Matrix Subspaces of L_1 *

Gideon Schechtman[†]

Abstract

If $E = \{e_i\}$ and $F = \{f_i\}$ are two 1-unconditional basic sequences in L_1 with E r-concave and F p-convex, for some $1 \le r , then the space of matrices <math>\{a_{i,j}\}$ with norm $\|\{a_{i,j}\}\|_{E(F)} = \|\sum_k \|\sum_l a_{k,l} f_l\|e_k\|$ embeds into L_1 . This generalizes a recent result of Prochno and Schütt.

1 Introduction

Recall that a basis $E = \{e_i\}_{i=1}^N$ of a finite $(N < \infty)$ or infinite $(N = \infty)$ dimensional real or complex Banach space is said to be K-unconditional if $\|\sum_i a_i e_i\| \le K \|\sum_i b_i e_i\|$ whenever $|a_i| = |b_i|$ for all i. Given a finite or infinite 1-unconditional basis, $E = \{e_i\}_{i=1}^N$, and a sequence of Banach spaces $\{X_i\}_{i=1}^N$ denote by $(\sum \bigoplus X_i)_E$ the space of sequences $x = (x_1, x_2, \ldots)$, $x_i \in X_i$, for which the norm $\|x\| = \|\sum_i \|x_i\| e_i\|$ is finite.

 $x_i \in X_i$, for which the norm $||x|| = ||\sum_i ||x_i|| e_i||$ is finite. If X has a 1-unconditional basis $F = \{f_j\}$ then $(\sum \bigoplus X)_E$ can be represented as a space of matrices $A = \{a_{i,j}\}$, denoted E(F), with norm

$$||A||_{E(F)} = ||\sum_{i} ||\sum_{j} a_{i,j} f_{j}||e_{i}||.$$

In [PS], Prochno and Schütt gave a sufficient condition for bases E and F of two Orlicz sequence spaces which assure that E(F) embeds into L_1 . Here we generalize this result by giving a sufficient condition on two unconditional

^{*}AMS subject classification: 46E30, 46B45, 46B15. Key words: subspaces of L_1 , unconditional basis, r-concavity, p-convexity

[†]Supported in part by the Israel Science Foundation.

bases E, F, which assure that E(F) embeds into L_1 . As we shall see this condition is also "almost" necessary.

Recall that an unconditional basis $\{e_i\}$ is said to be *p*-convex (resp. *r*-concave) with constant *K* provided that for all *n* and all x_1, x_2, \ldots, x_n in the span of $\{e_i\}$,

$$\|\sum_{i=1}^{n} (|x_i|^p)^{1/p}\| \le K(\sum_{i=1}^{n} \|x_i\|^p)^{1/p}$$

(resp.

$$\left(\sum_{i=1}^{n} \|x_i\|^r\right)^{1/r} \le K \|\sum_{i=1}^{n} (|x_i|^r)^{1/r}\| \right).$$

Here, for $x = \sum x(j)e_j$ and a positive α , $|x|^{\alpha} = \sum |x(j)|^{\alpha}e_j$.

 L_p will denote here $L_p([0,1],\lambda)$, λ being the Lebesgue measure. As is known and quite easy to prove, any 1-unconditional basic sequence in L_p , $1 \leq p \leq 2$ (resp. $2 \leq p < \infty$), is p-convex (resp. p-concave) with constant depending only on p. It is also worthwhile to remind the reader that any K-unconditional basic sequence in L_p is equivalent, with a constant depending only on p and K to a 1-unconditional basic sequence in L_p . It is due to Maurey [Ma] (see also [Wo, III.H.10]), that for every $1 \leq r , the span of every <math>p$ -convex 1-unconditional basic sequence in L_1 embeds into L_p and also embeds into L_r after change of density; i.e., there exists a probability measure μ on [0,1] so that this span is isomorphic (with constants depending on r,p and the p-convexity constant only) to a subspace of $L_r([0,1],\mu)$ on which the $L_r(\mu)$ and the $L_1(\mu)$ norms are equivalent.

