones, defined as

max
σ∈[K]!]

1

n
|{i ∈ [n] : σ(ci) = c∗i }| . (7)

The results, reported in Table 1, demonstrate the effectiveness of Mix-IRLS on imbalanced mixtures.
While on the dominant class (regular gasoline) all methods achieve comparable balanced accuracy,
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Table 1: Results of MLR algorithms on the CO2 emission from vehicles dataset. Reported are median
balanced accuracy and median absolute deviation based on 50 random initializations.

Balanced accuracy Mix-IRLS AltMin EM GD

regular gasoline (49%) 0.58± 0.00 0.59± 0.03 0.56± 0.04 0.57± 0.07

premium gasoline (43%) 0.59± 0.00 0.48± 0.10 0.48± 0.01 0.40± 0.03

diesel (5%) 0.89± 0.00 0.78± 0.13 0.54± 0.07 0.70± 0.12

ethanol (3%) 0.74± 0.00 0.63± 0.07 0.77± 0.08 0.61± 0.05

Mix-IRLS significantly outperforms the other methods on the remaining classes. EM is the only
method that is slightly better than Mix-IRLS on one of the rare classes, but achieves markedly worse
balanced accuracy on the other two rare classes. Moreover, importantly, Mix-IRLS is the only method
that is stable with respect to the initialization, demonstrating negligible variance across different
random initializations.

Finally, we compare the performance of the algorithms on four of the most popular benchmark
datasets for linear regression, all of which are available on Kaggle (see Appendix G): medical
insurance cost, red wine quality, World Health Organization (WHO) life expectancy, and fish market.
The task in each dataset is to predict, respectively: medical insurance cost from demographic details;
wine quality from its psychochemical properties; life expectancy from demographic and medical
details; and fish weight from its dimensions. For these datasets, MLR is at best an approximate model,
and its regression vectors β∗ are unknown. Hence, we replace (6) by the following quality measure
which represents the fit of an MLR model to the data:

Freal(β;X, y) =
1

Var[y]
· 1
n

n∑
i=1

min
j∈[K]

(x⊤
i βj − yi)

2, (8)

resembling the K-means objective for clustering [23]. To illustrate the advantage of a multi-component
model, we also report the results of an ordinary least squares (OLS) solution. In this section, besides
vanilla Mix-IRLS we report the results of a tuned variant, denoted Mix-IRLS:tuned. The tuning is
done using only the observed objective (8), and no oracle is involved in the procedure.

As the number of components K is unknown, we explore the algorithms' performance given different
values of K, ranging from 2 to 7. The upper limit 7 was chosen arbitrarily, and the results do not
change qualitatively for larger values. All algorithms start from the same random initialization.
Additional details appear in Appendix G.

Figure 4(right) shows the performance of the algorithms on the medical insurance dataset in terms of
the median error (8) across 50 different random initializations. The results for the other three datasets,
as well as the minimal errors achieved across the realizations, are deferred to Appendix I. In general,
both Mix-IRLS and Mix-IRLS:tuned improve upon the other methods, sometimes by 30% or more.

The experiments on the Kaggle datasets demonstrate that empirically Mix-IRLS finds MLR coef-
ficients that fit the data significantly better than other methods. Hence, given as input data that
(approximately) does follow an MLR model for some K, our method would often compute accurate
estimates of its corresponding mixture coefficients where other methods would fail to do so.

6 Recovery Guarantee for Mix-IRLS

In this section, we theoretically analyze Mix-IRLS in a population setting with an infinite number of
samples. For simplicity, we assume the explanatory variables are normally distributed. Without loss
of generality, we assume zero mean and identity covariance,

xi ∼ N (0, Id). (9)

In the more general case where xi ∼ N (µ,Σ) for some µ and Σ, one may find µ and Σ from the
data, and mean center and whiten the samples xi → Σ−1/2(xi − µ), before applying our method.
The responses yi are assumed to follow model (1) with K = 2 components (β∗

1 , β
∗
2) and labels c∗i
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generated independently of xi according to mixture proportions p1 ≥ p2 > 0. This setting was
considered in several previous theoretical works that analyzed the EM method for MLR [2, 14, 33, 36].

