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Wavelengthis a physical measure of light, and the intricate understanding of its link to
perceived colour enables the creation of perceptual entities such as metamers—
non-overlapping spectral compositions that generate identical colour percepts'. By
contrast, scientists have been unable to develop a physical measure linked to perceived
smell, even one that merely reflects the extent of perceptual similarity between
odorants?. Here, to generate such a measure, we collected perceptual similarity
estimates of 49,788 pairwise odorants from 199 participants who smelled 242 different
multicomponent odorants and used these data to refine a predictive model that links
odorant structure to odorant perception®. The resulting measure combines 21
physicochemical features of the odorants into a single number—expressed in radians—
thataccurately predicts the extent of perceptual similarity between multicomponent
odorant pairs. To assess the usefulness of this measure, we investigated whether we
could useit to create olfactory metamers. To this end, we first identified a cut-off in the

measure: pairs of multicomponent odorants that were within 0.05 radians of each
other or less were very difficult to discriminate. Using this cut-off, we were able to
design olfactory metamers—pairs of non-overlapping molecular compositions that
generated identical odour percepts. The accurate predictions of perceptual
similarity, and the ensuing creation of olfactory metamers, suggest that we have
obtained a valid olfactory measure, one that may enable the digitization of smell.

More than100 years ago, Alexander Graham Bell noted that “we have
very many different kinds of smells, all the way from the odor of vio-
lets and roses up to asafetida. But until you can measure their like-
nesses and differences you can have no science of odor”. A measure
of smell such as the one proposed by Bell can exist within a model
of the olfactory perceptual quality space, and several models have
recently been proposed*”. These models typically rely on finding
mathematical rules that link odorant structure to odour perception
within a predictive framework®. One such model indeed predicted
the pairwise perceptual similarity between multicomponent odor-
ants (MC-odorants)?, but the model was applied only to ‘laboratory
MC-odorants’, which consist of molecular components that were
first equilibrated for perceived intensity. By contrast, real-world
MC-odorants such as those cited by Bell consist of many molecular
components with vastly differing intensities. Toresolve the differing
intensities of the components, we selected the same 44 monomol-
ecules that were used previously® (Supplementary Table 1). These
molecules provide an effective span of physicochemical (Fig. 1a) and
perceptual (Extended Data Fig. 1) olfactory space. In experiment 1a,
23 participants (16 women, age 27.7 + 3.3 years) rated the perceived
intensity of each monomolecule alone (a flowchart of all experiments
is shown in Extended Data Fig. 2). We then used these monomole-
cules, which widely ranged in perceived intensity (Fig.1b), to generate
14 varying-intensity real-world MC-odorants, which ranged in the

number of components from 4 to 10. In experiment 1b, participants
rated all pairwise perceptual similarities (comprising a visual analogue
scale ranging from ‘identical’ to ‘extremely different’) between all 14
MC-odorants (that is, similarity of MC-odorant 1to 2, MC-odorant
1to 3, and so on, including four comparisons of the MC-odorants to
themselves), culminatingin 95 pairwise MC-odorant similarity ratings
(Supplementary Table 2).

We calculated the difference between MC-odorants as previously
described®. The distance function between the vectors representing
MC-odorantuand MC-odorantvwas computed as the angle between
themina2lphysicochemical descriptor space (Extended Data Table1).
It was given by: 6(u, v) =arccos ;) where u- vis the dot product
between the vectors and |u| and |v| are their Euclidean norms. When
using the same MC-odorants with isointense components (that is,
laboratory MC-odorants), the previous similarity model had a correla-
tionof r=-0.57,P<2x10°between the predicted (from the structure)
and actual perceptual similarity (Fig. 1c). However, when we applied
this previous model to estimates made using the current MC-odorants,
which contained the same components but varied inintensity (that s,
real-world MC-odorants), the correlation decreased fromr=-0.57 to
r=-0.48,P<7x107 (Fig.1d).

There are two ways to calculate and plot such correlations: either
with or without comparisons between identical MC-odorants. The
above measure included such comparisons, but when removing

'Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel. 2DreamAir LLC, New York, NY, USA. *Department of Computer Science and Applied Mathematics, Weizmann
Institute of Science, Rehovot, Israel. *e-mail: aharon.ravia@weizmann.ac.il; noam.sobel@weizmann.ac.il

Nature | www.nature.com | 1


https://doi.org/10.1038/s41586-020-2891-7
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-020-2891-7&domain=pdf
mailto:aharon.ravia@weizmann.ac.il
mailto:noam.sobel@weizmann.ac.il

Article

Experiment 1 Experiment 2
Experiment 3 Experiments 4, 5
Experiment 6 5
a 0.6 b
o~ >
£ 0.4 z4
2 ©
i=
8 S 3
£ 0.2 5 5
8 3
T 0 N 2
2 T
g €
a-0.2 S 1
-0.4 0
-04-02 0 0.2 04 0.6 08 0 0.5 1.0
Principal component 1 Intensity rating
(] 1.0 W d 1.0 7
o r=-057,P<2x 10" o r=-048,P <7 x10"
£ r=-0.50,P<5x 107 £ p r=-0.30,P<5x 1072
g 08 F o8 f
2 >
806 & 06
£ €
® ®
o 0.4 - 04
S g
3 =
€02 g 02
5 =
z 2
0 0
0 0.2 0.4 0.6 0 0.2 0.4 0.6
Angle distance (radians) Angle distance (radians)
e W p \ﬁ
0.4 10 r=-0.60,P <2 x 10710
2 r=—1).41,P<7><10’5
T 0.8
03 g | :
2z f
& 06 S
= 0.2 E
2
- 04
Q
N
0.1 ©
i g 0.2
2
0 = 0
-1 0 1 2 0 0.2 0.4 0.6
a Angle distance (radians)
-055 -045 -035 025
E |

r value ’\f
Fig.1| The measure of smell predicts perceived similarity of real-world
multicomponent odorants. a, The 172 molecules used across experiments
overlaid on 4,046 molecules within the first and second principal components
ofa2l-descriptor physicochemical space. Here and throughout, thered linesin
the histograms show the density estimation (see Methods). b, Histogram of
intensity ratings by 22 participants for 44 odorant molecules usedin
experimentl.c,d, f,Scatter plotsinwhicheach dotisa pairwise comparison of
two MC-odorants. yaxis, average similarity rated by participants (n=22, two
repetitions each); xaxis, distance according to model. Vertical lines (error bars)
showthebetween-participants.e.m.Red regression linesinclude comparisons
ofidentical MC-odorants (zero angle distance); black regression lines show the
datawith those comparisons removed. ¢, Original similarity model® applied to
MC-odorants with components first equated for perceived intensity.
Correlation coefficientr=-0.57,P<2x107%,n=95(r=-0.50,P<5x107 and
n=91for comparisons excludingidentical pairs). d, Original similarity model
applied totheresults of experiment1with components of varying intensities.
Correlation coefficientr=-0.48,P<7x107,n=95(r=-0.30,P<5x10%and
n=91for comparisons excludingidentical pairs). e, Variationin the correlation
between predicted and actual perceptual similarity as afunction of variationin
aand B. The point of optimal performanceis denoted by as ablack cross.
f,Novel similarity model applied to the results of experiment1with
components of varying intensities. Red lines through the data arelinear fits.
Correlation coefficientr=-0.60,P<2%x107°,n=95(r=-0.41,P<7x10°and
n=91for comparisons excludingidentical pairs).

the comparisons between identical MC-odorants, the correlation
shifts from r=-0.50, P< 5% 107 using equated-intensity laboratory
MC-odorants (Fig.1c) tor=-0.30, P=0.005 using the varying-intensity
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real-world MC-odorants (Fig. 1d). In other words, the effect of intensity
onmodel performance is even greater.

