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Abstract

We study distributed schemes for high-
dimensional sparse linear regression, based
on orthogonal matching pursuit (OMP). Such
schemes are particularly suited for settings
where a central fusion center is connected to
end machines, that have both computation
and communication limitations. We prove
that under suitable assumptions, distributed-
OMP schemes recover the support of the re-
gression vector with communication per ma-
chine linear in its sparsity and logarithmic in
the dimension. Remarkably, this holds even
at low signal-to-noise-ratios, where individ-
ual machines are unable to detect the sup-
port. Our simulations show that distributed-
OMP schemes are competitive with more com-
putationally intensive methods, and in some
cases even outperform them.

1 INTRODUCTION

Sparse linear regression is a fundamental problem in
machine learning, statistics and signal processing. In-
deed, sparsity is a natural and widely applied modeling
assumption in high dimensional settings. A sparsity
assumption gives rise to the variable selection prob-
lem, of identifying a small subset of variables which
are most informative for a given prediction problem.
Here, we consider the popular sparse linear regression
model with random noise,

y = x⊤θ + σξ, (1)

where y ∈ R is the response, x ∈ Rd is a vector of
explanatory variables, θ ∈ Rd is the unknown vector
of regression coefficients, ξ ∈ R is a standard normal
random variable, i.e., ξ ∼ N (0, 1), and σ > 0 is the
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noise level. We consider a high dimensional setting
d ≫ 1 with a vector θ of sparsity K = ∥θ∥0 ≪ d. In
a centralized setting, given N samples from (1), com-
mon tasks are to accurately estimate θ as well as its
support S = supp(θ) = {i | θi ̸= 0}. Many methods
have been proposed and analyzed to solve these tasks,
including combinatorial algorithms, linear program-
ming, greedy approaches and regularization schemes
(Mallat and Zhang, 1993; Tibshirani, 1996; Chen et al.,
2001; Miller, 2002; Candes and Tao, 2005; Tropp and
Gilbert, 2007; Blumensath and Davies, 2008; Needell
and Tropp, 2009; Dai and Milenkovic, 2009; Fletcher
et al., 2009; Bertsimas et al., 2016; Hastie et al., 2020;
Amir et al., 2021).

In various contemporary applications, the data is
stored across multiple machines. Moreover, due to
communication or privacy constraints, the data at
each machine cannot be sent to other machines in the
network. Such cases bring about various distributed
learning problems, see Wimalajeewa and Varshney
(2017); Jordan et al. (2019) and references therein.

A common distributed setting, which we also consider
here, consists of M machines connected in a star topol-
ogy to a fusion center, with each machine having for
simplicity an equal number of samples, n = N/M .
For the sparse model (1), some distributed methods
attempt to recover the centralized solution that would
have been computed by the fusion center, if it had ac-
cess to all N = nM samples of the M machines. Ex-
amples include optimization-based methods (Mateos
et al., 2010; Ling and Tian, 2011; Mota et al., 2011;
Ling et al., 2012; Fosson et al., 2016; Smith et al.,
2018; Scaman et al., 2019; SarcheshmehPour et al.,
2023), Bayesian approaches (Makhzani and Valaee,
2013; Khanna and Murthy, 2016), and greedy schemes
(Sundman et al., 2012; Li et al., 2015; Patterson et al.,
2014; Han et al., 2015; Chouvardas et al., 2015). These
methods are in general communication intensive, as
they are iterative and may require many rounds to
converge. A simpler single round divide-and-conquer
scheme, is for each machine to send its own estimate of
θ and for the fusion center to average these estimates.
For a wide range of problems, the resulting estimator
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has a risk comparable to that of the centralized solu-
tion (Rosenblatt and Nadler, 2016; Wang et al., 2017;
Jordan et al., 2019; Liu et al., 2023). For the sparse
linear regression model (1), Lee et al. (2017) and Bat-
tey et al. (2018) proposed a single round distributed
debiased-Lasso scheme, and proved that under suit-
able conditions it achieves the same error rate as the
centralized solution. Yet, these debiased-Lasso meth-
ods have two limitations: (i) the communication per
machine is at least linear in d; and (ii) the computa-
tional costs are considerable, as each machine has to
solve d + 1 Lasso problems. Barghi et al. (2021) and
Fonseca and Nadler (2023) proposed debiased-Lasso
methods with much less communication, where each
machine sends to the center only the indices of its few
largest coordinates.

We consider distributed estimation of the sparse vec-
tor θ in the model (1), under the following setting:
The M end machines have both limited processing
power and a restricted communication budget. This
is motivated by modern applications where end ma-
chines are computationally weak, but collect high di-
mensional data. For example, in spectrum sensing, a
network of sensors continuously monitor and collect
high dimensional data, and repeatedly need to esti-
mate the current vector θ. In these settings, compu-
tationally intensive methods such as debiased Lasso
may be infeasible or prohibitively slow. In addition,
under communication constraints, regardless of com-
putational considerations, most of the above methods
are not applicable in high dimensions, as their com-
munication per machine is at least linear in d.

As the quantity of interest θ is K-sparse with K ≪ d,
this gives rise to the following challenge: develop a
scheme that accurately estimates the vector θ with
number of operations per machine linear in d and com-
munication sublinear in d, and derive theoretical guar-
antees for it. Here we focus on accurately estimating
the support of θ. Indeed, as discussed in Battey et al.
(2018); Fonseca and Nadler (2023), given an accurate
estimate of the support, an additional single round of
communication allows distributed estimation of θ with
the same error rate as in the centralized setting.

A natural base algorithm for machines with low com-
putational resources is Orthogonal Matching Pursuit
(OMP), as it is one of the fastest methods for sparse re-
covery (Chen et al., 1989; Pati et al., 1993; Mallat and
Zhang, 1993). Several distributed-OMP schemes, which
are computationally fast and incur little communica-
tion, were proposed in Duarte et al. (2005); Wimala-
jeewa and Varshney (2013); Sundman et al. (2014).
In terms of theory, Tropp (2004); Tropp and Gilbert
(2007); Cai and Wang (2011) derived guarantees for
exact support recovery by OMP at a single machine,

both with and without noise. However, their results
do not extend to a distributed setting if the signal-
to-noise ratio (SNR) at each machine is low. To the
best of our knowledge, the only work to derive support
recovery guarantees for distributed-OMP methods is by
Wimalajeewa and Varshney (2014). However, their
analysis is restricted to a noise-less compressed-sensing
setting, with samples xi that are random and indepen-
dent across machines, and their proofs rely heavily on
the symmetry between all non-support variables. An-
other related work, by Amiraz et al. (2022), considered
distributed sparse mean estimation. This problem can
be viewed as a special case of distributed sparse linear
regression where the design matrices are orthogonal,
whereas we study incoherent design matrices. This dis-
tinction is crucial, because similarly to Wimalajeewa
and Varshney (2014), the proof of Amiraz et al. (2022)
is symmetry-based, and is inapplicable in our frame-
work.

Our key contribution is the derivation of a recovery
guarantee for a distributed-OMP scheme, see Theorem
4.1. Remarkably, our guarantee holds even at low
SNRs, where each individual machine fails to recover
the support. The main challenge in our analysis is
that the samples xi, assumed deterministic, may be
similar (or even identical) across machines. Hence,
at low SNRs, several machines might send the same
incorrect support variable to the fusion center. De-
riving a theoretical guarantee in this case requires a
different and more delicate analysis than that of pre-
vious works. Specifically, to bound the probability
that a non-support variable is sent to the fusion cen-
ter we use recent lower bounds on the maximum of
correlated Gaussian random variables (Lopes and Yao,
2022).Thus, our analysis goes significantly beyond the
limitations of previous works by providing theoreti-
cal guarantees in a more general setting, where the
design matrices may be correlated, deterministic or
even structured, and for noisy signals. Furthermore,
our analysis provides insight into how distributed-OMP
methods can achieve exact support recovery even at
low SNRs where individual machines fail to do so.

To complement our theoretical analysis, we compare
via simulations the support-recovery success of sev-
eral algorithms including distributed-OMP and debiased
Lasso schemes (Lee et al., 2017; Battey et al., 2018;
Barghi et al., 2021). In addition we compare to dis-
tributed sure independence screening (SIS) schemes
(Fan and Lv, 2008), which are also suitable for compu-
tationally weak machines. In distributed SIS schemes,
each machine first excludes variables weakly correlated
to the response, and then estimates the sparse vec-
tor θ on the remaining ones via any appropriate al-
gorithm. In our experiments we considered smoothly
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clipped absolute deviation (SCAD) (Fan and Li, 2001)
and OMP. Our simulations show that, as expected,
the best performing scheme is debiased Lasso, but at
the expense of significantly higher communication and
computational costs. Interestingly, in comparison to
a communication-restricted thresholded variant of de-
biased Lasso, distributed-OMP methods perform com-
parably, and in some cases even outperform it, while
being orders of magnitude faster.

The rest of the paper is structured as follows. In Sec-
tion 2 we formulate the distributed sparse linear re-
gression problem. Section 3 presents the distributed-
OMP algorithms that the paper focuses on. Our main
theoretical contributions are outlined in Section 4. To
support our theoretical results, we present and discuss
several simulations in Section 5. We conclude the pa-
per with a discussion in Section 6.

Notation We use the standard O(·),Ω(·),Θ(·) no-
tation to hide constants independent of the problem
parameters and Õ(·) to hide terms polylogarithmic in
d. For functions f, g, the notations f = o(g) and f ≪ g
mean that f(d)/g(d) → 0 as d → ∞. We say that an
estimator Ŝ achieves exact support recovery with high
probability if Pr

[
Ŝ = S

]
→ 1 as both d → ∞ and the

number of machines M = M(d) → ∞ at a suitable
rate. The smallest integer larger than or equal to x
is denoted ⌈x⌉. The set of integers 1, 2, . . . ,M is de-
noted as [M ]. For a standard Gaussian Z ∼ N (0, 1),
the complement of its cumulative distribution function
is Φc(t) = Pr[Z > t]. We denote the inner product of
two vectors u,v by ⟨u,v⟩ = u⊤v.

2 PROBLEM SETUP

We consider linear regression with a sparse coefficient
vector in a distributed setting, where M machines are
connected in a star topology to a fusion center. Each
machine m ∈ [M ] holds n samples from the sparse re-
gression model (1), i.e., a design matrix X(m) ∈ Rn×d

and a response vector y(m) ∈ Rn, related via

y(m) = X(m)θ + σξ(m), (2)

where ξ(m) ∼ N (0, In) and σ is the unknown noise
level. While the M machines may have the same or
similar design matrices, their noises ξ(m) are assumed
to be independent. We assume θ is K-sparse, namely
∥θ∥0 = |supp(θ)| = K, with the value of K known to
the center.

The problem we consider is exact recovery of the sup-
port of θ, which is a standard goal in sparse linear
regression, and has been widely studied in both non-
distributed and distributed settings. We study this

Algorithm 1: OMP_Step
input : X ∈ Rn×d, y ∈ Rn, support set S
output: support index j

1 compute θ̂ = argminz∈Rd,supp(z)=S ∥y −Xz∥2
2 compute residual r = y −Xθ̂

3 output index j = argmax
{

|⟨xi,r⟩|
∥xi∥ : i ∈ [d]

}

problem under the constraints that the M machines
have limited computational resources and limited com-
munication with the fusion center. This setting is rele-
vant in various applications including distributed com-
pressed sensing and sensor networks.

3 DISTRIBUTED OMP SCHEMES

OMP-based schemes are popular for sparse support re-
covery, and are highly attractive in distributed set-
tings where computation and communication are lim-
ited. We consider two distributed OMP schemes to es-
timate the support of θ. Both schemes use the follow-
ing subroutine, denoted OMP_Step, which performs a
single step of the OMP algorithm, and outputs a new
variable to be added to the current support set. As
outlined in Algorithm 1, given a matrix X, a vector y,
and a current support set S, the subroutine computes
θ̂, the least squares approximation of θ on the support
S and its residual vector r. It then outputs an index
j ∈ [d] whose column xj has maximal correlation with
r. A key property of OMP_Step is the orthogonality of
the residual to the columns of X in the set S. Hence,
the output of OMP_Step is a new index j /∈ S.

The simplest distributed OMP method is for each ma-
chine to separately run OMP for K steps and send its
K locally-computed indices to the fusion center. The
center estimates the support of θ by the K indices
that received the largest number of votes. To cope
with low-SNR regimes where the top K indices at in-
dividual machines may not include all support indices,
we propose a variant where each machine runs OMP for
a larger number of steps and thus sends a support of
size L > K. This scheme, which we call Distributed
OMP (D-OMP), is outlined in Algorithm 2.

A second scheme, which we call Distributed Joint
OMP (DJ-OMP), computes the support set one index
at a time, using K communication rounds. Starting
with an empty support set S0 = ∅, at each round
t = 1, . . . ,K, the center sends the current set St−1 to
the M machines. Then, each machine calls OMP_Step
and sends the resulting index j(m,t) to the center. At
the end of each round, the center adds to the sup-
port set an index jt that received the most votes,
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Algorithm 2: Distributed OMP (D-OMP)
1 At each machine m = 1, . . . ,M

input : X(m) ∈ Rn×d, y(m) ∈ Rn, integer L

output: message S
(m)
L to center

2 initialize S
(m)
0 = ∅

3 for round t = 1, . . . , L do
4 j(m,t) = OMP_Step

(
X(m),y(m), S

(m)
t−1

)
5 update support set S

(m)
t = S

(m)
t−1 ∪

{
j(m,t)

}
6 end
7 send S

(m)
L to the center

8 At the fusion center
input : messages

{
S
(m)
L

}
m∈[M ]

, sparsity K

output: estimated support S
9 for each index j ∈ [d], calculate the number of

votes it received vj =
∑

m∈[M ] 1
{
j ∈ S

(m)
L

}
10 sort indices by number of votes,

vπ(1) ≥ · · · ≥ vπ(d)

11 return K indices with most votes
S = {π(1), . . . , π(K)}

Algorithm 3: Distributed Joint OMP
1 initialize S0 = ∅
2 for round t = 1, . . . ,K do
3 At each machine m = 1, . . . ,M
4 j(m,t) = OMP_Step

(
X(m),y(m), St−1

)
5 send index j(m,t) to fusion center
6 At the fusion center

input : messages j(m,t), sparsity K
7 calculate number of votes for each index j,

v
(t)
j =

∑
m∈[M ] 1

{
j = j(m,t)

}
8 find most voted index jt = argmaxjv

(t)
j

9 add jt to support set St = St−1 ∪ {jt}
10 send jt to all machines
11 if t = K output SK

12 end

St = St−1 ∪ {jt}. After K rounds, the center out-
puts the support set SK . Since OMP_Step outputs an
index not in the current set St−1, at each round t of
DJ-OMP, a new index is indeed added by the center,
jt /∈ St−1. This scheme is outlined in Algorithm 3.