We assume the noise terms ϵi are all i.i.d., zero-mean random variables, independent of xi and c∗i .
We further assume they are bounded and follow a symmetric distribution,

|ϵi| ≤ σϵ and P[ϵi ≤ t] = P[ϵi ≥ −t] ∀t. (10)

For analysis purposes, we consider a slightly modified variant of Mix-IRLS, formally described
in Appendix E. In this variant, Mix-IRLS excludes samples xi with large magnitude, ∥xi∥2 > R
where R is a fixed parameter. A natural choice for its value is R ∼ E[∥xi∥2] = d, e.g. R = 2d. In
a high-dimensional setting with d≫ 1, such a choice excludes a proportion of the samples that is
exponentially small in d . For simplicity, we present our result assuming R is large, corresponding to
large dimension d; the general result appears in Lemma E.1.

The following theorem states that given a sufficiently imbalanced mixture, namely p1 is large enough,
Mix-IRLS successfully recovers the underlying vectors β∗

1 and β∗
2 .

Theorem 6.1. Let {(xi, yi)}∞i=1 be i.i.d. from a mixture of K = 2 components with proportions
(p1, p2), regression vectors (β∗

1 , β
∗
2), and noise terms ϵi that follow (10) with σϵ. Denote ∆ = β∗

1−β∗
2 ,

and γ = 5p2/4. Suppose that

q ≡ γ +

(
1 +

1√
R

)
σϵ

∥∆∥
<

1

2
. (11)

Further assume that Mix-IRLS is run with parameters ρ =∞, and with η, wth that satisfy,

1

1 + η(1− q)2∥∆∥2
< wth <

1

1 + ηq2∥∆∥2
, (12)

Then for sufficiently large R, starting from an arbitrary initialization, the first phase of Mix-IRLS
with at least one iteration (T1 ≥ 1) recovers β∗ up to an error that decreases with increasing R,

max
k=1,2

∥βk − β∗
k∥ ≤

1√
R

σϵ

σϵ + γ∥∆∥
. (13)

Specifically, in the absence of noise (σϵ = 0), Mix-IRLS perfectly recovers the regression vectors.

Theorem 6.1 considers only the first phase of Mix-IRLS, as it is sufficient to recover the regression
vectors in the described setting. Indeed, empirically, the second phase is often unnecessary. The
choice of an oversampling ratio ρ = ∞ is suited to the population setting where n = ∞; see the
discussion after Eq. (5). The theorem proof appears in Appendix E.
Remark 6.2 (Different noise levels). Theorem 6.1 holds also in the case of different noise levels
σ1, σ2 for each of the two mixture components. In this case, σϵ is replaced by max{σ1, σ2}. Indeed,
as illustrated empirically in in Figure H.11, Mix-IRLS is able to handle such a case as well.
Remark 6.3 (Required imbalance). Due to (11), Theorem 6.1 holds only for a sufficiently imbalanced
mixture. In the absence of noise, the factor 5/4 in the definition of γ may be relaxed to any number
arbitrarily close to one, at the expense of increasing R. In turn, this implies that our theorem holds for
any mixture with the probability of the second component allowed to be arbitrarily close to p2 < 1/2.
In simple words, in the noiseless setting our guarantee holds as long as the mixture is not perfectly
balanced. More generally, in the presence of noise, there is a trade-off between mixture imbalance
and noise level: the proportion of the dominant component p1 increases with the noise level σϵ.
This theoretical finding is in agreement with the simulation results in Section 4: Mix-IRLS works
better as the imbalance increases. We emphasize that empirically, Mix-IRLS works well also on
balanced mixtures, p1 = p2 = 1/2; see Appendix H. Hence it is an open problem to derive theoretical
guarantees for a perfectly balanced mixture.
Remark 6.4 (Allowed range for wth). Theorem 6.1 holds for a limited range of values for wth, see (12).
This range depends on q, which in turn depends on the noise level and the mixture imbalance. For
example, at a noise level σϵ = 10−2, proportions p = (3/4, 1/4), separation of ∥∆∥ = 1, parameter
choice of η = 1 and R ≥ 2, the range for which recovery is guaranteed is 0.69 ≤ wth ≤ 0.9. As
mentioned previously, empirically we run Mix-IRLS with an initial value of wth = 0.1 which is
increased by the algorithm (see lines 11-13 in Algorithm 1). Indeed, in accordance to this analysis, in
many cases the final value is within this range.
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Remark 6.5 (Overparameterization / unknown K). In practical scenarios, the number of components
K is often unknown. Remarkably, Theorem 6.1 can be extended to an overparameterized setting,
where the true number of components K∗ is 2 but Mix-IRLS is given an overestimated number
K > 2, together with a corresponding (arbitrary) initialization (β1, . . . , βK). This is explicitly
discussed in Appendix D (Proposition D.1), and also demonstrated empirically in Figure 3(right).