If M is an Orlicz function then the Orlicz space ℓ_M embeds into L_p if and only if $M(t)/t^p$ is equivalent to an increasing function and $M(t)/t^2$ is equivalent to a decreasing function. This happens if and only if the natural basis of ℓ_M is p-convex and 2-concave.

Theorem 1 below states in particular that if E and F are two 1-unconditional basic sequences in L_1 with E r-concave and F p-convex for some $1 \le r then <math>E(F)$ embeds into L_1 . When specializing to Orlicz spaces, this implies the main result of [PS].

2 The main result

Theorem 1 Let $E = \{e_i\}$ be a 1-unconditional basic sequence in L_1 with $\{e_i\}$ r-concave with constant K_1 and let X be a subspace of $L_1([0,1],\mu)$ for

some probability measure μ satisfying $||x||_{L_r([0,1],\mu)} \leq K_2||x||_{L_1([0,1],\mu)}$ for some constant K_2 and all $x \in X$. Then $(\sum \bigoplus X)_E$ embeds into L_1 with a constant depending on K_1, K_2 and r only.

Consequently, if $E = \{e_i\}$ and $F = \{f_i\}$ are two 1-unconditional basic sequences in L_1 with E r-concave with constant K_1 and F p-convex with constant K_2 , for some $1 \le r , then the space of matrices <math>A = \{a_{k,l}\}$ with norm

$$||A||_{E(F)} = ||\sum_{k} ||\sum_{l} a_{k,l} f_{l}||e_{k}||$$

embeds into L_1 with a constant depending only on r, p, K_1 and K_2 .

Proof: The *p*-convexity of $\{f_i\}$ implies that after a change of density the L_1 and L_r norms are equivalent on the span of $\{f_i\}$. See [Ma]. That is, there is a probability measure μ on [0,1] and a constant K_3 , depending only on r, p and K_2 such that $\|\sum a_j \tilde{f}_j\|_{L_r([0,1],\mu)} \leq K_3 \|\sum a_j \tilde{f}_j\|_{L_1([0,1],\mu)}$ for some sequence $\{\tilde{f}_j\}$ 1-equivalent, in the relevant L_1 norm, to $\{f_j\}$, and for all coefficients $\{a_i\}$. It thus follows that the second part of the theorem follows from the first part.

To prove the first part, in $L_1([0,1] \times [0,1], \lambda \times \mu)$ consider the tensor product of the span of $\{e_i\}$ and X, that is the space of all functions of the form $\sum_i e_i \otimes x_i$, $x_i \in X$ for all i, where $e_i \otimes x_i(s,t) = e_i(s)x_i(t)$. Then, by the 1-unconditionality of $\{e_i\}$ and the triangle inequality,

$$\| \sum_{i} e_{i} \otimes x_{i} \|_{1} = \int \| \sum_{i} |x_{i}(t)| e_{i} \|_{L_{1}([0,1],\lambda)} d\mu(t)$$

$$\geq \| \sum_{i} (\int |x_{i}(t)| d\mu(t)) e_{i} \|_{L_{1}([0,1],\lambda)}$$

$$= \| \sum_{i} \|x_{i}\| e_{i} \|.$$

On the other hand, by the 1-unconditionality and the r-concavity with con-

stant K_1 of $\{e_i\}$ (used in integral instead of summation form),

$$\| \sum_{i} e_{i} \otimes x_{i} \|_{1} = \int \int |\sum_{i} |x_{i}(t)| e_{i}(s) |d\lambda(s) d\mu(t)$$

$$\leq (\int (\int |\sum_{i} |x_{i}(t)| e_{i}(s) |d\lambda(s)|^{r} d\mu(t))^{1/r}$$

$$= (\int \|\sum_{i} |x_{i}(t)| e_{i} \|_{L_{1}([0,1],\lambda)}^{r} d\mu(t))^{1/r}$$