Computation and Communication Complexity.
Let us first analyze the number of operations in a sin-
gle execution of OMP_Step. Given a support set S,
computing θ̂ via least squares involves multiplying a
|S|×n matrix by its transpose, and then inverting the
resulting |S| × |S| matrix. Next, finding the index j
most correlated to the residual requires d inner prod-

ucts of vectors in Rn. For |S| sufficiently small, say
o
(
d1/3

)
, the computational cost of OMP_Step is domi-

nated by the latter step whose cost is O(nd).

We now compare the two schemes DJ-OMP and D-OMP
with L = K. In terms of computational complexity, in
both schemes each machine performs the same number
of operations. Thus, for K = o

(
d1/3

)
their computa-

tional complexity per machine is O(ndK). In terms of
communication, in both schemes each machine sends
(and in DJ-OMP also receives) a total of K indices, and
so the communication per machine is O(K log d) bits.
The main difference is that D-OMP performs a single
round, whereas DJ-OMP performs K rounds. Hence,
DJ-OMP requires synchronization and is slower in com-
parison to D-OMP.

Related Works. Various distributed-OMP methods
were proposed in the past decade. Wimalajeewa and
Varshney (2013) considered the same D-OMP scheme
as we do, with L = K. In addition, they proposed
a DC-OMP algorithm, which is similar to DJ-OMP. In
DC-OMP, at each round, instead of adding just one in-
dex to the support, the fusion center adds all indices
that received at least two votes. A distributed-OMP ap-
proach for a different setting where each machine has
its own regression vector θ(m) was proposed by Sund-
man et al. (2014). In their setting, the support sets
of the M vectors θ(m) are assumed to be similar, and
the M machines are connected in a general topology
without a fusion center.

4 THEORETICAL RESULTS

Despite their simplicity, to the best of our knowledge,
distributed-OMP schemes lack rigorous mathematical
support and only limited theoretical results have been
derived for them. Wimalajeewa and Varshney (2014)
proved a support recovery guarantee for DC-OMP, but
only in a restricted noise-less compressed-sensing set-
ting, where the entries of the design matrices are all
random and i.i.d. across machines. In contrast, in
this section we derive a support recovery guarantee for
DJ-OMP, under a more general setting, where the design
matrices are deterministic and potentially structured,
and the responses y are noisy. Specifically, we prove
in Theorem 4.1 that if the SNR is high enough (the
non-zero entries of θ are sufficiently large in absolute
value), then with high probability DJ-OMP recovers the
support set S. Remarkably, the SNR required by our
theorem is well below that required for individual ma-
chines to succeed. Its proof appears in Appendix A.

Towards formally stating our result, we first review
known recovery guarantees for OMP on a single ma-
chine, and mathematically define the SNR in our prob-
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lem.

Distributed Coherence Condition. The coher-
ence of a matrix A with columns aj is defined as

µ (A) = max
i ̸=j

|⟨ai,aj⟩|
∥ai∥2 ∥aj∥2

. (3)

A matrix A satisfies the Mutual Incoherence Property
(MIP) with respect to a sparsity level K if

µ(A) <
1

2K − 1
. (4)

A fundamental result by Tropp (2004) is that in an
ideal noise-less setting (σ = 0), the MIP condition (4)
is sufficient for exact support recovery by OMP.

In our distributed setting, each machine m has its own
design matrix X(m) with coherence µ(m) = µ(X(m)).
We denote their maximal coherence by

µmax = µmax(X
(1), . . . ,X(M)) = max

m∈[M ]
µ(m). (5)

We say that a set of matrices X(1), . . . ,X(M) satisfies
the max-MIP condition w.r.t. a sparsity level K if

µmax <
1

2K − 1
. (6)

Eq. (6) implies that all machines satisfy the MIP con-
dition (4). Hence, in a noise-less setting, OMP at each
machine will correctly recover the support of θ.
Remark 4.1. Note that µmax depends on all M de-
sign matrices at the M machines. In general, if they
are random then µmax will also be random, and will
increase with M . However, the max-MIP condition
(6) is not necessarily very restrictive. For example,
the coherence of a matrix with random i.i.d. Gaussian
entries is tightly concentrated around its mean. In this
case, assuming max-MIP (6) instead of MIP (4) on a
single machine is not significantly limiting.

The coherence plays a key role for OMP recovery also in
the presence of noise, as we discuss next.

SNR Regime. We formally define the SNR in our
distributed setting. We then focus on an interesting
regime, in which the SNR is sufficiently high for OMP
to recover the support of θ in a centralized setting,
where the center has access to all the samples from
all machines, and yet too low for OMP at a single ma-
chine to individually recover it. For a K-sparse vector
θ ∈ Rd, a matrix A ∈ Rn×d with coherence µ whose
columns have unit norm, and a noise level σ, define

θcrit(µ, d,K, σ) =
σ
√
2 log d

1− (2K − 1)µ
. (7)

Notice that θcrit(µ, d,K, σ) is well defined under the
MIP condition (4).

As in previous works, to derive exact support recovery
guarantees, we consider vectors θ whose non-zero en-
tries have magnitude lower bounded by θmin, namely
mink∈S |θk| ≥ θmin. For a matrix A with unit-norm
columns, define the SNR as r =

(
θmin

θcrit(µ,d,K,σ)

)2
.

Near the value r = 1, OMP (at a single machine) ex-
hibits a phase transition from failure to success of
support recovery. If the SNR is slightly higher, i.e.,
r >

(
1 +

√
logK
log d

)2
, then with high probability OMP ex-

actly recovers the support S (Ben-Haim et al., 2010).
In contrast, if the SNR is slightly lower, i.e., r <(
1−

√
logK
log d − µ

)2
, then there are matrices A ∈ Rn×d

with coherence µ and K-sparse vectors θ ∈ Rd for
which given y = Aθ + σξ, OMP fails with high prob-
ability to recover the support of θ. In addition, this
occurs empirically for several common families of ma-
trices A and vectors θ (Amiraz et al., 2021).

In our distributed setting the matrices X(m) are as-
sumed to be deterministic and do not necessarily have
unit-norm columns. However, (2) is equivalent to

y(m) = X̃(m)θ̃(m) + σξ(m), (8)

where each column x̃
(m)
j of the matrix X̃(m) is scaled

to have unit norm, i.e., x̃(m)
j = x

(m)
j /∥x(m)

j ∥, and ac-
cordingly θ̃

(m)
j = ∥x(m)

j ∥θj . Clearly, the support of
each θ̃(m) is identical to that of θ. We assume that for
a suitable θ̃min, the vector θ satisfies that

min
m

∥x(m)
k ∥ |θk| ≥ θ̃min, ∀k ∈ S. (9)

Given the above discussion, in our distributed setting
we define the SNR parameter r as follows,

r =

(
θ̃min

θcrit(µmax, d,K, σ)

)2

. (10)

If r > 1 then θ̃min > θcrit(µ
(m), d,K, σ) at every ma-

chine m ∈ [M ], and hence in any single machine OMP
would recover the support of θ with high probability.

Next, consider a centralized setting where all N = Mn
samples are available to the fusion center. This setting
corresponds to a response vector y ∈ RN and mea-
surement matrix X ∈ RN×d formed by stacking the
vectors y(1), . . . ,y(M) and the rows of X(1), . . . ,X(M),
respectively. In analogy to (10), to guarantee sup-
port recovery in this case, a sufficient condition is that

the centralized SNR r(c) =

(
θ̃
(c)
min

θcrit(µ(X),d,K,σ)

)2

> 1.
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Here θ̃
(c)
min is a value such that for all support indices

k ∈ S, |θk| ≥ θ̃
(c)
min/∥Xk∥, where Xk is the k-th col-

umn of X. Since ∥Xk∥ ≥
√
M minm

∥∥∥x(m)
k

∥∥∥, then in a
centralized setting OMP is guaranteed to succeed when√
Mθ̃min > θcrit(µ(X), d,K, σ). Given the definition

(7) for θcrit, an SNR regime that is interesting to study
in the distributed setting is

1

M

(
1− (2K − 1)µmax

1− (2K − 1)µ(X)

)2

< r < 1. (11)

In this range, the SNR is sufficiently high for recovery
in the centralized setting, but too low to guarantee
recovery at individual machines. As we show next, for
a subrange of the SNR values in Eq. (11), the DJ-OMP
scheme can still achieve exact support recovery.

4.1 Support Recovery Guarantee

We present three assumptions for our recovery guaran-
tee to hold. As OMP is based on dot products between
the residual and normalized columns of the design ma-
trices, we first introduce the following quantity that
bounds how large these can be,

δ = δ (K,µmax) =
(K−1)µ2

max

1−(K−2)µmax
. (12)

As we show in Section A.5, under the max-MIP con-
dition (6), δ ≤ µmax. Our first assumption is that
the number of machines is sufficiently large, with the
dependence on K encoded in the quantity δ.
Assumption 4.1. M ≥ Mc (d,K, µmax, r), where

Mc (d,K, µmax, r) = K

 16 log d

Φc
(

(1−
√
r)

√
2 log d√

1−δ(1−µmax)

)
 . (13)

In our analysis, we assume that d ≫ 1 and that µmax

is small. This implies that also δ is small and hence

Mc (d,K, µmax, r) ≈ Kd

(
1−

√
r√

1−δ(1−µmax)

)2

, (14)

which follows from the approximation Φc(t) ≈ e−t2/2

and omitting O(log d) factors. Thus, larger SNR val-
ues (though still smaller than one), require fewer ma-
chines to guarantee support recovery.

To guarantee support recovery by DJ-OMP, we also
need to upper bound the probability that a non-
support index is sent to the fusion center. As described
in the appendix, for this we use a recent result on
the left tail of the maximum of correlated Gaussian
random variables (Lopes and Yao, 2022). The SNR
that guarantees recovery thus depends on a parame-
ter ϵ = ϵ(K,µmax), with smaller values of ϵ leading to
a lower SNR. However, for our proof to work, ϵ cannot
be arbitrarily small, and we set it as follows.

Assumption 4.2. The scalar ϵ = ϵ(K,µmax) satisfies
√
µmax + δ

1 +
√
µmax + δ

< ϵ < 1. (15)

Importantly, for µmax small, ϵ can be chosen to be as
small as O(

√
µmax). As detailed in the theorem below,

this allows recovery at low SNRs.

Finally, we define a few quantities that characterize
the lower bound we impose on the SNR r. Let

Q0 (d,K) =
log(88

√
2K)

log d , (16)

and define Q1 (d,K, µmax, ϵ) and Q2 (d,K, µmax) by

Q1 =
1−(1−µmax)

√
1−δ((1−ϵ)

√
1−µmax−

√
Q0)

1−2µmaxK
√
1−δ 1−µmax

1−(2K−1)µmax

, (17)

Q2 =

√
2+2(µmax+δ)(1+

√
1−δ(1−µmax)

√
Q0)

√
1−δ(1−µmax)+

√
2+2(µmax+δ)

. (18)

Assumption 4.3 (SNR Condition). The SNR r is
lower bounded as follows

√
r ≥

{
Q2 (4K − 1)µmax − 2Kµ2

max ≥ 1
min(Q1, Q2) otherwise

(19)

We can now state our support recovery guarantee.
The following theorem shows that under the above
assumptions, the DJ-OMP algorithm, which requires
lightweight communication and computation, recovers
the support of θ, with high probability.
Theorem 4.1. Under the max-MIP condition (6) and
Assumptions 4.1-4.3, for sufficiently large d = d(ϵ),
with probability at least 1 − 2

d

(
2K − 1

)
, DJ-OMP with

K rounds recovers the support of the K-sparse vector
θ.

Let us analyze the implications of the theorem when
K ≪ d and µmax, ϵ, δ ≪ 1. In this case Q1 ≈ ϵ and
Q2 ≈

√
2

1+
√
2
. Hence, Assumption 4.3 is approximately

r > (min(Q1, Q2))
2 ≈ ϵ2 or r & µmax. Thus, there is

a range of relatively low SNR values for which with a
sufficiently large number of machines, DJ-OMP is guar-
anteed to recover the support, even though individual
machines fail to do so.
Remark 4.2. Several works considered distributed
settings where each machine has a different vector
θ(m), but they all share the same support S (Duarte
et al., 2005; Ling and Tian, 2011; Ling et al., 2012;
Wimalajeewa and Varshney, 2014; Li et al., 2015).
Theorem 4.1 also holds in such cases, under the fol-
lowing condition on the vectors θ(m), instead of (9),

min
m∈[M ]

∥∥∥x(m)
k

∥∥∥ ∣∣∣θ(m)
k

∣∣∣ ≥ θ̃min ∀k ∈ S.
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Remark 4.3. Our approach can be extended to han-
dle the case where the sparsity level K is unknown. In
this case, we may set a stopping criterion whereby the
fusion center stops the communication rounds with the
M machines and returns its current support estimate
if the number of votes for the most-voted index falls
below a predefined threshold. Corollary B.1 shows that
for a compressed sensing setting where each matrix en-
try is i.i.d. Bernoulli, the success probability is almost
the same as in Theorem 4.1. The corollary and corre-
sponding simulation results can be found in Appendix
B.
Remark 4.4. The success probability in Theorem 4.1
is influenced by the inter-round dependency. It can
be improved by variants of our basic scheme. For in-
stance, allocating half of the machines to the first K/2
rounds and the rest to the remaining rounds boosts the
success probability to 1 − 2K/2+1/d. Maximizing this
approach by using fresh M/K machines at each round
increases the probability to 1 − 2K/d. However, this
requires a higher SNR to offset the reduced number of
machines in each round. We believe that the success
probability in Theorem 4.1 for the basic scheme may
be improved to 1−poly(K)/d, but this remains an open
question for future research.