To recover model performance so that it applies to real-world
MC-odorants, we developed and applied a universal intensity factor.
This factor adjusted the weight of each component in aMC-odorant
to reflect its perceived intensity in an exponential way. In brief, a sig-
moidal function model was fitted to describe the nonlinear nature of
the weightings of the vectorsinthe MC-odorant. We set out to identify
the universal parameters that best fit the perceived intensity of any
monomoleculetoits vectorlengthinthe MC-odorant model. In other
words, we sought parameters that optimized the correlation between
the actual similarity ratings and the weighted angle distance of the
results from experiment 1. We systematically varied « and B in the
equation w(x) = ! __ toincorporate componentintensity in vector

X—a
1+e B

length. We then recalculated the correlation between the weighted
angle distance and perceived similarity for each parameter pair. We
selected the pair that resulted in the best correlation. We found that
these universal parameters were a=-1.3, =0.07 (Fig.1e), resultingin

w(x) = where xrepresents the normalized perceived intensity.

-
_x-137
1+e 0.07

Using this weighting in the model improved its performance from
r=-0.48tor=-0.60, P<2 %10 between predicted (from the struc-
ture) and actual perceptual similarity of the real-world MC-odorants
(Fig.1f), bringing the performance of our model up to the performance
ofthe previous model when applied to intensity-equated MC-odorants
(Z (two-tailed) = 0.20, P=0.84). This reflects a 23% improvement in
correlation ora51% increase in explained variance (R? statistic) by the
new model compared to the old model, when using varying-intensity
real-world MC-odorants. If we do notinclude pairwise comparisons of
identical MC-odorants, the improvement provided by the new model
is greater, from r=-0.30, P=0.005 (Fig.1d) to r=-0.41,P<7 x10°®
(Fig. 1f), or a36% improvement in prediction and an 86% increase in
explained variance.

We next tested the generalization of this new model to newly
obtained data. In experiment 2, we repeated experiment 1, but used
14 new MC-odorants from a set of 44 new monomolecules that we had
notused previously (Fig.1aand Extended DataFig.1). Here, the original
‘laboratory-odour’ similarity model® showed a prediction of perceptual
similarity fromstructure alone of r=-0.58, P<7 x107'° (Fig. 2b), whereas
the new weighted real-world similarity model showed a stronger cor-
relation of r=-0.76, P<5x107" (Fig. 2c). This is a significant improve-
ment (Z (two-tailed) = 2.26, P= 0.024), reflecting a 31% improvement
in correlation or 70% improvement in explained variance. Again, the
improvement provided by the new model is greater when removing
comparisons ofidentical MC-odorants, fromr=-0.38,P<3x10™* using
the old model (Fig. 2b) to r=-0.69, P < 4 x 10 using the new model
(Fig. 2¢). This reflects an 82% improvement in correlation and a 330%
increase in explained variance.

Thus, the parametersidentified in experiment1were generalizable
tonew dataand provided strong predictions (these results were not a
reflection of overall MC-odorant intensity similarity alone; Extended
Data Fig. 3). This was a pleasant surprise, given that predictive mod-
els typically perform worse, not better, when using new data. We
speculate that the differences in gained performance provided by
the intensity factor across experiments reflect the molecule-specific
concentration-to-perceived-intensity curves'. IfaMC-odorant consists
of components that have steep concentration-to-intensity curves, the
effect of the factor will be large. If aMC-odorant consists of components
that have shallow concentration-to-intensity curves, the influence
of the factor will be smaller. Finally, we asked whether we could also
predict rather than measure the component perceived intensity". We
generated a model that successfully predicted the perceived intensi-
ties for some components but not for others, and therefore did not
proceed with this effort (Extended Data Fig. 3).
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Fig.2| The measure of smell predicts the perceived similarity ofrose, violet
and asafoetida. a, Theaverage intensity ratings provided by 30 participants
for43 odorant molecules (three repetitions each) used in experiment 2.

b, c,Eachdotisapairwise comparison of two MC-odorants; the y axis shows the
average actual similarity of the odorants asrated by the participants (n=29,
tworepetitions each) and the x axis shows the distance according to the model
being tested. Vertical lines (error bars) show the between-participants.e.m.
Redregressionlinesinclude comparisons of identical MC-odorants (zero angle
distance); black regression lines show the data with those comparisons
removed.b, Previously described similarity model applied to the results of
experiment 2 with components of varying intensities. Correlation coefficient
r=-0.58,P<7x107°,n=95(r=-0.38,P<3x107* n=91for comparisons
excludingidentical pairs).c, Newly developed similarity model applied to the
results ofexperiment 2 with components of varying intensities. Correlation
coefficientr=-0.76, P<5x107,n=95(r=-0.69,P<4x10™,n=91for
comparisons excludingidentical pairs). d, Solving Bell’s challenge: the
predicted (light blue) versus actual (dark blue) pairwise similarity of rose,
violetand asafoetidain experiment 3. Predicted similarity data (light blue)
show the mean prediction using the linear regression model described in
Extended DataFig. 5c (red line); the error bars show the confidence intervals
(P=0.05) for the predictions of thismodel. Actual similarity data (dark blue) are
the mean of n=29 participants (two repetitions). Blue circles are individual
ratings.Dataaremean*s.e.m.