$$\leq K_{1} \|\sum_{i} (\int |x_{i}(t)|^{r} d\mu(t))^{1/r} e_{i} \|_{L_{1}([0,1],\lambda)}$$

$$\leq K_{1} K_{2} \|\sum_{i} \int |x_{i}(t)| d\mu(t) e_{i} \|_{L_{1}([0,1],\lambda)}$$

$$= K_{1} K_{2} \|\sum_{i} \|x_{i} \|e_{i} \|$$

As is explained in the introduction the main result of [PS] follows as corollary.

Corollary 1 If M and N are Orlicz functions such that $M(t)/t^r$ is equivalent to a decreasing function, $N(t)/t^p$ is equivalent to an increasing function and $N(t)/t^2$ is equivalent to a decreasing function then $\ell_M(\ell_N)$ embeds into L_1 .

Remark 1 The role of L_1 in Theorem 1 can easily be replaced with L_s for any $1 \le s \le r$.

Remark 2 If the bases E and F are infinite, say, and the smallest r such that E is r-concave is larger than the largest p such that F is p-convex, then E(F) doesn't embed into L_1 . This follows from the fact that in this case it is known that ℓ_r^n uniformly embed as blocks of E and ℓ_p^n uniformly embed as blocks of F, for some r > p, while it is known that in this case $\ell_r^n(\ell_p^n)$ do not uniformly embed into L_1 .

This still leaves the case r = p, which is not covered in Theorem 1, open:

• If E and F are two 1-unconditional basic sequences in L_1 with E r-concave and F r-convex, does E(F) embed into L_1 ?

In the case that E is an Orlicz space the problem above has a positive solution. We only sketch it. By the factorization theorem of Maurey mentioned above ([Wo, III.H.10] is a good place to read it), and a simple compactness argument (to pass from the finite to the infinite case), it is enough to consider the case that F is the ℓ_r unit vector basis. If the basis of ℓ_M is r-concave, then the 2/r-convexification of ℓ_M (which is the space with norm $\|\{|a_i|^{2/r}\}\|_{\ell_M}^{r/2}$) embeds into $L_{2/r}$. This is again an Orlicz space, say, $\ell_{\tilde{M}}$. Now, tensoring with the Rademacher sequence (or a standard Gaussian sequence) we get that $\ell_{\tilde{M}}(\ell_2)$ embeds into $L_{2/r}$. We now want to 2/r concavify back, staying in L_1 , so as to get that $\ell_M(\ell_r)$ embeds into L_1 . This is known to be possible (and is buried somewhere in [MS]): If $\{x_i\}$ is a 1-unconditional basic sequence in L_s , $1 < s \le 2$ then its s-concavification (which is the space with norm $\|\{|a_i|^{1/s}\}\|_{\ell_M}^s$) embeds into L_1 . Indeed, Let $\{f_i\}$ be a sequence of independent 2/s symmetric stable random variables normalized in L_1 and consider the span of the sequence $\{f_i \otimes |x_i|^s\}$ in L_1 .

References

- [Ma] B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces Lp. (French) With an English summary. Astérisque, No. 11. Société Mathématique de France, Paris, ii+163 pp (1974).
- [MS] B. Maurey, G. Schechtman, Some remarks on symmetric basic sequences in L_1 . Compositio Math. 38, no. 1, 67–76 (1979).
- [PS] J. Prochno, C. Schütt, Combinatorial Inequalities and Subspaces of L_1 , Studia Math. 211, 21-39 (2012).
- [Wo] P. Wojtaszczyk, Banach spaces for analysts. Cambridge Studies in Advanced Mathematics, 25. Cambridge University Press, Cambridge, xiv+382 pp. (1991).

G. Schechtman
Department of Mathematics
Weizmann Institute of Science
Rehovot, Israel
gideon@weizmann.ac.il