We now compare Theorem 4.1 to related works. Ami-
raz et al. (2022) studied distributed sparse mean es-
timation, which is a special case of distributed sparse
linear regression where the design matrices are orthog-
onal. They designed low-communication distributed
schemes that provably recover the support for a wide
range of SNR values. However, their proofs rely on the
design matrices being orthogonal, and do not general-
ize to incoherent matrices. Their schemes are single-
round, essentially using the orthogonality to recover
all K support indices in parallel, in contrast to our
DJ-OMP scheme which has K iterations, and requires
a careful analysis of error propagation. As mentioned
above, Wimalajeewa and Varshney (2014) considered
a compressed-sensing setting with incoherent random
matrices whose entries are drawn i.i.d. from the same
distribution, and with no noise (σ = 0). In both of
these papers, a key property that greatly simplifies
the analysis is that at all machines the probability for
selecting a non-support index is the same for all k /∈ S.
Our theorem shows that even without this symmetry
between the non-support indices, distributed-OMP al-
gorithms can achieve exact support recovery.

5 SIMULATION RESULTS

We compare experimentally the following algorithms,
which have different computation and communication
costs (see Table 1): (i) Deb-Lasso where each ma-

Table 1: Communication and Computation Costs

Algorithm Communication
cost

Computational
cost, K ≪ d1/3

Single OMP Õ (K) O (ndK)

Deb-Lasso Õ (d)1 solving d + 1
Lasso optimiza-
tion problems

Deb-Lasso-K Õ (K)

SIS-SCAD-K SNR dependent
O (nd)

SIS-OMP-K Õ (K)

D-OMP, L=K
Õ (K) O (ndK)DJ-OMP

chine computes a debiased-Lasso estimate of θ ∈ Rd

and sends it to the center. The center averages these
M vectors and returns its top K indices (Lee et al.,
2017; Battey et al., 2018); (ii) Deb-Lasso-K, a vari-
ant of Barghi et al. (2021), where each machine sends
the top K indices of its debiased-Lasso estimate; (iii)
SIS-SCAD-K, a distributed SIS scheme, where each
machine performs variable screening followed by SCAD
(Fan and Lv, 2008). It sends its resulting support set
to the center, which selects the top K indices by ma-
jority voting; (iv) SIS-OMP-K, another distributed SIS
scheme where each machine estimates its support set
using OMP on the remaining features; (v) D-OMP with
L = K; (vi) D-OMP with L = 2K; and (vii) DJ-OMP.
To illustrate the ability of DJ-OMP to recover the sup-
port when individual machines fail, for reference we
also ran OMP on a single machine, ignoring the data
in all other M − 1 machines. Note that while OMP-
based schemes are essentially parameter free (beyond
the sparsity K), in the debiased-Lasso schemes all ma-
chines need to know the noise level σ.

We now describe the simulation setup. Each matrix
X(m) is generated as follows. Each row is drawn inde-
pendently from N (0,Σ), where Σ is a Toeplitz matrix
with Σii = 1 and Σij = α|i−j| for i ̸= j for some
α ∈ [0, 1). In all settings, we generate M = 20 such
matrices, each containing n = 2000 samples. The noise
level is σ = 1, and the vector θ has a sparsity K = 5,
with θ = θmin · [1,−1.5, 2,−2.5, 3, 0, . . . , 0]⊤. The tun-
ing parameter in the debiased-Lasso methods, which
scales the ℓ1 term of each of the d + 1 Lasso objec-
tives, is set to λ = 2σ

√
log d
n . We consider two settings

both of dimension d = 10000. In Setting (a), α = 0,
i.e., all matrix entries are i.i.d. N (0, 1). In Setting (b),
α = 0.1, so the columns of X(m) are weakly correlated.

1For Deb-Lasso, each machine sends the vector θ̂(m)

itself, so the Õ(·) notation hides the number of bits used
for each quantized value.
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Figure 1: Support Recovery as a Function of θmin.
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Figure 2: Runtime as a Function of d.

Further implementation details appear in Appendix D.
Code that reproduces the results presented in this pa-
per is publicly available on GitHub.2

Figure 1 illustrates the empirical success probability of
the various algorithms as a function of θmin in the two
settings outlined above. Formally, for an algorithm A,

pAsuccess (θmin) =
1

J

J∑
j=1

1
{
SA
j (θmin) = S

}
,

where SA
j (θmin) is the support set computed by algo-

rithm A, for noise realization j and lower bound θmin

on the non-zero coefficients of θ, and J is the total
number of noise realizations, set to J = 500. The
dashed vertical line in panel (a) is the lower bound
θcrit(µ(X), d,K, σ) of Eq. (7), above which in a cen-
tralized setting, OMP is guaranteed to recover the sup-
port with high probability. In panel (b), the MIP con-
dition does not hold and the dashed line is not shown.
Nonetheless, distributed schemes still succeed in this
case.

Figure 1 reveals several phenomena. First, as antici-
pated, the performance of distributed-OMP algorithms
is inferior to Deb-Lasso, which incurs much higher
computational and communication costs. Second, in
accordance with Theorem 4.1, distributed-OMP algo-
rithms succeed at low SNR values, where OMP on a
single machine fails with high probability. Third,
DJ-OMP’s performance is comparable to D-OMP with
L = K. For scenarios requiring one-shot commu-
nication, D-OMP with more steps, L = 2K in this
example, exceeds DJ-OMP’s performance, while incur-
ring twice the communication cost, which is still much
lower than d if K ≪ d. In Setting (a) where all
entries of the matrices X(m) are i.i.d. Gaussian, the
performance of distributed-OMP algorithms is on par
with the computationally demanding Deb-Lasso-K.
Notably, in Setting (b) where the matrices X(m) have
correlated columns, distributed-OMP methods surpass
Deb-Lasso-K. In the context of variable screening
methods, for a wide range of SNR values, a sin-
gle machine often misses the full support set dur-
ing the screening step. Yet, incorporating voting
schemes enables distributed support recovery. Simi-
lar to Deb-Lasso-K, SIS-SCAD-K matches the perfor-
mance of distributed-OMP algorithms in Setting (a) but
lags behind them in Setting (b). In all the studied
settings, SIS-OMP-K performs similarly to D-OMP with
L = K.

Figure 2 shows the runtime and error bars of several
schemes, all implemented in Python, as a function of
d on a logarithmic scale. In this simulation, α = 0

2https://github.com/ChenAttias/Distributed-OMP
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and θmin = 0.1 and we averaged over J = 20 realiza-
tions. The runtime of Deb-Lasso-K is similar to that
of Deb-Lasso, and thus not shown. As seen in the fig-
ure, distributed-OMP methods are more than three or-
ders of magnitude faster than Deb-Lasso. SIS-OMP-K
achieves an additional improvement in runtime com-
pared to distributed-OMP methods. A theoretical study
of SIS-OMP-K is an interesting topic for future re-
search.

Finally, in Appendix C we show empirically that the
number of machines to recover the support scales as
M ≈ dβ for some β < 1, in accordance with (14).

6 DISCUSSION

In distributed sparse linear regression, a fundamen-
tal theoretical aspect is determining SNR-dependent
lower bounds on the communication required for ex-
act support recovery. To the best of our knowledge,
there are no such established lower bounds. This ne-
cessitates a nuanced exploration of communication re-
quirements for exact support recovery under different
SNRs. When the SNR is sufficiently high so that an
individual machine can recover the support of θ, for
example by OMP, the fusion center may recover the sup-
port S by contacting only one machine, incurring an
incoming communication of only O(K log d) bits. Note
that even in a noise-less setting, for the fusion center
to recover the support, K indices must be sent to the
center, so K log d bits is a lower bound on the total re-
quired communication. On the other hand, when the
SNR is low, distributed Deb-Lasso succeeds to recover
the support of θ but incurs a communication cost of
Õ (d) bits per machine, which might be prohibitive in
high-dimensional settings.

We conjecture that at low-SNR values, no distributed
algorithm can achieve exact support recovery with
communication per machine O(K log d) bits. We note
that for closely related problems, achieving the cen-
tralized minimax ℓ2 risk or the centralized prediction
error is possible at low SNRs but requires a communi-
cation cost of Ω(d) bits (Shamir, 2014; Steinhardt and
Duchi, 2015; Acharya et al., 2019; Barnes et al., 2020).
Our work shows that for a range of SNR values be-
tween these two extremes, distributed-OMP algorithms
do recover the support of θ with communication per
machine O(K log d). An interesting open question is
to determine the optimal rate at which the required
communication decreases as a function of the SNR by
any distributed algorithm that achieves exact support
recovery. Another interesting direction for future re-
search is to characterize the tradeoff between commu-
nication costs and computational resources.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]. See Section 2.

(b) An analysis of the properties and complexity
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Supplementary Materials

A PROOFS

In this section we prove Theorem 4.1. For ease of presentation, in Section A.1 we state and prove Theorem A.1
which addresses the simpler case K = 1. The proof of Theorem 4.1 for the general case K ≥ 1 appears in Section
A.2. The proofs of various auxiliary lemmas appear in Sections A.3-A.6.

Towards proving both theorems, we first present a few preliminaries, state useful lemmas and outline the proof.

Preliminaries. Recall that DJ-OMP is an iterative algorithm, whereby at each round t, all M machines call
the subroutine OMP_Step with the same input set St−1. In principle, except at the first round where S0 = ∅,
this input set depends on all the data in all M machines. This statistical dependency significantly complicates
the analysis. Instead, as discussed below, in our proof we will analyze a single round of DJ-OMP, assuming all
machines are provided with a fixed input set s.

Given an input set s to the subroutine OMP_Step, each machine m computes a sparse vector supported on s, i.e.,

θ̂(m) = arg min
z∈Rd

∥∥∥y(m) −X(m)z
∥∥∥
2

s.t. supp(z) = s. (20)

Then, it calculates the corresponding residual vector

r(m) = y(m) −X(m)θ̂(m). (21)

Finally, each machine m sends to the fusion center the index

j(m) = argmax
i∈[d]

|⟨x̃(m)
i , r(m)⟩|, (22)

where x̃
(m)
i =

x
(m)
i∥∥∥x(m)
i

∥∥∥ is the i-th column of X(m) divided by its norm.

As also described in Algorithm 3, given the messages sent by all M machines, the fusion center computes a
vector v ∈ Rd, where vj counts the number of votes received by index j for all j ∈ [d]. As discussed in the main
text, indices in s receive no votes and at each round a new index jcenter is chosen by the center,

jcenter = jcenter (s) = arg max
j∈[d]\s

vj .

Towards proving that with high probability jcenter ∈ S \ s, we define an additional quantity ρ(m) = ρ(m)(s) that
corresponds to the local SNR at machine m given an input set s. Denote

θ̃(m)
max = θ̃(m)

max(s) = max
k∈S\s

{∥∥∥x(m)
k

∥∥∥ |θk|} . (23)

Similar to the definition of r in Eq. (10), we define

ρ(m) = ρ(m)(s) =

(
θ̃
(m)
max

θcrit (µmax, d,K, σ)

)2

, (24)

where θcrit is defined in Eq. (7). Where clear from the context and to simplify notation we will not write the
dependence on the input set s explicitly. Note that by its definition, for any input set s that is strictly contained
in S, it follows that ρ(m) ≥ r. As discussed in Section 4, if ρ(m) > 1, then with high probability machine m
would recover a support index, namely j(m) ∈ S \s (Amiraz et al., 2021). Therefore, in what follows, we consider
a worst case scenario whereby ρ(m) ≤ 1 in all machines m ∈ [M ].
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Proof outline and lemmas. For simplicity we prove the theorem assuming the number of machines is the
smallest that still satisfies Assumption 4.1, namely M = Mc (d,K, µmax, r), with Mc defined in Eq. (13). A
larger number of machines would only increase the probability of exact support recovery. The main idea of the
proof is to show that at each of the K rounds, with high probability the center indeed chooses a support index.
Specifically, consider a single round of DJ-OMP with a fixed input set s ⊂ S. Then, for the center to choose an
index jcenter ∈ S \ s, it suffices that there exists some support index k ∈ S \ s that received more votes than any
non-support index, namely,

vk > max
j /∈S

vj . (25)

A sufficient condition for (25) to occur is that for some suitable threshold tc = tc(s) > 0, both

vk > tc, (26)

and
max
j /∈S

vj < tc. (27)

As described below, our chosen threshold tc depends on the following quantity F , which provides a lower bound
for the probability that a support index is sent to the center by one of the machines,

F (d,K, µmax, r) =
1

2
Φc
(

(1−
√
r)

√
2 log d√

1−δ(1−µmax)

)
. (28)

Note that by this definition, Eq. (13) can be rewritten as

Mc (d,K, µmax, r) = K

⌈
8 log d

F (d,K, µmax, r)

⌉
. (29)

We will show that Eqs. (26) and (27) indeed hold with high probability with the following threshold

tc = tc(s) =

∑
m∈[M ] F

(
d,K, µmax, ρ

(m)(s)
)

M · F (d,K, µmax, r)
4 log d, (30)

where r, ρ(m) and F are defined in Eqs. (10), (24), and (28) respectively. Note that ρ(1), . . . , ρ(M) and tc, which
all depend also on the subset s, are not assumed to be known to the center and are only used in the proof.

The following Lemma A.1 provides a lower bound for the threshold tc, which will be useful in our proofs. Its
proof follows directly from the definition of F in Eq. (28) and appears in Section A.3.
Lemma A.1. Under the max-MIP condition (6), for any fixed s ⊂ S, the threshold tc = tc(s) defined in Eq.
(30) satisfies

tc ≥ 4 log d. (31)

The following Lemma A.2 states that if the expected number of votes for an index k ∈ S \ s is sufficiently high,
then event (26) occurs with high probability. The next Lemma A.3 shows that if the expected number of votes
for each non-support index j /∈ S is sufficiently low, then event (27) occurs with high probability. These lemmas
follow from Chernoff bounds and are proved in Section A.3 as well.
Lemma A.2. Assume the max-MIP condition (6) holds. Fix s ⊂ S, and let tc = tc(s) be given by Eq. (30). If
E [vk] ≥ 2tc for some k ∈ S \ s, then

Pr [vk ≤ tc] ≤
1

d
.