Rose- Violet—
asafoetida asafoetida

Rose—
violet

We acknowledge the variability in our results. A correlation of
r=0.76 suggests that we have captured 58% of the variance, or fail to
explain 42% of the variance in the estimation of odorant similarity.
However, we observe that variance in human colour perception ata
givenwavelength canreach100%", and predictions of auditory similar-
ity from physical stimulus attributes have similar variance to that we
observe here™" (Extended Data Fig.4). Nevertheless, such perceptual
variability does not prevent predictions of perceptual similarity from
physical structure that are at the heart of digitization in these sen-
sory systems. With thatin mind, we investigated whether, despite the
variability in our results, we could meet Bell’s challenge. A Master Per-
fumer (C.L.) provided us with formulas for rose, violet and asafoetida
(Extended Data Table 2). In experiment 3, participants first rated the
perceived intensity of each component. We then used our model to
predict the perceptual pairwise similarity (‘likenesses and differences’
in Bell’s article) of these MC-odorants based on their structure and
component intensity. Finally, 31 different participants smelled the
MC-odorants and rated their actual pairwise perceptual similarity. We
converted the angle distance to normalized predicted similarity on a
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Fig.3| The measure of smell predicts performancein olfactory
discriminationtasks.a, b, Each dotisatriangle test performed by n=25
participants. The y axis shows the accuracy as a percentage across trials; the x
axis shows the distance between the MC-odorants according to our model.

a, Performanceinthe triangle task asafunction ofangle distance using
30-component MC-odorants. Thered lineis alinear fit with correlation
coefficientr=0.68,P<4x107?,n=80 comparisons of MC-odorant pairs; the
blacklineisamovingaverage.b, Performanceinthe triangle task asafunction
ofangle distance using all data. The thick black lineis the moving average, the
thindark-bluelineisthebest performerand the thinlight-bluelineis the worst
performer. The dashed horizontal red lineis 41.8% accuracy,ord’=1. The
dashed vertical blacklineis the triangle-estimated JND, and odorant pairsin
thered-shaded area cannot be discriminated fromeach other.
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scale ranging from O to 1 (Extended Data Fig. 5), and observed a good
fit between predicted and actual similarity: violet-rose, predicted
similarity=0.75+0.05, observed=0.79 £+ 0.18, t=-0.24, P=0.81; rose-
asafoetida, predicted similarity = 0.26 + 0.05, observed =0.21+ 0.17,
t=0.27,P=0.79; violet-asafoetida predicted similarity = 0.32 £ 0.05,
observed=0.24+0.20, t=0.40, P=0.69) (Fig. 2d). We submit that we
have met Bell’s 104-year-old challenge. Moreover, a web-based tool
(http://odorspace.weizmann.ac.il) enables the simpleimplementation
ofthese algorithmsto calculate the predicted perceptual pairwise simi-
larity of any two MC-odorants, the first step towards odour digitization.

Because odours that are more similar to each other are more dif-
ficult to discriminate, a measure that predicts similarity should also
reversely predict discrimination performance. A standard discrimina-
tion task is the triangle test, in which participants are provided with
three odorant samples, two of which are identical and one different.
Their task is to identify the odd odorant. We applied our measure to
apreviously published dataset®™: 26 participants who performed 260
triangle decisions on MC-odorants rangingin size from 10 to 30 isoin-
tense components. We observed a correlation of r=0.56, P<5x107%
betweenthe predicted similarity of the MC-odorants according to our
measure and the inability of the participant to discriminate between
them. Moreover, the more components in the mixture, the better our
measure performed, culminatingina correlation of r=0.68,P<4 x10™
for30-component MC-odorants (Fig. 3a). Inother words, our measure
produces strong predictions of odorant discrimination performed by
other groups who tested different participants onadifferent continent.

Giventhat our measure is associated with discriminability (Fig. 3a),
we nextinvestigated what the value of our measure is thatis associated
withthetipping pointinthe task; namely, the smallest distance between
odours at which people can first reliably discriminate between them.
This value is the just noticeable difference (JND) in olfactory quality.
In olfaction there are JNDs in odour intensity'®, but no framework for
JND in odour quality is available. We therefore set out to identify the
JND in the previously published dataset®.

JND is typically attributed*® to a score of d’=1. In the triangle test,
d’=1is at 41.8% accuracy'*. We observe that in the previously pub-
lished dataset’, 41.8% accuracy was obtained at an angle distance of
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0.051radians between odorants (Fig. 3b). To get a sense of the possible
variance in this value, we analysed the top and bottom 5% of perform-
ers.The bestand worst performershad aJND of 0.02 and 0.14 radians,
respectively (Fig.3b). Between these extremes, we observe arelatively
stableJND across participants (Extended DataFig. 6) thathad amean at
the 0.051 radians mark (bootstrap analysis suggests that this was not
achance determination; Extended Data Fig. 7).

To reduce the variability in this JND estimate, in experiment 4 we
designed and generated 100 new MC-odorants selected to produce
50 pairwise comparisons, 10 at each of the following angle distances:
0.0125,0.025,0.05,0.2and 0.4 radians (Supplementary Table1). These
distances were selected because they are in the vicinity of the above
initial ND estimate. We then tested around 27 participants (27 +10.4)
foreach comparison twice, generating atotal of 2,720 triangle decisions
(Supplementary Table 3). We observed a psychometric relationship
between the log-transformed angle distance and triangle performance,
with 41.8% accuracy falling just under 0.025 radians (Fig. 4a). In other
words, our triangle results were similar to the previously published
triangle results™, when compared in terms of performance as a func-
tion of angle distance between MC-odorants.

Togenerate adeciding value, we combined the datafrom both stud-
ies (ours and the previously published dataset®), and observed aJND
thatranged from 0.0125t0 0.05, with amean of 0.026 radians (Fig. 4b).
This conclusion, however, has some limitations. First, our experiments
(butnot the previously published dataset”) were conducted using one
concentration per MC-odorant. This may enable intensity cues to aid
and affect discrimination scores. Second, and more importantly, tri-
angle experiments are not the method of choice for determiningJNDs,
because they have an inherent memory component that may affect
results. Indeed, in colour discrimination tasks, performance drops to
remarkably low levelsifthe colours are presented insuccessionrather
than simultaneously?; however, in olfaction, different odorants cannot
be presented simultaneously. To address this, we performed experi-
ment 5, in which 30 participants conducted a total 0of 12,000 trials of
atwo-alternative same-different task. This task enables the deriva-
tion of the JND with higher statistical power??. We used 50 pairs of
MC-odorants that differed by 0.0125,0.025,0.05,0.1and 0.2 radians, 10
different pairs for each value (Supplementary Table 1). Moreover, each
odorantwas used at two different concentrations to prevent intensity
cues. During each experiment, each participant conducted 400 trials
(spread across 8 days), half of which, onaverage, contained the ‘same’
and half of which comprised ‘different’ MC-odorant pairs.

We again observed that d’increased as the angle distance increased
(F420=17.07, P<0.0001) (Fig. 4c), further verifying the validity of our
measure and model using anadditional dataset. We also again observed
significant variability across participants; theJND ranged from 0.0125to
0.15radians (Extended DataFig. 6).In other words, consistent with the

JND literature??, the results of the same-different task had higher sen-
sitivity than the triangle task, and combined these results suggest that
the quality JND for odoursin humans ranges from 0.0125to 0.15radians
inodorant physicochemical space (Fig. 4c). Atthese angle distances, we
observed several MC-odorants that had ad’<1; thatis, they could not
be distinguished from each other (for example, odorant pairs 86-96,
87-97 and 88-98 in Supplementary Table 3).