Theorem 6.1 and Remark 6.5 are in accordance with several empirical findings from previous
sections: Mix-IRLS performs better on imbalanced mixtures than on balanced ones; it copes well
with an overparameterized K; and it works well starting from a random initialization. Our analysis
(Appendix E) sheds light on the inner mechanism of Mix-IRLS that enables these features.

Comparison to prior work. Several works derived MLR recovery guarantees for AltMin [52, 53, 21]
and GD [56, 38] in a noiseless setting. More related to our Theorem 6.1 are works that studied the
population EM algorithm in the presence of noise [2, 14, 33, 36, 34]. These works assumed a perfectly
balanced mixture of two components, p1 = p2 = 1/2. An exception is [34], who allowed for K > 2
and an imbalanced mixture. However, their allowed imbalance is limited. In addition, they required a
sufficiently accurate initialization. A key novelty in our result is not only that we allow for highly
imbalanced mixtures, but that large imbalance actually makes recovery easier for Mix-IRLS: since
the quantity q of (11) is monotonically decreasing with the mixture imbalance, the allowed range
(12) of the parameter wth increases with the imbalance. Furthermore, our result holds for an arbitrary
initialization. The downside is that Theorem 6.1 requires sufficient imbalance (see Remark 6.3), and
does not provide a recovery guarantee for our method on a perfectly balanced mixture, even though
empirically, our method works well also in this case. Our result is novel in another aspect as well.
In contrast to most existing guarantees, Theorem 6.1 holds also for an arbitrary input number of
components K; see Remark 6.5.

Mix-IRLS recovers the first component by treating the samples from the second component as
outliers. In the noiseless setting, our guarantee allows the second component to consist almost 1/2 of
the data; see Remark 6.3. For comparison, in the context of robust regression, [40] recently analyzed
an IRLS method in noiseless setting, and allowed less than 1/5 corrupted samples. Our higher
tolerance is possible thanks to the strong structural assumption of MLR (1).

7 Summary and Discussion

In this work, we presented a novel method to solve MLR, Mix-IRLS, that handles both imbalanced
and balanced mixtures. Mix-IRLS is robust to outliers and to an overestimated number of components.
The latter feature leads to another contribution of our method: under suitable conditions, it can be run
with an overestimated K > K∗ and will automatically find the true number of components K∗.

The basic idea of Mix-IRLS - sequential recovery using tools from robust regression - was also
employed by [3]. Several important differences between their method and Mix-IRLS were listed in
the introduction; first and foremost is the fact that [3] is limited to low dimensions. It is interesting to
note that [1] also made a connection between MLR and robust regression, but the other way around:
as a simplified theoretical model, they assumed the outliers follow a linear model, and applied the
EM algorithm to the obtained MLR problem to detect them. Also relevant to our work are recent
papers on subspace clustering [48, 18], list-decodable learning [9, 31] and real phase retrieval [42].
We discuss their relation to our work, additional relevant papers and future research directions, in
Appendix A.

Our current theoretical analysis is limited to the case of only K = 2 components and a population
setting with infinitely many samples. While the first assumption is very common in the literature
(e.g., [2, 36], and many others), population analysis is usually followed by a finite-sample one. In our
case, a main challenge in such an analysis revolves around the sequential nature of Mix-IRLS. Once
Mix-IRLS estimates a component, it removes its associated samples. Analyzing a modified sample
set introduces complex statistical dependencies - the data no longer follow a normal distribution but
rather a conditional distribution. In the population setting, various quantities happen to cancel out
nicely; see, for example, the derivation of (E.17) from (E.16). Under the setting of finite sample size,
we need to bound these quantities under a conditional distribution. We hope to be able to overcome
these challenges and extend our analysis to a finite-sample setting in the future. Finally, another
interesting future research direction is to formally prove Mix-IRLS 's robustness to outliers, as was
empirically demonstrated in Section 4.
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