Lemma A.3. Assume the max-MIP condition (6) holds. Fix s ⊂ S, and let tc = tc(s) be given by Eq. (30). If
for all non-support indices j /∈ S it holds that E [vj ] ≤ tc

5 then

Pr

[
max
j /∈S

vj ≥ tc

]
≤ 1

d
.

It remains to bound E [vj ] from above for j ∈ S \ s and from below for j /∈ S. Towards this goal, denote by p
(m)
j

the probability that machine m sends index j, namely

p
(m)
j = Pr

[
j(m) = j

]
, (32)
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where j(m) is defined in Eq. (22).

Since E [vj ] =
∑

m p
(m)
j , it suffices to bound the probability p

(m)
j . For ease of presentation, we first derive these

bounds for the case K = 1 in Section A.1, and then extend them to the general case K ≥ 1 in Section A.2.

A.1 Support recovery guarantee for sparsity K = 1

For completeness, we rewrite Assumptions 4.1-4.3 for this case. Since K = 1, by its definition in Eq. (12),
δ (1, µmax) = 0. Hence, the quantity F simplifies to

F (d, 1, µmax, r) =
1

2
Φc

(
1−

√
r

1− µmax

√
2 log d

)
, (33)

and the quantity Mc from Eq. (29) reduces to

Mc (d, 1, µmax, r) =

⌈
8 log d

F (d, 1, µmax, r)

⌉
. (34)

Thus, for K = 1, Assumptions 4.1 and 4.2 read as follows:
Assumption A.1. M ≥ Mc (d, 1, µmax, r).
Assumption A.2. The parameter ϵ = ϵ(µmax) satisfies

√
µmax

1 +
√
µmax

< ϵ < 1. (35)

The quantity Q0 reduces to

Q0 (d, 1) =
log
(
88

√
2
)

log d
. (36)

In addition, the expressions for Q1 and Q2 simplify to

Q1 (d, 1, µmax, ϵ) =
1− (1− µmax)

(
(1− ϵ)

√
1− µmax −

√
Q0

)
1− 2µmax

, (37)

Q2 (d, 1, µmax) =

√
2 + 2µmax

(
1 + (1− µmax)

√
Q0

)
1− µmax +

√
2 + 2µmax

. (38)

Finally, for K = 1, Assumption 4.3 on the SNR is:
Assumption A.3 (SNR Condition). The SNR is sufficiently high,

√
r ≥

{
Q2 µmax ≥ 1/2
min(Q1, Q2) otherwise (39)

Theorem A.1. Under Assumptions A.1-A.3 and the max-MIP condition µmax < 1, for sufficiently large d = d(ϵ),
with probability at least 1− 2/d, a single round of DJ-OMP recovers the support of a 1-sparse vector θ.

A few remarks are in place. First, note that when K = 1, D-OMP with L = 1 reduces to the same algorithm as
DJ-OMP, and thus this result holds for this algorithm as well. Second, as mentioned in Section 4, when µmax ≪ 1
condition (39) roughly translates to r & ϵ2, and hence r & µmax. Thus, there is a range of relatively low SNR
values for which DJ-OMP succeeds to recover the support, even though the probability of any single machine to
do so is very low.

A.1.1 Proof of Theorem A.1

When K = 1, only a single round is performed with an input set s = ∅. Thus it trivially holds that s ⊂ S. In
addition, OMP_Step simplifies to the following procedure. At each contacted machine m, the residual is simply
the response vector, i.e., r(m) = y(m). Thus, the index sent by machine m to the fusion center is given by

j(m) = argmax
i∈[d]

|⟨x̃(m)
i ,y(m)⟩|. (40)
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Another simplification in the case K = 1 is that the support set contains only one index, which we denote by k,
i.e., S = {k}. To prove Theorem A.1, we derive a lower bound on the probability p

(m)
k for the support index k

in the following Lemma A.4 and an upper bound on the probability p
(m)
j for each non-support index j /∈ S in

the following Lemma A.5. Their proofs appear in Section A.4 and are based on a probabilistic analysis of the
inner products between the response vector y(m), which consists of signal and noise, and different columns x̃i.
Lemma A.4. Assume that ∥θ∥0 = K = 1 and let S = {k} = supp {θ}. Further assume that the max-MIP
condition (6) holds. For sufficiently large d, for each machine m,

p
(m)
k ≥ F

(
d, 1, µmax, ρ

(m)
)
, (41)

where p
(m)
k and F are defined in Eqs. (32) and (33) respectively.

Lemma A.5. Assume that ∥θ∥0 = K = 1 and let S = supp {θ}. Further assume that ρ(m) of Eq. (24) satisfies
ρ(m) ≤ 1 for each machine m and that the max-MIP condition (6) holds. If ϵ satisfies Assumption A.2, the SNR
parameter r satisfies Assumption A.3, and the dimension d = d(ϵ) is sufficiently large, then for each machine m
and each non-support index j /∈ S,

p
(m)
j ≤

F
(
d, 1, µmax, ρ

(m)
)

11
. (42)

We now formally prove Theorem A.1 by combining the above lemmas.

Proof of Theorem A.1. For simplicity, we assume that the number of machines is M = Mc (d, 1, µmax, r), since a
larger number of machines would only increase the probability of successful support recovery. We first analyze
the probability that event (26) occurs. By Lemma A.4, for the support index k ∈ S, its expected number of
votes is E [vk] =

∑
m∈[M ] p

(m)
k ≥

∑
m∈[M ] F

(
d, 1, µmax, ρ

(m)
)
. By the definitions of tc in Eq. (30) and Mc in Eq.

(34),

E [vk] ≥
Mc · F (d, 1, µmax, r)

4 log d
· tc =

⌈
8 log d

F (d, 1, µmax, r)

⌉
F (d, 1, µmax, r)

4 log d
· tc ≥ 2tc.

By Lemma A.2, the event (26) occurs with probability at least 1− 1/d.

Next, we analyze the probability that event (27) occurs. Fix a non-support index j /∈ S. Since ρ(m) ≤ 1, then
by Lemma A.5, its expected number of votes is E [vj ] =

∑
m∈[M ] p

(m)
j ≤ 1

11

∑
m∈[M ] F

(
d, 1, µmax, ρ

(m)
)
. By the

definitions of tc in Eq. (30) and Mc in Eq. (34),

E [vj ] ≤
1

11

⌈
8 log d

F (d, 1, µmax, r)

⌉
F (d, 1, µmax, r)

4 log d
tc <

tc
5
.

The last inequality is justified as follows. Recall that ⌈x⌉ ≤ x+ 1 for all x. Thus,⌈
8 log d

F (d, 1, µmax, r)

⌉
F (d, 1, µmax, r)

4 log d
≤ 2 +

F (d, 1, µmax, r)

4 log d
.

By the definition of F in Eq. (33), it follows that F (d, 1, µmax, r) ≤ 1. Hence, when d ≥ 8, then log d > 2, and
the term F (d,1,µmax,r)

4 log d ≤ 1
8 . Hence, by Lemma A.3, the event (27) occurs with probability at least 1 − 1/d. A

union bound completes the proof.

A.2 Proof of Theorem 4.1

We now prove that with high probability, DJ-OMP succeeds to recover the support of θ with general sparsity level
K. The proof relies on the following lemma, which bounds the probability that, given a fixed input set s, the
center chooses an incorrect index at a single round of the algorithm.
Lemma A.6. Let s ⊂ [d] be a fixed set of indices given as input to a single round of DJ-OMP and denote by
jcenter (s) the index chosen by the center at the end of this round. Under Assumptions 4.1-4.3 and the max-MIP
condition (6), for sufficiently large d = d(ϵ), if s ⊂ S then the index jcenter (s) also belongs to the support set S
with high probability. Specifically,

Pr [jcenter (s) /∈ S] ≤ 2d−1. (43)
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First, let us show how Theorem 4.1 follows directly from Lemma A.6.

Proof of Theorem 4.1. Recall that DJ-OMP starts with S0 = ∅, adds exactly one new index to the estimated
support set at each round, and runs for exactly K rounds. We denote by S1, S2, . . . , SK the index sets found by
the center after t = 1, 2, . . . ,K distributed rounds of DJ-OMP, respectively.

Our goal is to upper bound the probability that SK , the output of DJ-OMP after K rounds, is not the true support
set S. To this end we decompose this failure probability according to the round at which the failure occurred,

Pr [SK ̸= S] =
K∑
t=1

∑
st−1⊂S

|st−1|=t−1

Pr [jt (st−1) /∈ S and St−1 = st−1] .

Directly analyzing each of the terms above is challenging due to the statistical dependency between the set of
indices found so far St−1, and the new index found in the current round. To overcome this, we use the inequality
Pr[A ∩B] ≤ Pr[A], which gives

Pr [SK ̸= S] ≤
K∑
t=1

∑
st−1⊂S

|st−1|=t−1

Pr [jt(st−1) /∈ S] .

Since now the set st−1 is fixed, we can bound each term via Lemma A.6. This gives

Pr [SK ̸= S] ≤ 2

d

K∑
t=1

(
K

t− 1

)
=

2

d

(
2K − 1

)
,

which completes the proof.

Next, we prove Lemma A.6. Since s ⊂ S, we need to bound the probability p
(m)
j of Eq. (32) for j ∈ S \ s and

for j /∈ S. We shall do so using the following two lemmas. The first one, Lemma A.7, lower bounds a different
quantity q(m) defined as the probability that the index sent by machine m belongs to the support S \ s,

q(m) = q(m)(s) = Pr
[
j(m) ∈ S \ s

]
. (44)

Lemma A.8 upper bounds p
(m)
j for each j /∈ S. Their proofs appear in Section A.5.

Lemma A.7. Assume that the max-MIP condition (6) holds. For each machine m, for sufficiently large d,

q(m) ≥ F
(
d,K, µmax, ρ

(m)
)
, (45)

where q(m) and F are defined in Eqs. (44) and (28) respectively.
Lemma A.8. Assume that ρ(m) of Eq. (24) satisfies ρ(m) ≤ 1 for each machine m and that the max-MIP
condition (6) holds. If ϵ satisfies Assumption 4.2, the SNR parameter r satisfies Assumption 4.3, and the
dimension d = d(ϵ) is sufficiently large, then for each machine m and each non-support index j /∈ S,

p
(m)
j ≤

F
(
d,K, µmax, ρ

(m)
)

11K
, (46)

where p
(m)
j and F are defined in Eqs. (32) and (28) respectively.

We now formally prove Lemma A.6 by combining the above lemmas.

Proof of Lemma A.6. As mentioned above, for simplicity, we prove the lemma assuming that the number of
machines is M = Mc (d,K, µmax, r), since a larger number of machines would only increase the probability of
exact support recovery. We first analyze the probability that event (26) occurs. Since s ⊂ S, the set of support
indices not yet found is S \ s. Let v(S \ s) =

∑
k∈S\s vk be the total number of votes received for all these
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support indices combined. By Lemma A.7, the expected number of votes is E [v(S \ s)] =
∑

m∈[M ] q
(m) ≥∑

m∈[M ] F
(
d,K, µmax, ρ

(m)
)
. By definition of tc in Eq. (30),

E [v(S \ s)] ≥ Mc (d,K, µmax, r)F (d,K, µmax, r)

4 log d
· tc.

By definition of Mc in Eq. (29),

E [v(S \ s)] ≥ K

⌈
8 log d

F (d,K, µmax, r)

⌉
F (d,K, µmax, r)

4 log d
· tc ≥ 2Ktc.

By an averaging argument, there exists a support index k ∈ S \ s for which E[vk] ≥ 1
|S\s|E [v(S \ s)] ≥ 2tc.

Thus, by Lemma A.2, the event (26) occurs with probability at least 1− 1/d.

Similarly to the proof of Theorem A.1, Lemmas A.3 and A.8 imply that the event (27) also occurs with probability
at least 1 − 1/d. The only change in the proof is that Mc now has a factor of K, which cancels with the 1/K
factor in Lemma A.8. A union bound completes the proof.

A.3 Proofs of Lemmas A.1, A.2 and A.3

We first prove Lemma A.1 and then use it to prove Lemmas A.2 and A.3.

Proof of Lemma A.1. By its definition in Eq. (28), the function F is monotonic increasing in its fourth argument.
Next, by Eq. (23), θ̃min ≤ θ̃

(m)
max, and thus r ≤ ρ(m) for each m ∈ [M ]. Hence,

1

M

∑
m∈[M ]

F (d,K, µmax, ρ
(m))

F (d,K, µmax, r)
≥ 1

Inserting this inequality into the definition of tc, in Eq. (30) concludes the proof.

In the proofs below we use the following Chernoff bounds.
Lemma A.9 (Chernoff (1952)). Suppose X1, . . . , Xd are independent Bernoulli random variables and let X
denote their sum. Then, for any ϕ ≥ 0,

Pr [X ≥ (1 + ϕ)E [X]] ≤ e−
ϕ2E[X]
2+ϕ , (47)

and for any 0 ≤ ϕ ≤ 1,
Pr [X ≤ (1− ϕ)E [X]] ≤ e−

ϕ2E[X]
2 . (48)

Next, we introduce a few notations. Denote the indicator that machine m sends index k by I
(m)
k = 1

{
j(m) = k

}
.

The number of votes that k receives is thus vk =
∑

m∈[M ] I
(m)
k . Further denote Ek = E[vk]. Recall that the

noises
{
ξ(m)

}
m∈[M ]

are independent. Hence, for a fixed s, the indicators
{
I
(m)
k

}
m∈[M ]

are independent of each
other. We now combine Lemmas A.9 and A.1 to prove Lemmas A.2 and A.3.

Proof of Lemma A.2. By the discussion above, we may apply the Chernoff bound (48) to the sum vk. Using the
assumption Ek ≥ 2tc and Lemma A.1, we obtain

Pr [vk < tc] ≤ Pr
[
vk < 1

2Ek

]
≤ exp (−Ek/8) ≤ exp (−tc/4) ≤ 1/d.

Proof of Lemma A.3. Fix j /∈ S and let ϕj = tc
Ej

− 1. The probability of interest is monotonically increasing in
Ej . Hence, it suffices to prove the lemma for Ej = tc/5. In this case ϕj = 4, and ϕj/(2 + ϕj) = 2/3. Applying
the Chernoff bound (47) to the sum vj , we obtain

Pr [vj > tc] = Pr [vj > (1 + ϕj)Ej ] ≤ exp

(
−

ϕ2
j

2 + ϕj
Ej

)
≤ exp

(
−8tc

15

)
.
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By Lemma A.1, the above probability is smaller than d−2, and by applying a union bound we conclude that

Pr

[
max
j ̸∈S

vj > tc

]
≤ (d−K) Pr [vj > tc] ≤ 1/d.

A.4 Proofs of Lemmas A.4 and A.5

We begin with a few definitions and notations. For a set of indices I, let u|I ∈ R|I| be the restriction of the vector
u to I. Similarly, for a matrix A ∈ Rn×d, let A|I ∈ Rn×|I| be the restriction of the matrix A to the columns
indexed by I. Further denote by A† the Moore-Penrose pseudo inverse of the matrix A, i.e., A† =

(
A⊤A

)−1
A⊤

and notice that A†A = I. Lastly, recall that X̃(m) ∈ Rn×d is the column-normalized matrix in machine m and
denote by P

(m)
I ∈ Rn×n an orthogonal projection onto the span of X̃(m)

|I , i.e.,

P
(m)
I = X̃

(m)
|I

(
X̃

(m)
|I

)†
. (49)

For simplicity of notation, in Sections A.4-A.6 we fix a machine m and thus omit the index m from the proofs.

In our proofs we shall use classical tail bounds for the Gaussian distribution (Lemma A.10), a technical lemma
regarding the Gaussian distribution, Lemma A.11, whose proof appears in Section A.6, and Lemma A.12, which
bounds the left tail probability of the maximum of correlated Gaussian random variables (Lopes and Yao, 2022).
Lemma A.10 (Gaussian tail bounds (Gordon, 1941)). For any t > 0,

t√
2π(t2 + 1)

e−t2/2 ≤ Φc(t) ≤ 1√
2πt

e−t2/2. (50)

Lemma A.11. For any a, b ≥ 0,
Φc (a+ b) <

√
2e−b2/2Φc (a) .

Lemma A.12 ((Lopes and Yao, 2022)). Let (Z1, . . . , Zd) ∼ N (0,Σ) where Σii = 1 for all i ∈ [d] and Σij ≤
η < 1 for some fixed η > 0 for all i ̸= j ∈ [d]. Fix ζ ∈ (0, 1). There is a constant C > 0 depending only on (η, ζ)
such that

Pr

[
max
i∈[d]

Zi < ζ
√
2(1− η) log d

]
≤ Cd−

(1−η)(1−ζ)2

η (log d)
1−η(2−ζ)−ζ

2η . (51)

To put Lemma A.12 in context, recall that the maximum of d independent Gaussians is sharply concentrated at√
2 log d. In general, for correlated Gaussian random variables, their maximum is lower. However, as the lemma

shows, it is unlikely to be much lower than
√
2(1− η) log d, where η is an upper bound on the correlation. We

use this result with η = µmax and ζ = 1− ϵ, where ϵ satisfies Assumption 4.2, in order to bound the probability
that a non-support index is sent to the center and prove Lemma A.5.

Since here we are considering the case K = 1, the support of θ is a single index S = {k}. In this case, omitting
the index of machine m, by Eq. (8) its response vector y = y(m) admits the following form

y = θ̃kx̃k + σξ. (52)

Recall that by its definition in Eq. (23), θ̃max = ∥xk∥ |θk| = |θ̃k|. By Eq. (24) for ρ and Eq. (7) for θcrit with
K = 1,

θ̃max =
σ
√
2ρ log d

1− µmax
. (53)

We now prove the lemmas.

Proof of Lemma A.4. Recall that pk, defined in Eq. (32), is the probability that the support index k is selected
by OMP_Step. This occurs if out of all columns of X̃(m), the k-th column has the highest correlation with the
response vector. Hence, to prove the lemma we need to lower bound the probability of the following event,

|⟨x̃k,y⟩| ≥ max
i/∈S

|⟨x̃i,y⟩| . (54)
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where y is given by (52). To this end, we decompose the noise ξ in Eq. (52) as the sum of two components, the
first ξ∥ = Pkξ = ⟨x̃k, ξ⟩ x̃k is parallel to x̃k, namely

〈
x̃k, ξ∥

〉
= ⟨x̃k, ξ⟩, and the second ξ⊥ = ξ−ξ∥ = (I−Pk) ξ,

is orthogonal to x̃k, i.e., ⟨x̃k, ξ⊥⟩ = 0.

Next, we use this decomposition to bound the two terms in (54). Combining the expression (52) for y, the
decomposition of ξ and the fact that θ̃max = |θ̃k|, the LHS of (54) can be bounded by

|⟨x̃k,y⟩| ≥ sign
(
θ̃k

)
⟨x̃k,y⟩ = sign

(
θ̃k

)(
θ̃k ⟨x̃k, x̃k⟩+ σ ⟨x̃k, ξ⟩

)
= θ̃max + σ sign

(
θ̃k

) 〈
x̃k, ξ∥

〉
. (55)

Similarly, the RHS of (54) can be bounded by

max
i/∈S

|⟨x̃i,y⟩| = max
i/∈S

∣∣∣θ̃k ⟨x̃i, x̃k⟩+ σ
〈
x̃i, ξ∥ + ξ⊥

〉∣∣∣
≤

(
θ̃max + σ |⟨x̃k, ξ⟩|

)
max
i/∈S

{|⟨x̃i, x̃k⟩|}+ σmax
i/∈S

|⟨x̃i, ξ⊥⟩|

≤
(
θ̃max + σ

∣∣〈x̃k, ξ∥
〉∣∣)µmax + σmax

i/∈S
|⟨x̃i, ξ⊥⟩| . (56)

where the second step follows from the triangle inequality and the definitions of θ̃max and ξ∥, and the last step
follows from the definition of µmax. Combining Eq. (55) with Eq. (56) implies that a sufficient condition for
(54) to hold is that

max
i/∈S

|⟨x̃i, ξ⊥⟩| ≤ sign
(
θ̃k

) 〈
x̃k, ξ∥

〉
− µmax

∣∣〈x̃k, ξ∥
〉∣∣+ θ̃max

σ
(1− µmax) .

By Eq. (53), the above event may be written as

max
i/∈S

|⟨x̃i, ξ⊥⟩| ≤ sign
(
θ̃k

) 〈
x̃k, ξ∥

〉
− µmax

∣∣〈x̃k, ξ∥
〉∣∣+√2ρ log d. (57)

A key property is that ξ∥ and ξ⊥ are independent random variables. Hence, the left-hand side and right-hand
side in the above inequality, which we denote by A and B, respectively, are also independent random variables.
Now, for any threshold T ∈ R, with A,B independent random variables,

Pr [A ≤ B] ≥ Pr [A ≤ T ∩B ≥ T ] = Pr [A ≤ T ] · Pr [B ≥ T ] . (58)

Thus,
pk ≥ Pr[A ≤ T ] · Pr]B ≥ T ] (59)

and it suffices to lower bound these two probabilities.

In what follows we consider T =
√
2 log d. We begin with bounding Pr

[
A ≤

√
2 log d

]
. Fix i /∈ S and consider

the quantity ⟨x̃i, ξ⊥⟩. We may write x̃i = Pkx̃i + (I − Pk)x̃i Since ξ⊥ = (I−Pk) ξ, then ⟨Pkx̃i, ξ⊥⟩ = 0, and
⟨x̃i, ξ⊥⟩ = ⟨(I−Pk) x̃i, ξ⊥⟩ . Normalizing the inner product by the norm of (I−Pk)x̃i yields a standard normal
random variable Zi =

⟨x̃i,ξ⊥⟩
∥(I−Pk)x̃i∥2

∼ N (0, 1). By the definition of µmax,

∥(I−Pk) x̃i∥2 = x̃T
i (I−Pk) x̃i = 1− ⟨x̃i, x̃k⟩2 ≥ γ2

1 ,

where γ1 =
√
1− µ2

max. Hence,

Pr [A ≤ T ] ≥ Pr

[
max
i/∈S

|Zi| ≤
T

γ1

]
.

Since {Zi}i/∈S are jointly Gaussian, by (Šidák, 1967, Thm. 1), regardless of their covariance structure,

Pr

[
max
i/∈S

|Zi| ≤
T

γ1

]
≥
∏
i/∈S

Pr

[
|Zi| ≤

T

γ1

]
.
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Applying the Gaussian tail bound (50) with T =
√
2 log d,

Pr

[
|Zi| ≤

√
2 log d

γ1

]
≥ 1− γ1√

π log d
d−1/γ2

1 .

Combining the above three inequalities with Bernoulli’s inequality (1−a)d ≥ 1−da which holds for any a ∈ [0, 1],
gives

Pr
[
A ≤

√
2 log d

]
≥
(
1− γ1√

π log d
d−1/γ2

1

)d−1

≥ 1− γ1√
π log d

d1−1/γ2
1 ≥ 1

2
, (60)

where the last inequality holds for sufficiently large d and follows from noting that 0 < γ1 ≤ 1.

We now bound Pr [B ≥ T ], where B is the RHS of (57). Since x̃k has unit norm, by the definition of ξ∥, then
Z =

〈
x̃k, ξ∥

〉
= ⟨x̃k, ξ⟩ ∼ N (0, 1). By the law of total probability,

Pr [B ≥ T ] = Pr
[
sign

(
θ̃k

) 〈
x̃k, ξ∥

〉
− µmax

∣∣〈x̃k, ξ∥
〉∣∣ ≥ T −

√
2ρ log d

]
≥ Pr

[
γ2 |Z| ≥ T −

√
2ρ log d | sign (Z) = sign

(
θ̃k

)]
· Pr

[
sign (Z) = sign

(
θ̃k

)]
,

where γ2 = 1 − µmax. Since Z is symmetric around zero, Pr
[
sign (Z) = sign

(
θ̃k

)]
= 1

2 and its magnitude is
independent on its sign. Thus, for T =

√
2 log d,

Pr
[
B ≥

√
2 log d

]
≥ 1

2
Pr
[
γ2 |Z| ≥

√
2 log d−

√
2ρ log d

]
≥ Φc

(
1−√

ρ

γ2

√
2 log d

)
. (61)

Inserting (60) and (61) with γ2 = 1−µmax into (59) and recalling the definition of F in (33) completes the proof
of Lemma A.4.

Proof of Lemma A.5. Fix a non-support index j /∈ S. Recall that pj , defined in Eq. (32), is the probability that
index j is selected by OMP_Step. This occurs if j has the highest correlation with the response vector, i.e.,

pj = Pr

[
|⟨x̃j ,y⟩| > max

i ̸=j
|⟨x̃i,y⟩|

]
. (62)

In particular, for the j-th index to be chosen, the correlation of the j-th column with the response vector must
exceed both that of the support column k, as well as that of any other non-support column i /∈ {k, j}. Indeed,
in what follows we separately upper bound

Pr

[
|⟨x̃j ,y⟩| > max

i/∈{k,j}
|⟨x̃i,y⟩|

]
(63)

and
Pr [|⟨x̃j ,y⟩| > |⟨x̃k,y⟩|] , (64)

and then use the following inequality to upper bound (62) by their minimum. Specifically, denote A = |⟨x̃j ,y⟩|,
B = maxi/∈{k,j} |⟨x̃i,y⟩| and C = |⟨x̃k,y⟩|, then

Pr [A > max {B,C}] ≤ min {Pr [A > B] ,Pr [A > C]} . (65)

For later use in both bounds, by the triangle inequality, the random variable A can be upper bounded as follows

|⟨x̃j ,y⟩| =
∣∣∣θ̃k ⟨x̃j , x̃k⟩+ σ ⟨x̃j , ξ⟩

∣∣∣ ≤ θ̃maxµmax + σ |⟨x̃j , ξ⟩| . (66)

We first bound (63). For each non-support index i /∈ S such that i ̸= j,

|⟨x̃i,y⟩| ≥ ⟨x̃i,y⟩ = θ̃k ⟨x̃i, x̃k⟩+ σ ⟨x̃i, ξ⟩ ≥ −θ̃maxµmax + σ ⟨x̃i, ξ⟩ .

Combining this with Eq. (66), rearranging terms, and recalling the relation between θmax and ρ in (53) yields

Pr

[
|⟨x̃j ,y⟩| > max

i/∈{k,j}
|⟨x̃i,y⟩|

]
≤ Pr

[
|⟨x̃j , ξ⟩|+ 2µmax

√
2ρ log d

1− µmax
> max

i/∈{k,j}
⟨x̃i, ξ⟩

]
. (67)
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Next, we use the following inequality which holds for any pair of random variables D,E and constant T ∈ R,

Pr [D > E] ≤ Pr [D ≥ T ] + Pr [E < T ] . (68)

Applying this inequality with T = (1− ϵ)
√
2 (1− µmax) log d and ϵ ∈ (0, 1) as in Eq. (35), we can upper bound

(67) by

Pr
[
|⟨x̃j , ξ⟩| ≥ a

√
2 log d

]
+ Pr

[
max

i/∈{k,j}
⟨x̃i, ξ⟩ < (1− ϵ)

√
2 (1− µmax) log d

]
,

where
a = (1− ϵ)

√
1− µmax −

2µmax
√
ρ

1− µmax
.

Since x̃j has unit norm, ⟨x̃j , ξ⟩ ∼ N (0, 1). Hence, the first term is bounded by

2Φc
(
a
√
2 log d

)
. (69)

We now bound the second term. It involves the maximum of d−2 correlated Gaussians, whose covariance matrix
Σ has Σii = 1 for all i, and Σij = Cov (⟨x̃i, ξ⟩ , ⟨x̃l, ξ⟩) = ⟨x̃i, x̃l⟩ ≤ µmax. Hence, we can apply Lemma A.12
with η = µmax and ζ = 1− ϵ, which gives the following bound

C (d− 2)
− 1−µmax

µmax
ϵ2
(log(d− 2))

ϵ−µmax(1+ϵ)
2µmax . (70)

We now show that (69) is larger than (70), and thus

Pr

[
|⟨x̃j ,y⟩| > max

i/∈{k,j}
|⟨x̃i,y⟩|

]
≤ 4Φc

(
a
√
2 log d

)
. (71)

First note that if ρ is sufficiently large such that a ≤ 0, then (69) is larger than 1, and thus larger than (70).
Otherwise, a > 0 and using the lower bound for the Gaussian tail of (50), we may lower bound (69) by d−a2−o(1),
where o(1) hides factors that are asymptotically smaller than 1. The term (70) can be upper bounded by
d−b2+o(1), where b =

√
1−µmax

µmax
ϵ. Next, let us show that for a fixed ϵ > 0, b−a is positive and bounded away from

0. This, in turn, implies that for sufficiently large d = d (ϵ), (69) is larger than (70). Indeed, under condition
(35), ϵ =

√
µmax

1+
√
µmax

+ ϵ0 for some ϵ0 > 0. Thus, b − a = ϵ0
√
1− µmax

(
1 + 1√

µmax

)
+

2µmax
√
ρ

1−µmax
, which is a sum of

positive terms and hence bounded away from 0 as desired. Therefore, condition (35) implies that (63) can be
bounded by (71).

We now bound (64). For the support index k, by (52),

|⟨x̃k,y⟩| ≥ sign
(
θ̃k

)
⟨x̃k,y⟩ = sign

(
θ̃k

)(
θ̃k ⟨x̃k, x̃k⟩+ σ ⟨x̃k, ξ⟩

)
= θ̃max + σ sign

(
θ̃k

)
⟨x̃k, ξ⟩ .

Combining this with (66) and plugging θ̃max in Eq. (53), the probability (64) is upper bounded by

Pr
[
|⟨x̃j , ξ⟩| − sign

(
θ̃k

)
⟨x̃k, ξ⟩ >

√
2ρ log d

]
. (72)

We now upper bound this probability. Let H = ⟨x̃j , ξ⟩, G = sign
(
θ̃k

)
⟨x̃k, ξ⟩ and c =

√
2ρ log d.

For any pair of random variables G,H and constant c,

Pr [|H| −G > c] ≤ Pr [H −G > c] + Pr [−H −G > c] . (73)

By their definition, H,G are jointly Gaussian with mean zero and covariance matrix(
σ2
H σHG

σHG σ2
G

)
.
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Hence, H−G ∼ N (0, σ2
H +σ2

G−2σHG) and −H−G ∼ N (0, σ2
H +σ2

G+2σHG). Similarly to the above discussion,
the diagonal entries σ2

H = σ2
G = 1 and the off-diagonal entry σHG = sign

(
θ̃k

)
⟨x̃k, x̃j⟩. Since |σHG| ≤ µmax,

then by (73),

Pr [|H| −G > c] ≤ Φc

(
c√

2− 2σHG

)
+Φc

(
c√

2 + 2σHG

)
≤ 2Φc

(
c√

2 + 2µmax

)
.

Inserting c =
√
2ρ log d yields

Pr [|⟨x̃j ,y⟩| > |⟨x̃k,y⟩|] ≤ 2Φc

(√
2ρ log d

2 + 2µmax

)
. (74)

By Eq. (65), the probability (62) is at most the minimum between (71) and (74). By the monotonicity of the
Gaussian CDF, it is upper bounded by

4Φc

(
max

{(
(1− ϵ)

√
1− µmax −

2µmax
√
ρ

1− µmax

)
,

√
ρ

2 + 2µmax

}√
2 log d

)
. (75)

Finally, to prove (42) of the lemma, we note that with Q1 and Q2 defined in Eqs. (37) and (38) respectively, by
splitting to cases and applying some algebraic manipulations3, condition (39) implies that

1−
√
r

1− µmax
+
√

Q0 < max

{(
(1− ϵ)

√
1− µmax −

2µmax
√
r

1− µmax

)
,

√
r

2 + 2µmax

}
. (76)

The definitions of r and ρ in Eqs. (10) and (24) imply that ρ ≥ r. Thus, ρ satisfies condition (39) and hence
condition (76). The RHS of (76) is the same as the maximum in (75) above. Thus, (75) is upper bounded by

4Φc

((
1−√

ρ

1− µmax
+
√
Q0

)√
2 log d

)
. (77)

Since ρ ≤ 1, we can apply Lemma A.11. Hence, by the definition of Q0 in Eq. (36), and by the definition of F
in Eq. (33),

pj ≤ 4Φc

((
1−√

ρ

1− µmax
+
√
Q0

)√
2 log d

)
≤ 4

√
2d−Q0Φc

(
1−√

ρ

1− µmax

√
2 log d

)
= 4

√
2

1

88
√
2
Φc

(
1−√

ρ

1− µmax

√
2 log d

)
=

F (d, 1, µmax, ρ)

11
,

which completes the proof of Lemma A.5.

A.5 Proof of Lemmas A.7 and A.8

We first make a few definitions and present a useful technical lemma. We begin by rewriting the residual r(m)

using the notations introduced in Section A.4. Recall that given an input support set s, each machine m estimates
its vector θ̂(m) by solving the least squares problem (20). Thus, supp

(
θ̂(m)

)
= s and

θ̂
(m)
|s =

(
X

(m)
|s

)†
y(m).

3First, consider the case µmax ≥ 1/2. By the max-MIP condition (6), µmax < 1, and hence the term 1−µmax+
√
2+2µmax

(1−µmax)
√
2+2µmax

is positive, and thus can multiply both sides of the inequality
√
r > Q2 without altering its direction. Rearranging yields

that the LHS of (76) is smaller than
√

r
2+2µmax

and thus smaller than the RHS of (76). Now consider the case µmax < 1/2.

By (39),
√
r > Q1 or

√
r > Q2. By the same reasoning, the latter implies that the LHS of (76) is smaller than

√
r

2+2µmax
.

Similarly, the term 1−2µmax
1−µmax

is positive in this case, and thus multiplying the inequality
√
r > Q1 by it and rearranging the

terms implies that the LHS of (76) is smaller than (1 − ϵ)
√
1− µmax − 2µmax

√
r

1−µmax
. Finally, the logical or relation between

these conditions implies that the LHS of (76) is smaller than the maximum between the aforementioned terms.
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Denote by ξ̃(m) the projection of the noise ξ(m) to the subspace orthogonal to the span of the columns of X(m)
|s ,

i.e., ξ̃(m) =
(
I−P

(m)
s

)
ξ(m). Given that s ⊂ S, the residual r(m) defined in Eq. (21) can be written in the

following form

r(m) = y(m) −X(m)θ̂(m) = y(m) −X
(m)
|s θ̂

(m)
|s =

(
I−X

(m)
|s

(
X

(m)
|s

)†)
y(m)

=
(
I−P(m)

s

)
y(m) =

(
I−P(m)

s

)(
X̃(m)θ̃(m) + σξ(m)

)
=

(
I−P(m)

s

) ∑
l∈S\s

θ̃
(m)
l x̃

(m)
l + σξ̃(m), (78)

where X̃(m) and θ̃(m) are the scaled versions of X(m) and θ, as discussed after Eq. (8), and the last equality
follows from the definition of P(m)

s as a projection operator, so that
(
I−P

(m)
s

)
x̃
(m)
k = 0 for any k ∈ s.

Denote by Kd the size of the detected support set, i.e., Kd = |s|, and by Ku the size of the undetected support
set, i.e., Ku = |S \ s|. Since s ⊂ S, then Kd +Ku = K. Finally, we introduce the following quantity

µs = µs (Kd, µmax) =
Kdµ

2
max

1− (Kd − 1)µmax
. (79)

The following Lemma A.13 bounds the effect of the projection I − P
(m)
s on the inner products and norms of

columns of X̃(m). Its proof appear in Appendix A.6.
Lemma A.13. Assume that the max-MIP condition (6) holds and that s ⊂ S. Then, the following inequalities
hold for any 0 ≤ Kd ≤ K − 1 and 1 ≤ Ku ≤ K such that Kd +Ku = K:

1. The quantity µs of Eq. (79) satisfies
µs ≤ µmax, (80)

and
Ku (µmax + µs) < Kµmax. (81)

2. For each index i /∈ s,
1− µs ≤

∥∥∥(I−P(m)
s

)
x̃
(m)
i

∥∥∥2
2
≤ 1. (82)

3. For each pair of distinct indices i ̸= k such that i, k /∈ s,∣∣∣〈x̃(m)
k ,

(
I−P(m)

s

)
x̃
(m)
i

〉∣∣∣ ≤ µmax + µs, (83)

and ∥∥∥(I−P(m)
s

)(
I−P

(m)
k

)
x̃
(m)
i

∥∥∥2
2
≥ 1− µ2

max − µs (1 + µmax)
2
. (84)

Furthermore, 1− µ2
max − µs (1 + µmax)

2
> 0.

For future use, notice that by its definition in Eq. (79), µs is an increasing function of Kd. Since Kd ≤ K − 1,
then the quantity δ of Eq. (12) satisfies

δ (K,µmax) = µs (K − 1, µmax) ≥ µs (Kd, µmax) . (85)

In addition, by Eq. (80), under max-MIP condition (6), δ ≤ µmax < 1, and hence the quantities in Section 4 are
well defined.

For simplicity of notation, from now on we omit the dependence on the machine index m. Given the current
estimated support set s, recall the definition of θ̃max in Eq. (23) and let k ∈ S \ s be an index for which

∥x̃k∥ · |θk| = θ̃max (86)
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(chosen arbitrarily in case of ties). By Eq. (24) for ρ and Eq. (7) for θcrit,

θ̃max =
σ
√
2ρ log d

1− (2K − 1)µmax
. (87)

We now prove Lemmas A.7 and A.8.

Proof of Lemma A.7. Recall that q, defined in Eq. (44), is the probability that some support index is selected by
OMP_Step. A sufficient condition for this to occur is that the index k defined in Eq. (86) has a higher correlation
with the current residual than any non-support index j /∈ S. Thus, q is lower bounded by the probability of the
following event

|⟨x̃k, r⟩| ≥ max
i/∈S

|⟨x̃i, r⟩| . (88)

Thus, to prove the lemma it suffices to lower bound the probability of event (88). Similarly to the proof of Lemma
A.4, we decompose the noise ξ̃ in Eq. (78) as the sum of two components, the first ξ̃∥ = Pkξ̃ =

〈
x̃k, ξ̃

〉
x̃k is

parallel to x̃k, namely
〈
x̃k, ξ̃∥

〉
=
〈
x̃k, ξ̃

〉
, and the second ξ̃⊥ = ξ̃ − ξ̃∥ = (I−Pk) ξ̃, is orthogonal to x̃k, i.e.,〈

x̃k, ξ̃⊥

〉
= 0.

Next, we use this decomposition to bound each of the terms in (88). By Eq. (78), for any index i,

⟨x̃i, r⟩ =
∑
l∈S\s

θ̃l ⟨x̃i, (I−Ps) x̃l⟩+ σ
〈
x̃i, ξ̃

〉
.

For the index k, ∥(I−Ps) x̃k∥22 = ⟨x̃k, (I−Ps) x̃k⟩ ≥ 1 − µs by Eq. (82). For any other undetected support
index l ∈ S \ {s ∪ k}, |⟨x̃k, (I−Ps) x̃l⟩| ≤ µmax + µs by (83) and

∣∣∣θ̃l∣∣∣ ≤ θ̃max by its definition in Eq. (23).
Combining these bounds with the definition of ξ̃∥ implies that the LHS of (88) can be bounded by

|⟨x̃k, r⟩| ≥ sign
(
θ̃k

)
⟨x̃k, r⟩

≥ θ̃max

⟨x̃k, (I−Ps) x̃k⟩ −
∑

l∈S\(s∪{k})

|⟨x̃k, (I−Ps) x̃l⟩|

+ sign
(
θ̃k

)
σ
〈
x̃k, ξ̃

〉
≥ θ̃max (1− µs − (Ku − 1) (µmax + µs)) + σ sign

(
θ̃k

)〈
x̃k, ξ̃∥

〉
. (89)

The RHS of (88) can be bounded by

max
i/∈S

|⟨x̃i, r⟩| = max
i/∈S

∣∣∣∣∣∣
∑
l∈S\s

θ̃l ⟨x̃i, (I−Ps) x̃l⟩+ σ
〈
x̃i, ξ̃⊥ + ξ̃∥

〉∣∣∣∣∣∣
≤ θ̃max max

i/∈S

∑
l∈S\s

|⟨x̃i, (I−Ps) x̃l⟩|+ σmax
i/∈S

∣∣∣〈x̃i, ξ̃⊥

〉∣∣∣+ σ
∣∣∣〈x̃k, ξ̃

〉∣∣∣max
i/∈S

|⟨x̃i, x̃k⟩|

≤ Kuθ̃max (µmax + µs) + σmax
i/∈S

∣∣∣〈x̃i, ξ̃⊥

〉∣∣∣+ σµmax

∣∣∣〈x̃k, ξ̃∥

〉∣∣∣ . (90)

where the first step follows from Eq. (78) and the definitions of ξ̃⊥ and ξ̃∥, the second step follows from the
triangle inequality and the definitions of ξ̃∥ and θ̃max, and the last inequality follows from Eq. (83) and the
definitions of µmax in Eq. (5). Combining Eq. (89) with Eq. (90) implies that a sufficient condition for (88) to
occur is

max
i/∈S

∣∣∣〈x̃i, ξ̃⊥

〉∣∣∣ ≤ sign
(
θ̃k

)〈
x̃k, ξ̃∥

〉
− µmax

∣∣∣〈x̃k, ξ̃∥

〉∣∣∣+ θ̃max (1− 2Ku (µmax + µs) + µmax)

σ
.

By Eq. (87) and by the inequality (81), a sufficient condition for the previous event to occur is

max
i/∈S

∣∣∣〈x̃i, ξ̃⊥

〉∣∣∣ ≤ sign
(
θ̃k

)〈
x̃k, ξ̃∥

〉
− µmax

∣∣∣〈x̃k, ξ̃∥

〉∣∣∣+√2ρ log d. (91)
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As in the proof of Lemma A.4, denote the LHS of (91) by A, its RHS by B and let T =
√
2 log d. By Eq. (58),

it suffices to bound the probabilities of A ≤ T and B ≥ T .

We begin with bounding Pr [A ≤ T ]. Fix i /∈ S. By definition ξ̃⊥ = (I−Pk) ξ̃ = (I−Pk) (I−Ps) ξ. By
the symmetry of projections,

〈
x̃i, ξ̃⊥

〉
= ⟨x̃i, (I−Pk) (I−Ps) ξ⟩ = ⟨(I−Ps) (I−Pk) x̃i, ξ⟩ . Normalizing the

inner product results in a standard normal random variable Zi =
⟨x̃i,ξ̃⊥⟩

∥(I−Ps)(I−Pk)x̃i∥2
∼ N (0, 1). By Eq. (84),

∥(I−Ps) (I−Pk) x̃i∥2 ≥ γ1, where γ1 =

√
1− µ2

max − µs (1 + µmax)
2. As in the proof of Lemma A.4, it follows

that
Pr [A ≤ T ] ≥ 1− γ1√

π log d
d
− 1

γ2
1
+1

≥ 1

2
, (92)

where the last inequality holds for sufficiently large d and follows from noting that γ1 ≤ 1 by the max-MIP
condition (6).

We now bound Pr [B ≥ T ], where B is the RHS of Eq. (91). By definition of ξ̃∥, the inner product
〈
x̃k, ξ̃∥

〉
=〈

x̃k, ξ̃
〉
= ⟨x̃k, (I−Ps) ξ⟩. This random variable is equal in distribution to a Gaussian random variable Z ∼

N
(
0, ∥(I−Ps) x̃k∥22

)
. By Eq. (82), ∥(I−Ps) x̃k∥2 ≥

√
1− µs. As in the proof of Lemma A.4,

Pr [B ≥ T ] ≥ Φc

(
1−√

ρ

γ2

√
2 log d

)
, (93)

where γ2 =
√
1− µs (1− µmax). Recall the definition of δ in Eq. (12). By Eq. (85), γ2 ≥

√
1− δ(1 − µmax).

Combining this with the bounds (92) and (93) completes the proof of Lemma A.7.

Proof of Lemma A.8. Fix a non-support index j /∈ S. Recall that pj , defined in Eq. (32), is the probability that
index j is selected by OMP_Step. This occurs if j has the highest correlation with the current residual, i.e.,

pj = Pr

[
|⟨x̃j , r⟩| ≥ max

i∈[d]\s
|⟨x̃i, r⟩|

]
.

Clearly, by taking the maximum over a subset of the indices A ⊆ [d] \ s that includes j, the probability can only
be higher. Namely,

pj ≥ Pr

[
|⟨x̃j , r⟩| ≥ max

i∈A
|⟨x̃i, r⟩|

]
. (94)

Here we take A as the set of all non-support indices plus the index k, i.e., A = ([d] \ S)∪{k}, where k is defined
in Eq. (86). Next, we separately upper bound

Pr

[
|⟨x̃j , r⟩| > max

i/∈S∪{j}
|⟨x̃i, r⟩|

]
(95)

and
Pr [|⟨x̃j , r⟩| > |⟨x̃k, r⟩|] (96)

and then upper bound pj using (65) with A = |⟨x̃j , r⟩|, B = maxi/∈(S∪{j)} |⟨x̃i, r⟩|, and C = |⟨x̃k, r⟩|.

For later use in both bounds, the random variable A can be upper bounded as follows

|⟨x̃j , r⟩| =

∣∣∣∣∣∣
∑
l∈S\s

θ̃l ⟨x̃j , (I−Ps) x̃l⟩+ σ
〈
x̃j , ξ̃

〉∣∣∣∣∣∣
≤ θ̃max

∑
l∈S\s

|⟨x̃j , (I−Ps) x̃l⟩|+ σ
∣∣∣〈x̃j , ξ̃

〉∣∣∣ ≤ θ̃maxKu (µmax + µs) + σ
∣∣∣〈x̃j , ξ̃

〉∣∣∣ , (97)

where the first equality follows from Eq. (78), the next inequality follows from the triangle inequality and the
definition of θ̃max in Eq. (23), and the last inequality follow from (83). We now begin with event (95). By Eqs.
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(83) and (81), for each non-support index i /∈ S such that i ̸= j,

|⟨x̃i, r⟩| ≥ ⟨x̃i, r⟩ =
∑
l∈S\s

θ̃l ⟨x̃i, (I−Ps) x̃l⟩+ σ
〈
x̃i, ξ̃

〉
≥ −θ̃maxKu (µmax + µs) + σ

〈
x̃i, ξ̃

〉
.

Combining the above bound with Eq. (97), rearranging the terms, recalling the relation between θ̃max and ρ in
(87) and applying inequality (81) yields

Pr

[
|⟨x̃j , r⟩| > max

i/∈S∪{j}
|⟨x̃i, r⟩|

]
≤ Pr

[∣∣∣〈x̃j , ξ̃
〉∣∣∣+ 2Kµmax

√
2ρ log d

1− (2K − 1)µmax
> max

i/∈S∪{j}

〈
x̃i, ξ̃

〉]
. (98)

As in the proof of Lemma A.5, applying (68) with T = (1 − ϵ)
√

2 (1− µmax) log d and ϵ ∈ (0, 1) as in (15), we
can upper bound (98) by

Pr
[∣∣∣⟨x̃j , ξ̃⟩

∣∣∣ ≥ a
√
2 log d

]
+ Pr

[
max

i/∈S∪{j}
⟨x̃i, ξ̃⟩ < (1− ϵ)

√
2 (1− µmax) log d

]
, (99)

where
a = (1− ϵ)

√
1− µmax −

2Kµmax
√
ρ

1− (2K − 1)µmax
.

By the symmetry of projection matrices, ⟨x̃j , ξ̃⟩ = ⟨(I−Ps) x̃j , ξ⟩. By Eq. (82), the norm ∥(I−Ps) x̃j∥2 ≤ 1
and thus the first term in (99) is bounded by

2Φc
(
a
√
2 log d

)
. (100)

We now bound the second term in (99) using Lemma A.12 with Zi =
〈

(I−Ps)x̃i

∥(I−Ps)x̃i∥2
, ξ
〉

. Towards this goal, notice
that by Eq. (82), ∥(I−Ps) x̃i∥2 ≥

√
1− µs. Thus, the second term in (99) is upper bounded by

Pr

[
max

i/∈S∪{j}
Zi <

(1− ϵ)
√

2 (1− µmax) log d√
1− µs

]
. (101)

Furthermore, by Eqs. (82) and (83), for each i, l /∈ S ∪ {j} such that i ̸= l, E [ZiZl] ≤ µmax+µs

1−µs
. Thus, we can

apply Lemma A.12 with η = µmax+µs

1−µs
and ζ = 1− ϵ to obtain that (101) is bounded by

C (d−K − 1)
− 1−µmax

µmax+µs
ϵ2
log(

1−µmax
µmax+µs

ϵ−1)/2 (d−K − 1) . (102)

Similarly to the proof of Lemma A.5, under condition (15) on ϵ and for sufficiently large d = d(ϵ), (100) is larger
than (102), and thus

Pr

[
|⟨x̃j , r⟩| > max

i/∈S∪{j}
|⟨x̃i, r⟩|

]
≤ 4Φc

(
a
√

2 log d
)
. (103)

We now turn to bounding (96). For the support index k, similarly to (89),

|⟨x̃k, r⟩| ≥ sign
(
θ̃k

)
⟨x̃k, r⟩ ≥ θ̃max (1− µs)− θ̃max(Ku − 1) (µmax + µs) + σ sign

(
θ̃k

)〈
x̃k, ξ̃

〉
.

Combining the bound above with Eq. (97), recalling the relation between θ̃max and ρ in (87) and applying the
inequality (81) yields

Pr [|⟨x̃j , r⟩| > |⟨x̃k, r⟩|] ≤ Pr
[∣∣∣〈x̃j , ξ̃

〉∣∣∣− sign
(
θ̃k

)〈
x̃k, ξ̃

〉
>
√

2ρ log d
]
.
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We now upper bound this probability. Let H =
〈
x̃j , ξ̃

〉
= ⟨(I−Ps) x̃j , ξ⟩ and G = sign

(
θ̃k

)〈
x̃k, ξ̃

〉
=

sign
(
θ̃k

)
⟨(I−Ps) x̃k, ξ⟩. Notice that by Eqs. (82), (83), and (80), σ2

H , σ2
G ≤ 1. Combining Eqs. (12) and (85)

implies that µs ≤ δ. Hence, |σHG| ≤ µmax + µs ≤ µmax + δ. Thus, as in the proof of Lemma A.5,

Pr [|H| −G > c] ≤ 2Φc

(√
2ρ log d

2 + 2 (µmax + δ)

)
. (104)

By Eq. (65), the probability (94) is at most the minimum between (103) and (104). By the monotonicity of the
Gaussian CDF, (94) is upper bounded by

4Φc

(
max

{√
ρ

2 + 2 (µmax + δ)
,

(
(1− ϵ)

√
1− µmax −

2Kµmax
√
ρ

1− (2K − 1)µmax

)}√
2 log d

)
. (105)

Similarly to the proof of Lemma A.5, inserting the definitions of Q1 and Q2 in Eqs. (17) and (18) respectively,
into Eq. (19) and rearranging various terms yields

1−
√
r√

1− δ (1− µmax)
+
√
Q0 < max

{√
r

2 + 2 (µmax + δ)
,

(
(1− ϵ)

√
1− µmax −

2Kµmax
√
r

1− (2K − 1)µmax

)}
. (106)

The definitions of r and ρ in Eqs. (10) and (24) imply that ρ ≥ r. Thus, ρ satisfies Eq. (19) and hence Eq. (106).
The RHS of Eq. (106) is the same as the maximum in Eq. (105) above. Thus, Eq. (105) is upper bounded by

4Φc

((
1−√

ρ
√
1− δ (1− µmax)

+
√
Q0

)√
2 log d

)
. (107)

By the assumption ρ ≤ 1, we can apply Lemma A.11. Hence, by the definition of Q0 in Eq. (16), and by the
definition of F in Eq. (28),

pj ≤ 4Φc

((
1−√

ρ
√
1− δ (1− µmax)

+
√
Q0

)√
2 log d

)
≤ 4

√
2d−Q0Φc

(
1−√

ρ
√
1− δ (1− µmax)

√
2 log d

)
= 4

√
2

1

88
√
2K

Φc

(
1−√

ρ
√
1− δ (1− µmax)

√
2 log d

)
=

F (d,K, µmax, ρ)

11K
,

which completes the proof of Lemma A.8.

A.6 Proofs of technical lemmas

Proof of Lemma A.11. Classical results by Birnbaum (1942) and Komatu (1955) are that for all x ≥ 0, the
following inequalities hold

2e−x2/2

√
2π
(√

x2 + 4 + x
) < Φc (x) <

2e−x2/2

√
2π
(√

x2 + 2 + x
) . (108)

Hence,

Φc (a+ b) <
2e−(a+b)2/2

√
2π
(√

(a+ b)2 + 2 + a+ b
) ,

and

Φc (a) >
2e−a2/2

√
2π
(√

a2 + 4 + a
) .

Combining the two yields the following

Φc (a+ b) <

(√
a2 + 4 + a

)
e−ab(√

(a+ b)2 + 2 + a+ b
)e−b2/2Φc (a) .

Notice that for any a ≥ 0, the fraction in the above display is a decreasing function of b. Since b ≥ 0, it suffices
to note that (

√
a2+4+a)

(
√
a2+2+a)

≤
√
2 for any a ≥ 0.
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Towards proving Lemma A.13, we prove the following Lemma A.14, which bounds the inner product between
vectors projected to the subspace orthogonal to X̃|s under the assumption s ⊂ S.
Lemma A.14. Let s ⊂ S and denote Kd = |s|. Assume that (Kd − 1)µmax < 1. Then, for any pair of vectors
a1,a2 ∈ Rn

⟨a1,a2⟩ −

∣∣∣∑j∈s ⟨x̃j ,a1⟩ ⟨x̃j ,a2⟩
∣∣∣

1− (Kd − 1)µmax
≤ ⟨a1, (I−Ps)a2⟩ ≤ ⟨a1,a2⟩+

∣∣∣∑j∈s ⟨x̃j ,a1⟩ ⟨x̃j ,a2⟩
∣∣∣

1− (Kd − 1)µmax
. (109)

If in addition a1 = a2 = a, then

∥a∥22 −
∑

j∈s ⟨x̃j ,a⟩2

1− (Kd − 1)µmax
≤ ∥(I−Ps)a∥22 ≤ ∥a∥22 −

∑
j∈s ⟨x̃j ,a⟩2

1 + (Kd − 1)µmax
. (110)

Proof of Lemma A.14. First, if s = ∅ then clearly ⟨a1, (I−Ps)a2⟩ = ⟨a1,a2⟩ and both (109) and (110) trivially
hold. Therefore, assume that Kd ≥ 1. In this case

⟨a1, (I−Ps)a2⟩ = ⟨a1,a2⟩ − ⟨a1,Psa2⟩ . (111)

By definition of Ps in Eq. (49),

⟨a1,Psa2⟩ =
〈
a1, X̃|s

(
X̃T

|sX̃|s

)−1

X̃T
|sa2

〉
=

〈
X̃T

|sa1,
(
X̃T

|sX̃|s

)−1

X̃T
|sa2

〉
. (112)

We now bound this term in absolute value. For a matrix A ∈ Rn×n, denote by λmin (A) and λmax (A) its minimal
and maximal eigenvalues, respectively. Consider A = X̃T

|sX̃|s. Each of its entries Ai,j is an inner product ⟨x̃i, x̃j⟩
where i, j ∈ s. Hence, all of its diagonal entries are 1 and all of its off-diagonal entries are bounded in absolute
value by µmax. By the Gershgorin circle theorem, the eigenvalues of A lie in the interval 1± (Kd−1)µmax. Since
(Kd − 1)µmax < 1, all eigenvalues are strictly positive. Thus A is invertible, and the eigenvalues of A−1 satisfy

1

1 + (Kd − 1)µmax
≤ λmin

(
A−1

)
≤ λmax

(
A−1

)
≤ 1

1− (Kd − 1)µmax
. (113)

Since the eigenvalues of A−1 are strictly positive, for any pair of vectors u,v ∈ Rn,

λmin

(
A−1

)
|⟨u,v⟩| ≤

∣∣〈u,A−1v
〉∣∣ ≤ λmax

(
A−1

)
|⟨u,v⟩| .

Inserting u = X̃T
|sa1, v = X̃T

|sa2 and Eq. (112) yields

λmin

(
A−1

) ∣∣∣〈X̃T
|sa1, X̃

T
|sa2

〉∣∣∣ ≤ |⟨a1,Psa2⟩| ≤ λmax

(
A−1

) ∣∣∣〈X̃T
|sa1, X̃

T
|sa2

〉∣∣∣ .
Combining the bounds in Eq. (113) with the decomposition X̃|sX̃

T
|s =

∑
j∈s x̃j x̃

T
j gives∣∣∣∑j∈s ⟨x̃j ,a1⟩ ⟨x̃j ,a2⟩

∣∣∣
1 + (Kd − 1)µmax

≤ |⟨a1,Psa2⟩| ≤

∣∣∣∑j∈s ⟨x̃j ,a1⟩ ⟨x̃j ,a2⟩
∣∣∣

1− (Kd − 1)µmax
. (114)

When a1 ̸= a2, the term ⟨a1,Psa2⟩ can have an arbitrary sign. Thus, inserting the upper bound into Eq. (111)
proves the inequality (109).

We now prove the inequality (110). Let a1 = a2 = a. Since each of the terms in the two sums in Eq. (114) is
positive, we may remove the absolute values, i.e.,∑

j∈s ⟨x̃j ,a⟩2

1 + (Kd − 1)µmax
≤ ⟨a,Psa⟩ ≤

∑
j∈s ⟨x̃j ,a⟩2

1− (Kd − 1)µmax
. (115)

Recall that since (I−Ps) is a projection matrix, it is symmetric and idempotent. Thus,

(I−Ps)
T
(I−Ps) = (I−Ps) (I−Ps) = (I−Ps) . (116)

Hence,
∥(I−Ps)a∥22 = ⟨a, (I−Ps)a⟩ = ∥a∥2 − ⟨a,Psa⟩ .

Inserting inequality (115) completes the proof of (110) and of Lemma A.14.
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Proof of Lemma A.13. We begin with proving inequalities (80) and (81). By the max-MIP condition (6), 1 −
(2K − 1)µmax > 0. Rearranging implies that

1− (K − 2)µmax > (K + 1)µmax.

Combining this with the bound on µs in (85) gives

µs ≤
K − 1

K + 1
µmax ≤ µmax,

which proves (80). The max-MIP condition (6) implies that 1 − (K − 1)µmax > 0. Using Kd + Ku = K and
rearranging yields Kuµmax

1−(Kd−1)µmax
< 1. Combining the definition of µs in (79) with this bound implies that

Kuµs = Kd
Kuµ

2
max

1− (Kd − 1)µmax
< Kdµmax.

Hence,
Kµmax = Kuµmax +Kdµmax > Kuµmax +Kuµs,

which proves (81).

We now prove the remaining inequalities using Lemma A.14, beginning with (82). Since Ps is a projection
matrix, for any index i /∈ s,

∥(I−Ps) x̃i∥22 ≤ ∥x̃i∥22 = 1.

Recall that for any distinct pair of indices i ̸= j, it holds that 0 ≤ ⟨x̃j , x̃i⟩2 ≤ µ2
max. By Eq. (110) with a = x̃i,

∥(I−Ps) x̃i∥22 ≥ 1−
∑

j∈s ⟨x̃j , x̃i⟩2

1− (Kd − 1)µmax
≥ 1− Kdµ

2
max

1− (Kd − 1)µmax
= 1− µs,

which concludes the proof of (82).

Next, we prove inequality (83). By the right inequality in (109) with a1 = x̃k and a2 = x̃i,

⟨x̃k, (I−Ps) x̃i⟩ ≤ ⟨x̃k, x̃i⟩+

∣∣∣∑j∈s ⟨x̃j , x̃k⟩ ⟨x̃j , x̃i⟩
∣∣∣

1− (Kd − 1)µmax
.

Thus, by the triangle inequality and by the definitions of µmax and µs in Eqs. (5) and (79) respectively,

|⟨x̃k, (I−Ps) x̃i⟩| ≤ |⟨x̃k, x̃i⟩|+

∣∣∣∑j∈s ⟨x̃j , x̃k⟩ ⟨x̃j , x̃i⟩
∣∣∣

1− (Kd − 1)µmax

≤ µmax +
Kdµ

2
max

1− (Kd − 1)µmax
= µmax + µs.

Finally, we prove inequality (84). Recall that by the max-MIP condition (6), µmax < 1
K−1 . For any distinct pair

of indices i ̸= k such that i, k /∈ s, Eq. (110) with a = (I−Pk) x̃i gives

∥(I−Ps) (I−Pk) x̃i∥22 ≥ ∥(I−Pk) x̃i∥22 −
∑

j∈s ⟨x̃j , (I−Pk) x̃i⟩2

1− (Kd − 1)µmax

= 1− ⟨x̃k, x̃i⟩2 −
∑

j∈s (⟨x̃j , x̃i⟩ − ⟨x̃k, x̃i⟩ ⟨x̃j , x̃k⟩)2

1− (Kd − 1)µmax

≥ 1− µ2
max −

Kd

(
µmax + µ2

max

)2
1− (Kd − 1)µmax

= 1− µ2
max − µs(1 + µmax)

2,

which concludes the proof of Eq. (84). It remains to prove that

1− µ2
max − µs(1 + µmax)

2 > 0.
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First, let K = 1. This implies that s = ∅ and thus

∥(I−Ps) (I−Pk) x̃i∥2 = ∥(I−Pk) x̃i∥2 ≥ 1− µ2
max,

which is positive by the max-MIP condition (6). Now let K > 1. By the max-MIP condition (6), µmax < 1 and
Kdµmax

1−(Kd−1)µmax
< 1. Thus,

1− µ2
max − µs(1 + µmax)

2 > 1− µ2
max − µmax (1 + µmax)

2

= 1− µmax

(
1 + 3µmax + µ2

max

)
> 1− µmax (1 + 4µmax) .

Note that for each K > 1, it holds that µmax < K−1
2 . Thus,

1− µmax (1 + 4µmax) > 1− µmax (1 + 2K − 2) > 0,

where the last inequality is another application of the max-MIP condition (6).

B UNKNOWN SPARSITY LEVEL

As mentioned in Remark 4.3, when the sparsity level K is unknown, a threshold-based variant of DJ-OMP can
be used to recover the support. In the following Corollary B.1, we prove that this variant, denoted DJ-OMP∗,
succeeds with high probability in estimating both K and the support of θ when the design matrices are composed
of i.i.d. Bernoulli entries. Note that the corollary assumes that M > Mc and Mc depends on K, however this
is solely for the purpose of the proof. The corollary holds for a wide range of M values and DJ-OMP∗ does not
receive K nor Mc as input. After stating the corollary we present simulation results comparing DJ-OMP and
DJ-OMP∗. The proof of Corollary B.1 completes this section.
Corollary B.1. Denote by DJ-OMP∗ a variant of DJ-OMP in which the fusion center stops the communication
rounds with the M machines and outputs its current support set estimation when the number of votes for the
most-voted index in the current round falls below a threshold of t̃c = 4 log d. If the matrices X(m) have i.i.d.
Bernoulli ± 1√

n
entries and n ≥ 2(2K − 1)2 log(2Md3), then under the conditions of Theorem 4.1, DJ-OMP∗ with

Mc ≤ M ≤ 2e−1(d−K) log d machines detects the correct support w.p. at least 1− 2K+1

d .

Figure 3 compares the empirical support recovery probabilities of DJ-OMP and DJ-OMP∗ as a function of θmin.
The parameters are the same as those used for Figure 1(a), i.e., we generated M = 20 matrices of dimensions
n = 2000 and d = 10000, with i.i.d. N (0, 1) entries (α = 0). The noise level is σ = 1, and the vector θ has
sparsity K = 5, with θ = θmin · [1,−1.5, 2,−2.5, 3, 0, . . . , 0]⊤. Since assumption 4.1 does not hold and M is
small compared to the theoretical value Mc, the simulations use the threshold t̃c = 2 for DJ-OMP∗, i.e., the center
stops and returns its support set estimation once the top-voted index receives less than 2 votes. As the figure
demonstrates, the success probability is not greatly affected by the use of a threshold-based stopping criterion
that does not depend on K.

Proof of Corollary B.1. Denote by B an event where the max-MIP condition (6) is not satisfied. We first show
that this event occurs with probability at most 1/d. For each machine m ∈ [M ], each entry of the design matrix
X(m) is an i.i.d. Bernoulli ± 1√

n
random variable. Thus, the inner product between two vectors x

(m)
i ,x

(m)
j ∈ Rn

where i ̸= j ∈ [d] is a sum of n i.i.d. Bernoulli ± 1
n random variables. In addition, by design each vector has unit

ℓ2 norm. By Hoeffding’s inequality (Hoeffding, 1963),

∀t > 0, Pr
[∣∣∣〈x(m)

i ,x
(m)
j

〉∣∣∣ > t
]
< 2 exp

(
−nt2/2

)
.

The max-MIP condition (6) requires that the maximal inner product among all M
(
d
2

)
pairs in all machines is

bounded by 1/(2K − 1). Combining the Hoeffding bound above with a union bound yields

Pr[B] = Pr

[
max
m∈[M ]

max
i ̸=j

∣∣∣〈x(m)
i ,x

(m)
j

〉∣∣∣ > 1

2K − 1

]
< 2Md2 exp

(
− n

2(2K − 1)2

)
≤ 1

d
.
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Figure 3: Support Recovery by DJ-OMP and DJ-OMP∗ as a Function of θmin

We now show that when event B does not occur, i.e., when the max-MIP condition (6) is satisfied, then DJ-OMP∗

recovers the support of θ with probability at least 1− 2K+1−1
d . By Lemma A.1, the threshold tc of the proof of

Theorem 4.1 satisfies tc ≥ 4 log d. Thus, by essentially the same proof, with probability at least 1− 2K+1−2
d the

algorithm DJ-OMP∗ does not stop early, and recovers all K support indices after K rounds. It remains to show
that the probability that it does not stop after K rounds and adds another (non-support) element to its estimate
is at most 1

d .

Assume that s = S. Hence, in each machine m ∈ [M ], similarly to Eq. (78), the residual r(m) is

r(m) =
(
I−P

(m)
S

)
y(m) =

(
I−P

(m)
S

)(
X(m)θ(m) + σξ(m)

)
= σ

(
I−P

(m)
S

)
ξ(m). (117)

In other words, since the residual r(m) is orthogonal to the set of vectors
{
x
(m)
k

}
k∈S

, it is composed only of
(projected) noise. Recall that an index that has already been added to the support cannot be sent again. Thus,
the probability p

(m)
j that machine m sends a fixed non-support index j /∈ S is

p
(m)
j = Pr

[
j = argmax

i/∈S

∣∣∣〈x(m)
i , r(m)

〉∣∣∣] = Pr

[
j = argmax

i/∈S

∣∣∣〈x(m)
i ,

(
I−P

(m)
S

)
ξ(m)

〉∣∣∣] . (118)

Since each entry of each matrix is i.i.d., then by symmetry considerations the above probability is uniform across
the non-support indices, i.e., p(m)

j = 1
d−K . To bound the probability that a non-support index j /∈ S receives

more than t̃c votes, we use the following Chernoff bound. For a Binomial random variable X ∼ B(M,p), the
multiplicative Chernoff bound (Chernoff, 1952) implies that

∀δ > 0, Pr [X ≥ (1 + δ)Mp] ≤
(

e−δ

(1 + δ)1+δ

)Mp

.

In the case 1 + δ ≥ 2e, a simple calculation shows that

∀t ≥ 2e ·Mp, Pr [X ≥ t] ≤ 2−t.
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Figure 4: Number of Machines for Support Recovery by DJ-OMP vs. Dimension d

Since p = 1
d−K , the assumption M ≤ 2e−1(d−K) log d implies that the above bound can be applied and hence

the probability that a non-support index j /∈ S receives more than t̃c votes can be bounded by

Pr
[
vj ≥ t̃c

]
≤ 2−4 log d = d−4 log 2.

A union bound over all d−K non-support indices j /∈ S implies that the probability that the maximal number
of votes for a non-support element is larger than t̃c is bounded by

Pr

[
max
j /∈S

vj ≥ t̃c

]
≤ (d−K)d−4 log 2 < d−1.

Finally, a union bound concludes the proof.

C ADDITIONAL SIMULATION RESULTS

Theorem 4.1 holds under the max-MIP condition (6) and assumptions 4.1-4.3. However, in practice, DJ-OMP
succeeds even if these assumptions are not met. For example, the max-MIP condition does not hold in the
setting used in Figure 1(b), and thus none of the additional assumptions hold either. To examine assumption 4.1
further, we performed the following simulation, whose results are depicted in Figure 4. As described in Section
5, we generated matrices with i.i.d. Gaussian entries, i.e., α = 0, with a fixed number of samples n = 2000,
varying dimension d, varying number of machines M , and varying sparsity level K. In each simulation, the noise
level is σ = 1, and each of the K nonzero values of the sparse vector θ equals θmin = 0.06. We then used linear
extrapolation to estimate for each dimension the number of machines needed to reach a given success probability,
in our example 0.5, and displayed them on a logarithmic scale. In addition, we display a least-squares-based
linear estimation of the relation between log(M) and log(d). The small resulting sum of squared residuals (SSR)
support our result that the relationship is of the form M = O(dβ) for some 0 < β < 1, even when the max-MIP
condition does not hold, and in fact β is empirically smaller than the exponent derived in Eq. (13). In addition,
the estimated number of machines increases with K, which is also in accordance with Eq. (13). We obtained
similar results when the matrices were slightly correlated, with slightly higher estimated number of machines.
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D IMPLEMENTATION DETAILS

The code used to generate the simulations in Section 5 was implemented in Python and was executed on an
internal cluster (v3.8; Python Core Team, 2019, PSF licensed). For SIS-based methods, we used the SIS package
by Saldana and Feng (2018), which was implemented using R statistical software (v4.0.3; R Core Team, 2023) and
embedded into the Python code using the rpy2 package (https://rpy2.github.io/), all licensed by GPL-2 licenses.
Lasso-based methods were implemented using the scikit-learn package by Pedregosa et al. (2011, BSD License).
Other libraries that were used include NumPy (Harris et al., 2020, liberal BSD license), SciPy (Virtanen et al.,
2020, BSD license), and Matplotlib (Hunter, 2007, BSD compatible license).
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