The above indistinguishable MC-odorant pairs overlapped in their
componentidentity (Supplementary Table1), yet the extent of overlap
alone did not explain our results. For example, in the large-scale pre-
dicted perceptual similarity experiment (Fig. 2c), the angle distance
was a nearly twofold significantly better predictor than the degree
of overlap (r=-0.69 for angle distance, r = 0.39 for degree of over-
lap, Z=2.893, P=0.002). Moreover, in the predictions for rose, violet
and asafoetida, the overlap has zero predictive value (Extended Data
Table 2). The degree of overlap alone, however, was equally predictive
as the angle distance in the previously published dataset® and in sev-
eral of our analyses (Figs. 1c, f, 4a, c). Thus, to further address this, we
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Fig.4|The measure of smell enables the creation of an olfactory metamer.
a-d,Eachdotisatest performedby agroup of participants. The y axis shows
the percentage accuracy; the xaxis shows the model distance between
odorants (radians). Small circles reflect specific MC-odorant combinations
(eachcircle hasasmalljitter along the x axis for visualization without overlay);
large circles reflect the average at agiven angle distance. The solid blue line is
fittoamovingaverage; thered dashedlineisd’=1.b, ¢, The dashed vertical
black line shows the estimated JND. a, Mean performance for the 50
MC-odorant pairs tested in experiment 4, trial numbers were 48, 56 or 64;
participant numbers ranged from 14 to 32 per comparison (see Methods).

b, Performanceina previously published dataset and experiment 4
combined. Performance for each pair was estimated eitherasinafor datafrom
experiment4 orasinFig.3b for the previously published data®. Correlation
coefficientr=0.43,P<2x10™, n=310 MC-odorant pairs. ¢, Performance in
experiment 5. The pairwise d’was estimated by n=240 independent trials
performed by 30 participants. d, Performance in experiment 6, with three
metamers highlightedinred. The pairwise d’was estimated by n=280
independent trials performed by 35 participants. e, Performancein
experiment 7. Right, for each of 24 participants, three points are shown:
performancein discriminations of R-carvone and S-carvone (blue), R-camphor
and S-camphor (red), and between metamer MC-odorants 243 and 253 (black).
Left, the distribution of d’inthe sample. The inset shows the average group d”
per condition, dataare mean ts.e.m.Performance d’of each participantin
each comparison was estimated using n=32independent trials.

set out to predict the discriminability of completely non-overlapping
MC-odorants for which the predictive value of degree of overlap was
zero. If angle distance remains related to the discriminability of such
MC-odorants, this suggests that we have captured an added aspect
of the link between structure and perception in olfaction. Indeed, in
colour vision, understanding the link between physical stimulus space
and perceptual space enables the creation of mixtures with identical



percept despite zero overlap in the component identity. Such mix-
tures in which the non-overlapping spectral compositions generate
a common colour percept are known as metamers'. In experiment
6, we asked whether a modified angle distance can be used to create
olfactory metamers.

A group of 25 participants conducted a total of 8,000 trials in a
two-alternative same-different task. We used 40 pairs of MC-odorants
that differed by 0.0125, 0.025, 0.05, 0.1 and 0.2 radians, 8 different
pairs for each value (Supplementary Table 1). Each odorant was used
at two different concentrations, to prevent intensity cues. For each
experiment, each participant conducted 320 trials (spread across
6 days), half of which, on average, contained the ‘same”and half of which
comprised ‘different’ MC-odorant pairs.

We again observed in this set comprising non-overlapping
MC-odorants thatd’increased as angle distance increased (F, ,, =7.24,
P=3.1x107) (Fig. 4d). Overall performance with non-overlapping
MC-odorants was higher than in MC-odorants with overlap, and no
angle distance had an overall average of d’< 1. For reasons that we do
not understand, the fit between the measure and performance weak-
ened at the ultra-low angle distance values, a phenomenon that we
also observed with overlapping MC-odorants (Fig. 4a). Although this
prevents us from committing to a strict universal quality JND, at dis-
tances of 0.05 radians and less we nevertheless identify three cases
of MC-odorants that were indistinguishable despite having no com-
ponents in common. Thus, despite noise at the lower angle-distance
values, our model and measure uncovered three olfactory metamers
(odorant pairs 223-233 and 225-235, which had an angle distance of
0.025, and odorant pair 243-253, which had an angle distance of 0.05;
Extended Data Table 2). Each of these metamer pairs was associated
with aunique percept (Extended Data Fig. 8).

The above experiments were designed to measure group perfor-
mance. We can state that the group failed to discriminate between the
metamers, but we cannot make statements with regards to the indi-
vidual participants. To estimate individual variability in olfactory meta-
merism, we designed experiment 7. In this experiment, 24 participants
conducted ahighly sensitive same-different two-interval forced-choice
paradigm, inwhicheach participant conducted 32 trials for every odor-
ant pair in question. This allows us to make statements with regards
to discriminability by the group and by each participant alone. To
provide a reference, we tested three odorant pairs that included a
pair of enantiomers that had previously beenidentified as similar but
discriminable (S-carvone and R-carvone)®, a pair of enantiomers that
had previously been identified as indiscriminable (S-camphor and
R-camphor)*, and the above-identified 0.05-radian-apart metamer
MC-odorants 243 and 253 (important information regarding how to
mix metamersis provided inthe Supplementary Methods). Consistent
with previous results, we observed that S-carvone and R-carvone were
significantly discriminable at the group level, obtaining an average d’
score 0f 2.02 +1.26 (P=8 x 107, bootstrap estimation of the mean).
Moreover, we observed that S-carvone and R-carvone were significantly
discriminable at the individual level for 18 out of 24 (all 18 values: d@’ >0,
P<0.026). By contrast, we observed that S-camphor and R-camphor
were indiscriminable at the group level, obtaining an average d’score
of -1.26 + 0.79 (P> 0.999, bootstrap estimation of the mean). We fur-
ther observed that only one participant could in fact significantly dis-
criminate between S-camphor and R-camphor (participant 8, d’=1.15,
P=0.026).Finally, we also observed that MC-odorants 243 and 253 were
againindiscriminable at the group level, obtaining an average d’score
of-0.37+1.02 (P=0.96, bootstrap estimation of the mean). Moreover,
we observed that only 3 of the 24 participants could significantly dis-
criminate between MC-odorants 243 and 253 (participants 4, 6 and 8,
d’=1.15,P=0.026,d’=1.35,P=0.006 and d’=1.35, P=0.006, respec-
tively). In other words, the inability to discriminate between these two
non-overlapping MC-odorants was pervasive (87.5%), and those who
could discriminate between them, could do so only barely (Fig. 4¢).

Here we have met Bell’s challenge (Fig. 2d) and generated olfactory
metamers (Fig. 4e). This analogy between olfaction and colour vision
wasrestricted by two key differences between these sensory systems.
First, whereasin colour vision one can view two different stimuli simul-
taneously, in olfaction one can smell only one stimulus at atime?. This
adds an inter-stimulus interval to the olfactory comparison, and dif-
ferent inter-stimulus intervals will result in different JNDs. Second,
whereas in colour vision, receptor space is relatively constant across
trichromatic individuals, there is an approximately 30% difference in
receptor space across individuals in olfaction?. Although these two
differences would suggest added variance in olfaction compared with
colour vision, the variability that we observed in olfactory metamer-
ism was not greater than that observed in colour metamerism. This
statement rests not on a lack of variability in olfaction, but rather on
greater variability in colour perception than typically appreciated*”.
For example, any two trichromatic individuals will often disagree on
colour matches?, and the standard deviation in colour metameric
match tasksis between 5and 15%, with outliers that deviate by asmuch
as40% from mean performance?®. We note that variability in our olfac-
tory metameric task was around 15%. In other words, the probability that
individuals will find agiven pair of colour metamers to beindiscrimina-
ble is strikingly similar to the probability of indiscriminability for the
olfactory metamers of experiment 7. This observation, combined with
the existence of olfactory metamers, hints at the potential underlying
importance of this set of results, as amajor questioninolfactionrelates
to the underlying dimensionality of olfactory perceptual space™*°"2,
With that in mind, we observe that the probability for generating two
converging non-overlapping mixtures becomes less probable as dimen-
sionality increases®?*, Therefore, the existence of olfactory metamers
joins several recent efforts®”* to suggest that the perceptual spacein
olfaction has afar lower dimensionality than previously estimated. In
addition, our results haveimplications for various aspects of olfaction,
and foremost for the probability of digitizing smell (Supplementary
Discussion). Realization of these potential implications rests in part
onnecessary future refinement of the current framework. In particu-
lar, we acknowledge the counter-model behaviour at the ultra-low
angle distance values (Fig. 4d). In this case, the expected increase in
indiscriminability between 0.025and 0.0125 radians did not occur (in
fact, we found a trend to the opposite), and we have no explanation
for this. This suggest that we have yet to explain all of the variance in
this system (Supplementary Discussion). Nevertheless, we generated
ameasure that allowed us to meet Bell’s challenge (Fig. 2d), to predict
performance in discrimination tests performed by us and by others
(Fig. 3a) and to create olfactory metamers (Fig. 4e). Thus, we provide
areliable measure of smell.
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Methods

Participants

In total, 199 participants (128 women) aged 19-42 years participated
inthe 7 experiments conducted here. Some participated in more than
one type of experiment, as data collection for this manuscript lasted
forabout four years. Participants were all in general good health, with
noreported history of neurological or mentalillness, and had neither
olfactory deficits nor chronic or acute conditions that involved the
respiratory tracts. All participants provided written informed consent
to procedures approved by the Weizmann Institute IRB Committee,
and all participants were paid for participation.

Location

All experiments were conducted in rooms specially constructed for
human olfaction experiments in the Olfaction Laboratory at Weiz-
mann Institute. These rooms are coated in stainless steel to prevent
odour adhesion over time, and are subserved by rapid air exchange
with humidity and temperature control, as well as HEPA and carbon
filtration. All of these measures minimize cross-trial contaminations.

Odorants

All discrimination tasks were conducted using MC-odorants. All
MC-odorants, except for the three mentioned below, were prepared
specifically for these experiments using 180 monomolecular compo-
nents (the components and mixture formulas are provided in Supple-
mentary Table 1). Three MC-odorants were prepared by C.L. to imitate
the odours of rose, violet and asafoetida (Extended Data Table 2).
Monomolecules were purchased from Sigma-Aldrich. All odorants
were diluted with either 1,2-propanediol or isopropyl myristate (IPM).

Tasks

In all tasks, participants were alone in the experimental room, moni-
tored from an adjacent control room. All interactions were computer
controlled: the selection of jars to sniff was by computer on-screen
indication, and ratings were inputted using a computer mouse that
was used to either mark a visual analogue scale (VAS) or to select the
correctanswers. Intensity and similarity experiments were performed
onaninternal website coded in Dropal. The discrimination experiments
(triangle tasks and same-different tasks) were coded and ran in MAT-
LAB, using the Psychophysics Toolbox extensions %, Allexperimental
sessions were limited to one hour at the most, and were continued
across days.

Intensity ratings. On each trial, the participant received an arbitrarily
marked sniff jar. The participant was instructed to sniff the jar once
andthenenter their perceived intensity rating on a VAS. The intertrial
interval (ITI) was 30 s. The order of the odours was randomized.

Similarity ratings. On each trial, the participant received two arbitrar-
ily marked sniff jars. The participant was instructed to sniff them by
predetermined order (counterbalanced across participants), and then
enter their perceived similarity ratingona VAS. ITIwas40s.

Triangle task. On each trial, the participant received three arbitrarily
marked sniff jars, two containing an identical MC-odorant and one
containing a different MC-odorant. The participants were permitted
only one sampling per odorant, and were instructed to select the odd
odorant. The inter-stimulus interval was self-paced and the ITI was
>30 s (added variability reflecting trial time).

Same-different task. On each trial, the participant received two
arbitrarily marked sniff jars, containing either identical or different
MC-odorants. The participants were permitted unrestricted sampling
per odorant, and were instructed to determine whether the pair was

‘same’ or ‘different’. Theinter-stimulus interval was self-paced and the
ITIwas>30s.

Same-different two-interval forced-choice task. Oneach trial, partic-
ipantreceived four arbitrary sniffjars, comprising two different pairs.
One pairwasidentical and the other was different. The participants were
permitted unrestricted sampling per odorant, and were instructed to
determine which pair was the different one. The inter-stimulus interval
was self-paced, and ITIwas >30s.

Obtaining chemical descriptors

For each odorant, 4,885 physicochemical descriptors were calculated
using DRAGON software®. Out of these descriptors, 21 descriptors
(Extended Data Table1) that had previously been shown to be efficient
for mixture modelling were extracted. Because the descriptors meas-
ure properties on different scales, each of the 21 descriptors was then
normalized toa0-1continuousscale. This was done as follows; the list
of values V4 was extracted for each descriptor. The minimum and
maximum value for each descriptor was found in a list of 4,064 mol-
ecules that were descripted to have asmell. For each odour, the normal-

ized value on that descriptor was computed as: __v=minVa)__ Thep
max(Vg) - min(Vg)

the maximal value for an odour with that descriptor wasexactly 1, and
the minimal value was exactly O and other odours had a value in
between. Avector oflength 21, each valued between O and 1, thenrep-
resented each odour.

Modelling MC-odorants
Each MC-odorant was modelled as a weighted vector summation of'its
components, generating a 21-dimensional representation of each
MC-odorant. In this modelling, we assume that no chemical interactions
occur between MC-odorant components, and knowingly overlook this
possibility, which remains a source of possible unexplained variance.
The weights for each monomolecule were determined according to
its perceived intensity. The function that converts perceived intensity
to vector weights was assumed to be psychometric in the form of
1 Itsparameters,aand B, were fitted using the data of experiment
1+e_xﬁTa
L. Thisis summed up to the following equationmy =y ,

1

Xim-13 Xor
X 1+e 0.07
where mstands for the mixture, x for the components, and m,; and x,,

are the 21-dimensional representations of m and x. Additionally, x;,.,
stands for the normalized intensity rating of each component. Here,
the normalization process relates to the following process. First, the
intensity ratings of each individual are normalized between the mini-
mal and maximal values of that participant to obtain values between
0 and 1. Next, these ratings are averaged across the poll of each par-
ticipant. According to the between-individual variance in ratings, we
setanideal poll to n> 25 participants.

Obviously, a and S could be better optimized for each individual
component, yet here we opted to develop a universal set of values,
reflecting an optimal molecular-identity-independent compromise.

Distance between odours

Thedistance functionbetween the vector that represents MC-odorant
u and the vector that represents MC-odorant v was computed as the
angle between them in the 21-dimensional space. It was given by:
6(u, v) =arccos (u whereu- visthe dot product between the vec-

[ul-|v| . .
torsand |u| and |v| are their Euclidean norms.

Statistical analysis
All statistical analysis was conducted in MATLAB release 2019b (The
MathWorks).

Density estimation. All density estimations for graphical purposes
were performed using kernel methods (Epanechnikov kernel).
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Pearson'’s correlation coefficient. All correlations are Pearson’s cor-
relation coefficients. The Pvalues derived from them are tested against
the H, hypothesis that the correlation equals zero.

Calculating correlations with or without comparisons of identical
MC-odorants. In estimating the prediction of perceived similarity
from angle distance, we can calculate the correlation either with (red
linesinthe figures) or without (black linesin the figures) comparisons
betweenidentical MC-odorants (both red and blacklines are shownin
Figs.1c,d,f,2b, cand Extended DataFigs.3a, b, e, f, h,i,4a, 5a, c; only red
lines are shownin Fig. 3a and Extended Data Fig. 4b, c; only black lines
areshowninExtended DataFig.3d, g). There are arguments for either
path; in generating predictions of perceived similarity from odorant
structure, we are trying to capture two sources of variance: the differ-
ence between people and the difference between molecules. One could
argue thatin comparisons between identical MC-odorants, we have ne-
gated the variance associated with molecules, and therefore we should
not consider this correlation. This would be unarguable if people had
consistently rated the perceptual similarity of identical MC-odorants
at100%, or at minimum, always rated the perceptual similarity of iden-
tical MC-odorants as the same. Neither of these outcomes, however,
occurred. Thus, one could argue that including these comparisons
isinformative for capturing the representation of olfactory percep-
tual space. In any case, here we present both outcomes, and notably
put forward the method that in fact diminishes the impact of our new
algorithm. In other words, we highlight the less rewarding outcome.

Estimation of performance as a function of angle distance in the
triangle task. To estimate the performance on the triangle test as a
function of the angle distance, we sorted the data according to the com-
puted angle distance, and used a moving average method to estimate
performance at each point. Then, a cubicinterpolation was performed
to generate a continuous function. Because the triangle test requires a
relatively large number of trials to achieve satisfying statistical power,
we used 47 trials per point estimation.

Derivation of d'. To analyse the forced choice experiments, we used
methods from signal-detection theory. d’is a standard measure for
the discriminability of two different stimuli. One advantage of using
d’isthatitis consistent between different paradigms, and enables the
comparison of different discrimination tasks. Here, power analysis and
d’calculation for the triangle test was derived according a previously
published study®, and power analysis computation for the same-
different task was calculated as described previously?. Calculation of
d’was done as described previously®*° using the differences method.
The same-different two-interval forced-choice experiment was carried
out as described previously**2.

Computing d’ per MC-odorant pair in the triangle task. The measure
of d’was computed for each MC-odorant pair. The percentage of cor-
rect responses out of all of the responses of all participants was taken
for thisanalysis. In the previously published dataset", pairs were rated
once for each participant.Inthe data of experiment 4, each MC-odorant
was rated either once or twice in two different sessions. In the case of
two ratings by the same participant, both sessions responses were
used separately, thatis, asif they were rated by different individuals.

Computing d’ per MC-odorant pair in the same-different task.
To compute d’for each MC-odorant pair, false-positive answers and
true-positive answers were accumulated for all participants. That way,
each pair had asufficient number of comparisons, in order to have suf-
ficient power for measuring d’. This method allowed testing of large
number of pairs (50) inareasonable number of comparisons. To control
for method biases, the same analysis was repeated after the answers

ofthe participants were shuffled between pairs, in a different way for
each participant. This method was used for both experiment 5 and 6.

Statistical considerations regarding the number of participants
For the similarity experiments, the number of participants and
comparisons follows a previous study?.

For the triangle test, the number of participants was chosen to allow
sufficient statistical power for a discrimination analysis at the group
level, requiring that each participant rates each pair once. This provided
power to detect large differences of d’< 2 for aMC-odorant pair, and
d’<1foragroup of 10 pairs at each angle distance.

For the same-different tasks the same considerations were followed;
here we also allowed more than one comparison per participant. Experi-
ments 5 and 6 had the same number of repetitions for each pairwise
comparison per participant. At the angle distance level, in experiment 6
there were 8 instead of 10 pairs, and thus more participants conducted
this experiment. For the same-different two-interval forced-choice
task individual-level considerations were taken, as well as pairwise
comparison-level considerations. We therefore used fewer odours, but
more repetitions (72 instead of 8) per odour per participant.

Summary of the experiments

Experiment 1(similarity). In experiment 1,24 participants (14 women)
rated 44 monomolecules for their intensities. Eachmolecule wasrated
twice during two sessions on two different days. Next, these 44 mole-
cules were used to build 14 MC-odorants as described previously. Then,
95 of these MC-odorant pairs (all of the pairwise different molecules
and 4 the same molecules) were rated for similarity by 23 participants.
Finally, the 23 participants rated the intensity of the 14 MC-odorants,
eachMC-odorant was rated 3 timesin a single session.

Experiment 2 (similarity). Inexperiment 2,29 participants (19 women)
rated 43 new monomolecules for their intensities. Each molecule was
rated three times during three sessions on three different days. Next,
these 44 molecules were used to build 14 MC-odorants similar to ex-
periment 1. Then, 100 of these MC-odorant pairs (all of the pairwise
different molecules and 9 the same molecules) were rated for similarity
by 29 participants. Finally, the 29 participants rated the intensity of the
14 MC-odorants, each MC-odorant was rated 3 times in one session.

Experiment 3 (similarity). Inexperiment 3,15 participants (12 women)
rated 42 monomolecules for their intensities. Each molecule was rated
twice in two sessions on two different days. Next, these 42 molecules
were used to build 11 MC-odorants similar to experiment 1; in addi-
tion, we used 3 different MC-odorants prepared by C.L. that imitate
the odours of rose, violet and asafoetida. Then, 52 of these MC-odorant
pairs (allof the 3 comparisons betweenrose, violet and asafoetidaand
additional 49 randomly selected MC-odorants) were rated for similar-
ity by 26 participants (19 women), each MC-odorant was rated 3 times
inone session.

Experiment 4 (discrimination). In experiment 4, 14 participants
(8 women) rated 50 monomolecules for their intensities. Each molecule
was rated twice in two sessions on two different days. Next, these 50
molecules were used to build 100 MC-odorants (50 pairs); this time, the
MC-odorants were automatically found, such that each pair was one
of five different angle distances (0.0125, 0.025, 0.05, 0.2 and 0.4 radi-
ans apart) from each other (10 pairs per distance). Then, 20 of these
pairs (those at distances 0.2 and 0.05) were rated for oddity (triangle
test) by 14 participants (10 women); each pair was rated twice by each
participant. Another 20 pairs (those at distances 0.4 and 0.025) were
rated for oddity (triangle test) by 32 participants (27 women); each pair
was rated once by each participant. The remaining 10 pairs (those at
distance 0.0125) were rated by 33 participants (20 women); each pair
was rated once by each participant.



Experiment 5 (discrimination). In experiment 5, we generated an ad-
ditional 20 MC-odorants (10 pairs) at a distance of 0.1 radians apart
using the same 50 monomolecular components used in experiment
4.Then, these 10 pairs together with the 40 pairs used in the previous
experiment (at distances of 0.0125,0.025,0.05and 0.2) wereratedina
same-different task by 30 participants (24 women). Each MC-odorant
was prepared at two concentrations: one as written (100%) and the other
asal0%dilutionin IPM. For the ‘same’ comparisons, MC-odorants with
different dilutions were used twice for each odour, for the ‘different’
comparisons all four combinations of the dilutions were used. Intotal,
each pair was rated eight times by each participant. In summary, 30
participants repeated the task 400 times, 8 times for each of the 50
pairs. The participants completed the task in 8 sessions (50 ratings
per session).

Experiment 6 (discrimination). In experiment 6, 14 participants (10
women) rated 72 monomolecules for their intensities. Each molecule
was rated at three different concentrations for a total of 216 intensity
ratings, each molecule was rated once at each concentration. Each
participant completed the ratings in four sessions on different days.
Next, these 50 molecules were used to build 80 MC-odorants (40
pairs); this time the MC-odorants were automatically found, such
that each pair was in one of five different angle distances from each
other (eight pairs per distance), and such that MC-odorant assigned
to a pair will not overlap in their components. Presentation of the
stimuli followed experiment 5. Each MC-odorant was also prepared
inadiluted version (10% in IPM). Then, these 40 pairs were rated in
a same-different task by 35 participants (21 women), each pair was
rated 8 times. For the ‘same’ comparisons MC-odorants with dif-
ferent dilutions were used twice for each odour, for the ‘different’
comparisons all four combinations of dilutions were used. In total,
each pair was rated eight times by each participant. In summary, 35
participants repeated the task 320 times, 8 times for each of the 40
pairs. The participants completed the task in 6 sessions (52 or 54
ratings per session).

Experiment 7 (discrimination). In experiment 7, one pair of meta-
meres from the previous experiment was used (MC-odorants 243 and
253), in addition to two pairs of enantiomers (R- and S-carvone and
R- and S-camphor). Each MC-odorant was also prepared in a diluted
version (10% in IPM). Then, these 3 pairs were rated on a same-differ-
ent two-interval forced-choice task by 24 participants (18 women);
each participant rated each pair 32 times in three different sessions
on different days. On each trial, each MC-odorant was presented in
one of the two dilutions.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

All data generated during this study are included in the Article and
its Supplementary Information. All the odorants used are included in
Supplementary Table 1, all behavioural similarity results are included
in Supplementary Table 2 and all behavioural discrimination results
areincluded in Supplementary Table 3. An additional external data-
set used can be found in the supplementary material of a previously
published study®.

Code availability

The custom code used to process the data collected in this study is
available at https://gitlab.com/AharonR/olfaction.
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Extended DataFig.1| The odorants used projectedinto perceptual space.
a, Asinthe maintext, the 148 molecules used across experiments overlaid on
4,046 molecules within the firstand second principal components of the
21-descriptor physicochemical space. b, The same molecules within the first
and second principal components of perceptual space. Perceptual space data
for 470 molecules asbackground (data from previously published studies*’),
containing 115 of the 148 molecules that we used. ¢, Histograms showing the
experiment odorant distribution on each principal component (PC) inthe

range of PC1-PC6. The principal components were computed asina, onthe
21-descriptor physicochemical space. Thereis alarge declinein the explained
variance from the third principal component onward. d, Histograms showing
thedistances between all odorant pairs, per experiment. The distances are
summed (blackline) for the overall distribution. Although monomolecules
were not used as a stimulus for discrimination, this is to show that there was no
biasintheirselection, because for each experiment the distances of the pairs
spanned arange of distances.



Experiments
1,2,3

Experiment 4

Experiments
5,6

Experiment 7

INTENSITY
RATINGS FOR

43/44 MONO
MOLECULES

INTENSITY
RATINGS FOR
42 MONO
MOLECULES

INTENSITY
RATINGS FOR

50/72 MONO
MOLECULES

T
O\
®

WEAKEST
STRONGEST

=
O\
®

WEfEST
STRONGEST

T
O\
®

WEAKEST
STRONGEST

SIMILARITY

RATINGS FOR
95 PAIRS
OF MIXTURES

DISCRIMINATION
TEST FOR
50 PAIRS
OF MIXTURES

DISCRIMINATION
TEST FOR
50/40 PAIRS
OF MIXTURES

DISCRIMINATION
TEST FOR

50/40 PAIRS
OF MIXTURES

d
o

IDENTICAL

COMPLETELY
DIFFERENT

PAIR ON LEFT

Extended DataFig.2|Experimental flowchart. Ordered depiction of the tasks across the sevenreported experiments.

PAIR ON RIGHT <



Article

a 4
= r=-0.61,p<6-1071"
o § r=—-057,p<4-107
o8 P
T ¢
E
S
0.
D
.S
0.
Py
0.
£
n
0
0 0.1 0.2 0.3
Intensity difference
d, 1 - =
§ r = 0.36, p =0.02
=08t r=0.36, p=0.02
£
[e]
(=
}’0.6
§0.4
°
L
20.2
o
<
o
0
0.5
Intensity rating (normalized)
g9, 1
) r=0.68p<7-1077
%0_8 r=0.68 p<7-1077
E
os
2
‘@
504
=
ke
50.2
o
0

0.5
Intensity rating (normalized)

T

Extended DataFig. 3 | See next page for caption.

(o

e

Similarity rating (normalized)

Angle Distance - w/predicted intensity(rad)

-

o
®

o
[}

o
~

o
¥

-

o
®

o
[}

o
)

0

Angle Distance - w/predicted intensity(rad)

o oo
S o oo

o
)

I
IS

r=-0.22, p=0.03
r= 0.01.1, p=0.68

0 0.1 0.2 0.3
Intensity difference

F=__"’

r=053,p<3-1078
r=029 p<6-107°

0 0.5 1
Angle Distance - w/rated intensity(rad)

-

r=073p<2-10°1
r=056,p<7-107°

0

0 0. 1
Angle Distance - w/rated intensity(rad)

eI

0.8

0.6

0.4

0.2

Cross-Validated Correlation

y gtmg (gormalged)
S o [eo)

Similarit:
o
N

normalized)
o S
o o)

ty rating (
N

Similari
o
N

0 0.2

n=134 n=422 n=346 n=58
K=8 K=10 K=10 K=5
[eX¢]
. @
2" g
(e}
o o
(<} ® o
o
O o
9]
o
o
10-* 107 10 1077
Concentration (vol / vol)
g = —0.50, p< 3-1077
¢ 7=-0.29,p<6-107°
‘ L]
0 0.2 0.4 0.6 0.8

Angle distance (radians)

g

r=—0.74,p<9-10"1
| r=—054,p<5-10°

0.4 0.6
Angle distance (radians)

—

0.8



Extended DataFig. 3 | Factoring and predicting odorant intensity.

a,b, Factoring odorantintensity. a, Inexperiment1, the overallMC-odorant
intensity could have been used to determine similarity, n=23 participants for
intensity ratings and 22 participants for similarity ratings. Correlation
coefficientr=-0.61,P<6x10™",n=95(r=-0.57,P<6 x10™", n=91, for
comparisons excludingidentical pairs). Tocheck whether intensity similarity
and angle-distance similarity account for overlapping information, we builta
linear model considering the two factors. We found that this two-factor model
could account for larger variability than each of the models alone (adjusted
R*=0.37versusadjusted R?=0.32 for intensity difference and adjusted R*=0.16
forangle distance). Both factors were significant in this model (both P<0.005).
In other words, although intensity differences could explain variancein the
results, angle distance was asignificant factor as well, and could explain
independentvariance.b, The same analysis for experiment 2. Here, MC-
odorantintensity was weakly, albeit significantly correlated with MC-odorant
similarity (n=30 participants for intensity ratings and 29 participants for
similarity ratings, correlation coefficient r=-0.22, P=0.03, n=95) and this
correlation was entirely explained by comparing odorants to themselves, and
oncethese comparisons wereremoved, the correlation was lost altogether
(r=0.04,P=0.68,n=91for comparisons excludingidentical pairs). Thus,
experiment 2 largely negated this overall concern. c-i, Predicting odorant
intensity. ¢, Estimated performance of predicted intensity model as
correlationbetween actual and predicted intensity on k-fold test-set
(Supplementary Methods). Expected variance estimated using cross-
validation (k varied according to the number of molecules (n) usedineach
concentration; k=8,10,10 and 5,and n=134, 422,346 and 58 for
concentrationsof107,1073,10°and 107, respectively). In the violin plot large
points are averages of k-folds, vertical lines are quartiles 2-3. All four models
have correlations significantly larger than zero, with peak at the

107 concentration (average r=0.67).d-i, We used the 10 concentration data
(Supplementary Methods) to devise a predictive model for intensity ratings,
this time excluding molecules used in experiments1and 2 to avoid overfitting.
d, g, Intensity predictions generated by this model for monomolecule

intensitiesinexperiments1(d) and 2 (g). Thexaxisisactual intensity (averages
of n=23 participants, 2 repetitions each for experiment1;and n=29
participants, 3repetitions each for experiment 2) and the y axisis predicted
intensity. We show correlationsin black and inred to be compatible with other
panels, although no zero intensity odours were included. d, Correlation
coefficientr=0.36, P<0.02,n=44 monomolecules. g, Correlation coefficient
r=0.68,P<7x107,n=43monomolecules. e, h, Angle distance estimation
using theintensity factor. Theintensity factor was calculated based on
predictedintensity (d, g) asin Fig. 1e; these predicted factors were then used to
model MC-odorants. Finally, angle distances between pairs of MC-odorants
were calculated according to predicted intensity compared to those obtained
byratedintensity (asusedin the main text). e, Correlation coefficientr=0.53,
P<3x1078,n=95(r=0.29,P< 6 x107%, n=91for comparisons excluding identical
pairs). h, Correlation coefficientr=0.73,P<2x107",n=95(r=0.56, P<7x10°°,
n=91for comparisons excludingidentical pairs). f, i, Prediction of measured
similarity from angle distances calculated using predicted intensity (similar to
Figs.1f, 2c). Inthe scatter plot, each dot is a pairwise comparison of MC-
odorants; theyaxis shows theiractual similarity as rated by participants (for
experiment1,n=22,2repetitions; forexperiment2, n=29, 2 repetitions) and
thexaxis shows their angle distance according to predicted intensity. Red
regression linesinclude comparisons ofidentical MC-odorants (zero angle
distance), black regression lines are with those comparisons removed.

f, Correlation coefficientr=-0.50,P<3x107,n=95(r=-0.29,P<6x1073,n=91
for comparisons excluding identical pairs).i, Correlation coefficient r=0.74,
P<9x107,n=95(r=0.54,P<5%x1078, n=91for comparisons excluding
identical pairs).f, i, Correlations between previous and current results were not
significantly different. f, Experiment1, difference betweenresultusing rated
and predicted monomoleculeintensities (r=-0.41and r=-0.29, respectively)
was not significantly different (Z=0.91, P=0.36, two-tailed, n=91
comparisons). i, Experiment2,same procedure, differencebetweenr=-0.69
and r=-0.54 was notsignificantly different (Z=-1.62, P=0.011, two-tailed,
n=91comparisons). We summarize that thisisa promising direction for the
future, but beyond the scope of this manuscript.
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Extended DataFig. 4 | Variability in predictions of perceptual similarity
fromstructure in olfaction and audition. a, Recreation of Fig. 2c, which
shows our underlying results, with the point of maximal variance highlighted
withablueellipse.b, Dataextracted from figure 22 froma previously published
study'®, which shows the state-of-the-art predictions from around AD 2000 of
sound similarity fromsound structure (overlaying points may be missing, as
these datawere extracted from the graph). Correlation coefficientr=-0.80,
P<2x107% n=462.c, Dataextracted from figure 3 of a previously published
study", which shows the state-of-the-art predictions fromaround Ap 2014 of
sound similarity from sound structure. Note that we formatted the data to
comparethe datapointsto our databy putting the datainto the same graph
colour and structure and by reversing the axes. Correlation coefficient
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r=-0.84,P<3x107%,n=96.d, Comparison of points of maximal variance
across datasets (blue, olfaction; red and green, audition). In audition
technology, the major standard is PEAQ—the ITU standard for objective
measurement of perceived audio quality. PEAQ defines the subjective
difference grade, whichis the equivalent of our ‘perceived similarity’, and the
objective difference grade (ODG), whichis the equivalent of our ‘angle
distance’. The field is tasked with developing different objective difference
grades, which canbe made of various combined measures such as frequency,
timbre, power, and so on. We observe that the overall correlationin auditionis
not very different fromolfaction, and that the variability ata given physical
distanceis perhaps even greaterinaudition compared with olfaction.
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a, ¢, Scatter plotsomwhich each dotis a pairwise comparison of two odorants;
the yaxis shows their actual similarity as rated by participants and the x axis
shows their distance accordingto the model.a, