Non-linear factorization of linear operators *

William B. Johnson[†], Bernard Maurey and Gideon Schechtman[‡]

Abstract

We show, in particular, that a linear operator between finite dimensional normed spaces, which factors through a third Banach space Z via Lipschitz maps, factors linearly through the identity from $L_{\infty}([0,1],Z)$ to $L_1([0,1],Z)$ (and thus, in particular, through each $L_p(Z)$, $1 \le p \le \infty$) with the same factorization constant. It follows that, for each $1 \le p \le \infty$, the class of \mathcal{L}_p spaces is closed under uniform (and even coarse) equivalences. The case p = 1 is new and solves a problem raised by Heinrich and Mankiewicz in 1982. The proof is based on a simple local-global linearization idea.

1 Introduction

Let X be a pointed metric space with distinguished point, 0. $X^{\#}$ denotes the Banach space of real valued Lipschitz functions f on X for which f(0) = 0 under the norm $\operatorname{Lip}(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{\|x - y\|}$. The evaluation map $K_X : X \to X^{\#*}$ is then an isometric isomorphism. If X is a Banach space, then by [5], X^{**} is norm one complemented in $X^{\#*}$ via a projection P that satisfies the identity $PK_X = J_X$, where J_X is the canonical embedding of X into X^{**} .

Given a Lipschitz function $T: X \to Y$ with X and Y pointed metric spaces and $1 \le p \le \infty$, we define the Lipschitz L_p factorization norm $\gamma_p^L(T)$ by

$$\gamma_p^L(T) := \inf \{ \operatorname{Lip}(F) \operatorname{Lip}(G) : K_Y \circ T = G \circ F \},\$$

where the infimum is over all Lipschitz factorizations of $K_Y \circ T$ through an arbitrary L_p space. By the result of Lindenstrauss mentioned in the previous paragraph, if Y is a normed space this is the same as taking the infimum over all Lipschitz factorizations of $J_Y \circ T$ through an L_p space.

^{*}AMS subject classification: 46B20,46E30. Key words: Factorization, Lipschitz maps, \mathcal{L}_p spaces †Supported in part by NSF DMS-0200690 & DMS-0503688 and U.S.-Israel Binational Science Foundation.

[‡]Supported in part by Israel Science Foundation and U.S.-Israel Binational Science Foundation; participant, NSF Workshop in Linear Analysis and Probability, Texas A&M University.

The main result, Theorem 2, of this paper is that if T is a linear operator between Banach spaces and $1 \leq p \leq \infty$, then $\gamma_p^L(T) = \gamma_p(T)$. (Recall that $\gamma_p(T)$ is defined to be the infimum of ||F||||G|| where the infimum is taken over all linear factorizations $J_Y \circ T = G \circ F$ of $J_Y \circ T$ through arbitrary L_p spaces.) The case p = 1 of this theorem uses new ideas and gives as a corollary that a Banach space that is uniformly (or even coarsely) equivalent to a \mathcal{L}_1 space is again a \mathcal{L}_1 space. This answers a question Heinrich and Mankiewicz asked in their 1982 paper [3]. The main result is dealt with in section 3. The proof uses a local-global approach reminiscent of a method recently employed in [4]. Although the proof is fairly simple, easier special cases of Theorem 2 resisted for some time attacks by several experts; for example, it is not completely straightforward to show that if $f_n : \ell_2^n \to L_1$, $g_n : L_1 \to \ell_2^n$ are such that $g_n f_n$ is the identity on ℓ_2^n , then $\text{Lip}(f_n)\text{Lip}(g_n) \to \infty$ as $n \to \infty$, and, indeed, understanding this example led us to Theorem 2.

In section 2 we present another factorization result the proof of which is based on much older and well known ideas but still produces some new information on the invariance of some classes of \mathcal{L}_1 spaces under Lipschitz isomorphisms.

Although our research was motivated by problems concerning the classification of Banach spaces under non-linear equivalences, no specialized knowledge of Banach space theory is required for reading this paper. Let us just mention that one equivalence for a Banach space X to be a \mathcal{L}_p space is that the canonical injection $J_X: X \to X^{**}$ factor (linearly) through $L_p(\mu)$ for some measure μ (and, if 1 , that <math>X not be isomorphic to a Hilbert space); see [6].

We thank M. Csornyei, T. Figiel, O. Maleva, and D. Preiss for discussions on the problems treated here.

2 The classical argument

Here we prove

Theorem 1 Assume $T: X \to Y$ is a linear operator from a Banach space X to a dual Banach space Y. Assume T factors through a third Banach space Z via Lipschitz mappings: $T = g \circ f$, $f: X \to Z$, $g: Z \to Y$ and assume in addition that f has a point of Gâteaux differentiability. Then there are linear operators $A: X \to Z$, $B: Z \to Y$ with T = BA and $\|A\| \|B\| \le \text{Lip}(f)\text{Lip}(g)$.

Proof: The proof uses a combination of an argument from [3] and a result from [5].

By making suitable translations in the domain and range we may assume that the point of differentiability of f is 0 and that f(0) = 0. Define f_n , g_n by $f_n(x) = nf(\frac{x}{n})$, $g_n(z) = ng(\frac{z}{n})$. Since $g \circ f = T$ is linear, we have that $g_n \circ f_n = T$. By hypothesis, $||f_n(x) - Ax|| \to 0$ for all $x \in X$, for some linear operator $A: X \to Z$. Let $\tilde{g}(x)$ be the weak* limit of $g_n(x)$ through some fixed free ultrafilter of natural numbers. Using the

norm convergence of $f_n(x)$ to Ax, we deduce that $\tilde{g} \circ A = T$. Of course, $||A|| \leq \text{Lip}(f)$ and $\text{Lip}(\tilde{g}) \leq \text{Lip}(g)$. So we have linear A and Lipschitz \tilde{g} such that

$$T = \tilde{g} \circ A$$

and $||A|| \operatorname{Lip}(\tilde{g}) \leq \operatorname{Lip}(f) \operatorname{Lip}(g)$. Also, \tilde{g} is linear on AE, so, by [5], there is a linear operator $B: X \to Y$ with $||B|| \leq \operatorname{Lip}(\tilde{g})$ so that BA = T. A softer proof of the result we used from [5] is contained in [7]; see also [1, Theorem 7.2]

As a corollary we get,

Corollary 1 Assume $T: X \to Y$ is a linear operator between a separable Banach space X and a Banach space Y. Assume T factors through a third Banach space Z having the Radon-Nikodym property (RNP) via Lipschitz mappings: $T = g \circ f$, $f: X \to Z$, $g: Z \to Y$. Then there are linear operators $A: X \to Z$, $B: Z \to Y^{**}$ with JT = BA and $||A|| ||B|| \le \text{Lip}(f)\text{Lip}(g)$. Here J is the canonical embedding of Y into its second dual.

Recall [1, section 6.4] that one equivalence to Z having the RNP is that every Lipschitz mapping from \mathbb{R} (or even from a general separable Banach space) into Z has a point of Gâteaux differentiability. Reflexive spaces and separable conjugate spaces, including ℓ_1 , have the RNP, while, for example, c_0 and $L_1[0,1]$ fail the RNP.

Applying this to the case where $Z = \ell_1$ and to the case where Z is a general separable \mathcal{L}_1 space with the Radon–Nikodym property and using the fact that a Banach space X is \mathcal{L}_1 whenever the canonical injection of X into its second dual factors through a \mathcal{L}_1 space [6], we get

Corollary 2 The following two families are preserved under Lipschitz isomorphisms:

- 1. The \mathcal{L}_1 -subspaces of ℓ_1 .
- 2. The separable \mathcal{L}_1 spaces that have the Radon-Nikodym property.

3 The local–global argument

Recall that any n-dimensional normed space X admits a normalized basis x_1, \ldots, x_n such that $n \| \sum_{i=1}^n a_i x_i \| \ge \sum_{i=1}^n |a_i|$, for all $a_1, \ldots, a_n \in \mathbb{R}$. Indeed, any Auerbach basis satisfies this. See e.g. [1, page 432] for the definition and proof of existence of an Auerbach basis. The next proposition is the main new tool in the proof of the main Theorem.

Proposition 1 Let X be an n-dimensional normed space, Y a Banach space and $T: X \to Y$ a bounded linear map. Let $S: X \to Y$ be Gâteaux differentiable everywhere and Lipschitz. Let x_1, \ldots, x_n be an Auerbach basis for X, $\varepsilon > 0$, and assume that

$$||Sx - Tx|| \le \varepsilon/2n$$

for all $x \in C = \{\sum_{i=1}^{n} t_i x_i ; 0 \le t_i \le 1, 1 \le i \le n\}$. Then

$$\|\int_C D_x S \, dx - T\| \le \varepsilon,$$

Where D_xS is the Gâteaux derivative of S at x and dx is the measure induced on C from the natural map from $[0,1]^n$ onto C and the Lebesgue measure on $[0,1]^n$.

Proof: For every $1 \le i \le n$

$$\int_C D_x Sx_i \, dx = \int_0^1 \int_0^1 \dots \int_0^1 D_{(\Sigma_{j \neq i} t_j x_j + t x_i)} Sx_i \, dt dt_1 \dots dt_n
= \int_0^1 \int_0^1 \dots \int_0^1 S(\sum_{j \neq i} t_j x_j + x_i) - S(\sum_{j \neq i} t_j x_j) \, dt_1 \dots dt_n.$$

So

$$\| \int_{C} D_{x} Sx_{i} dx - Tx_{i} \| \leq \int_{0}^{1} \int_{0}^{1} \dots \int_{0}^{1} \| S(\sum_{j \neq i} t_{j} x_{j} + x_{i}) - T((\sum_{j \neq i} t_{j} x_{j} + x_{i}) \| dt_{1} \dots dt_{n}$$

$$+ \int_{0}^{1} \int_{0}^{1} \dots \int_{0}^{1} \| S(\sum_{j \neq i} t_{j} x_{j}) - T((\sum_{j \neq i} t_{j} x_{j}) \| dt_{1} \dots dt_{n}$$

$$\leq \varepsilon/n$$

For a general $\sum_{i=1}^{n} a_i x_i \in C$,

$$\| \int_C D_x S(\sum_{i=1}^n a_i x_i) - T(\sum_{i=1}^n a_i x_i) \| \le \frac{\varepsilon}{n} \sum_{i=1}^n a_i \le \varepsilon \| \sum_{i=1}^n a_i x_i \|$$

since $\{x_i\}$ is an Auerbach basis.

Theorem 2 Let X be a finite dimensional normed space, Y a Banach space with the RNP and $T: X \to Y$ a linear operator. Let Z be a separable Banach space and assume there are Lipschitz maps $F_1: X \to Z$ and $F_2: Z \to Y$ with $F_2 \circ F_1 = T$. Then for every $\lambda > 1$ there are linear maps $T_1: X \to L_{\infty}(Z)$ and $T_2: L_1(Z) \to Y$ with $T_2 \circ i_{\infty,1} \circ T_1 = T$ and $||T_1|| \cdot ||T_2|| \le \lambda Lip(F_1)Lip(F_2)$.

Proof: Here $L_{\infty}(Z)$ and $L_1(Z)$ are the Z-valued measurable functions on [0,1] under the essential sup and L_1 norms, respectively. However, it is equivalent to replace [0,1] with any other separable, purely non atomic measure space, and in fact we use $[0,1]^m$ for a suitable m instead of [0,1]. It would of course be better to factor T through Z itself, but it remains open whether this can be done even when Y is also finite dimensional and λ is replaced by any numerical constant.

Set $n = \dim(X)$, let $\{x_i\}_{i=1}^n$ be an Auerbach basis for X, and let $\delta > 0$. First note that there are everywhere Gâteaux differentiable maps $\tilde{F}_1: X \to Z$ and $\tilde{F}_2: Z \to Y$ with $\operatorname{Lip}(\tilde{F}_i) \leq \operatorname{Lip}(F_i)$ and $\|F_i(x) - \tilde{F}_i(x)\| \leq \delta$ for all x in the domain of F_i , i = 1, 2. The existence of \tilde{F}_1 is classical: regard X as \mathbb{R}^n under some norm, let f be a non negative C^1 function supported on a small neighborhood of 0 in X for which $\int_X f(x) \, dx = 1$, and

set $\tilde{F}_1 = f * F_1$. The function \tilde{F}_2 exists because Y has the RNP; see, for example, [1, Corollary 6.43].

Define $S = \tilde{F}_2 \circ \tilde{F}_1$. Then $||Sx - Tx|| \leq \delta(1 + \text{Lip}(F_2))$ for all x. By Proposition 1,

$$\| \int_C D_{F_1(x)} F_2 \circ D_x F_1 - T \| = \| \int_C D_x S \, dx - T \| \le 2n\delta(1 + \text{Lip}(F_2)), \tag{1}$$

where $C = \{\sum_{i=1}^{n} t_i x_i ; 0 \le t_i \le 1, 1 \le i \le n\}$. Define now $H_1: X \to L_{\infty}([0,1]^n, Z)$ by

$$H_1x(t) = D_{t_1x_1 + \dots + t_nx_n}\tilde{F}_1(x)$$

and $H_2: L_1([0,1]^n, Z) \to Y$ by

$$H_2 f = \int_{[0,1]^n} D_{\tilde{F}_1(t_1 x_1 + \dots + t_n x_n)} \tilde{F}_2 f(t) dt.$$

Then,

$$||H_1u|| \le \sup_{[0,1]^n} ||D_{t_1x_1+\dots+t_nx_n}\tilde{F}_1(u)|| \le \operatorname{Lip}(\tilde{F}_1)||u||$$

and

$$||H_2f|| \le \int_{[0,1]^n} ||D_{\tilde{F}_1(t_1x_1+\dots+t_nx_n)}\tilde{F}_2f(t)|| dt \le \operatorname{Lip}(\tilde{F}_2) \int_{[0,1]^n} ||f(t)|| dt$$

so that

$$||H_1|| \cdot ||H_2|| \le \operatorname{Lip}(F_1)\operatorname{Lip}(F_2).$$

Also,

$$H_2(H_1u) = \int_{[0,1]^n} D_{\tilde{F}_1(t_1x_1 + \dots + t_nx_n)} \tilde{F}_2(D_{t_1x_1 + \dots + t_nx_n} \tilde{F}_1(u)) dt = \int_C D_x Su \, dx.$$

We thus have found linear $H_1: X \to L_{\infty}([0,1]^n, Z)$ and $H_2: L_1([0,1]^n, Z) \to Y$ with $H:=\int_C D_x S\, dx = H_2 \circ i_{\infty,1} \circ H_1$, $\|H_1\|\cdot \|H_2\| \leq \operatorname{Lip}(F_1)\operatorname{Lip}(F_2)$ and, by (1), $\|H-T\| \leq 2n\delta(1+\operatorname{Lip}(F_2))$. This implies that, if δ is small enough, a similar factorization holds for T. To see this, we regard $L_{\infty}([0,1]^n, Z)$ as being those functions in $L_{\infty}([0,1]^{2n}, Z)$ which depend only on the first n coordinates and similarly for L_1 . Define the operator $\tilde{H}_2:L_1([0,1]^{2n},Z)\to Y$ to be the composition of H_2 with the (norm one) conditional expectation projection P from $L_1([0,1]^{2n},Z)$ onto $L_1([0,1]^n,Z)$. Of course, the kernel of P consists of mean zero Z valued integrable functions on $[0,1]^{2n}$ which depend only on the last n components. In order to get a factorization of $T:X\to Y$ through the injection $L_{\infty}([0,1]^{2n},Z)\to L_1([0,1]^{2n},Z)$ it is enough to show that for all $\epsilon>0$, if $U:X\to Y$ is a linear operator with sufficiently small norm, then there are operators A from X into the mean zero functions in $L_{\infty}([0,1]^{2n},Z)$ which depend only on the last n coordinates and B from the the mean zero functions in $L_1([0,1]^{2n},Z)$ which depend only on the last n coordinates into Y so that $\|A\|$, $\|B\| < \epsilon$. Indeed, setting $U:=T-\tilde{H}_2H_1$, we see that the

pair $H_1 + A$ and $H_2 + B(I - P)$ provides a factorization of T through $L_{\infty}([0, 1]^{2n}, Z) \to L_1([0, 1]^{2n}, Z)$, and obviously $||H_1 + A|| \le ||H_1|| + \epsilon$ and $||\tilde{H}_2 + B(I - P)|| \le ||H_2|| + 2\epsilon$. To define A, let z be any norm one vector in Z, let $r := 1_{(0,1/2)} - 1_{(1/2,1)}$ and for $1 \le j \le n$ let r_j be the function on $[0, 1)^{2n}$ defined by $r_j((t_1, \ldots, t_{2n}) = r(t_{n+j})$. Set $Ax_j = (\epsilon/n)r_j \oplus z$ so that $||A|| \le \epsilon$. Let Q be a projection of norm at most \sqrt{n} from the mean zero functions in $L_1([0, 1]^{2n}, Z)$ which depend only on the last n coordinates onto the span W of $r_j \oplus z$; $1 \le j \le n$. Define \tilde{B} from W into Y by setting $\tilde{B}(r_j \oplus z) = (n/\epsilon)Tx_j$ and define $B := \tilde{B}Q$. Clearly $||B|| \le (n/\epsilon)\sqrt{n} \max\{||Tx_j|| : 1 \le j \le n\}$.

As Corollaries we get

Corollary 3 Let X and Y be Banach spaces, T a linear operator from X into Y. Then $\gamma_1(T) = \gamma_1^L(T)$.

Proof: First we reduce to the case where X and Y are finite dimensional. By maximality of $\gamma_1(T)$, it is enough to show that for each finite dimensional subspace E of X and each finite codimensional subspace F of Y that $\gamma_1(Q_FTi_E) \leq \gamma_1^L(T)$, where i_E is the injection from E into X and Q_F is the quotient mapping from Y onto Y/F (see [2, Theorem 9.1]). Indeed, if $J_YT = G \circ F$ is a factorization of J_YT through an L_1 space, then $Q_F^{**}G \circ Fi_E$ is a factorization of Q_FTi_E through the same L_1 space, which yields that $\gamma_1^L(Q_FTi_E) \leq \gamma_1^L(T)$.

So in the sequel we assume that X and Y are finite dimensional. In this case the desired conclusion follows from Theorem 2. Indeed, if $T = G \circ F$ is a Lipschitz factorization of T through some (possibly non separable) L_1 space Z, then we can replace Z with the (separable) L_1 subspace of Z generated by FX, and then apply Theorem 2.

Corollary 4 Let X be a Banach space and assume that for some L_1 space there are maps $F: X \to L_1$ and $G: L_1 \to X^{**}$ which are Lipschitz for large distances with $G \circ F = I$ (the canonical embedding). Then $\gamma_1(I) < \infty$; i.e., For some L_1 space there are linear $T_1: X \to L_1$ and $T_2: L_1 \to X^{**}$ with $T_2 \circ T_1 = I$. Consequently, if X is uniformly or coarsely equivalent to a \mathcal{L}_1 space then it is a \mathcal{L}_1 space.

Proof: Before starting the proof we recall that a map F is Lipschitz for large distances provided for all d > 0 there is $K_d < \infty$ so that $d(F(x), F(y)) \le K_d d(x, y)$ whenever $d(x, y) \ge d$. Uniformly continuous mappings whose domain is convex (or sufficiently close to being convex) are Lipschitz for large distances [1, Proposition 1.11]. A coarse equivalence between Banach spaces is just a biLipschitz equivalence between a pair of nets in the respective spaces; it is clear that such a map can be extended to a mapping that is Lipschitz for large distances.

We now turn to the proof. A standard ultraproduct argument shows that we may assume that F and G are Lipschitz. (Assume, without loss of generality, that F(0) = 0. Let \mathcal{U} be a free ultrafilter on the natural numbers and define $F_n: X \to Y$ by $F_n(x) = \frac{F(nx)}{n}$

and let $\widetilde{F}: X \to (L_1)_{\mathcal{U}}$ be the ultraproduct of the maps F_n into the ultrapower $(L_1)_{\mathcal{U}}$ of L_1 , which is another L_1 space. Define $G_n: L_1 \to Y$ by $G_n(z) = G_n(x) = \frac{G(nz)}{n}$ and define $\widetilde{G}: (L_1)_{\mathcal{U}} \to Y^{**}$ by setting $\widetilde{G}(z_1, z_2, \dots) = w^* - \lim_{n \in \mathcal{U}} G_n(z_n)$. The maps \widetilde{F} and \widetilde{G} are Lipschitz.)

Now use the previous corollary to get that $\gamma_1(I) < \infty$. By [6], X is an \mathcal{L}_1 space.

References

- [1] Benyamini, Y.; Lindenstrauss, J., Geometric nonlinear functional analysis, Vol. 1, Colloquium Publications Vol 48, AMS 2000.
- [2] Diestel, J.; Jarchow, H.; Tonge, A., Absolutely summing operators, Cambridge studies in advanced mathematics 43, Cambridge University Press, Cambridge (1995).
- [3] Heinrich, S.; Mankiewicz, P., Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces, Studia Math. 73 (1982), 225–251.
- [4] Godefroy, G.; Kalton, N. J., Lipschitz-free Banach spaces, Studia Math. 159 (2003), 121–141
- [5] Lindenstrauss, J., On non-linear projections in Banach spaces, Mich. J. Math. 11 (1964) 268–287.
- [6] Lindenstrauss, J.; Rosenthal, H. P., The \mathcal{L}_p spaces, Israel J. Math. 7 (1969), 325–349.
- [7] Pełczyński, A., Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. Rozprawy Mat. 58 (1968)

W.B. Johnson
Department of Mathematics
Texas A&M University
College Station, TX 77843 U.S.A.
johnson@math.tamu.edu

G. Schechtman
Department of Mathematics
Weizmann Institute of Science
Rehovot, Israel
gideon@wisdom.weizmann.ac.il

B. Maurey Laboratoire d'Analyse et de Mathématiques Appliquées Université de Marne-la-Vallée 77454 Champs-sur-Marne FRANCE maurey@math.univ-mlv.fr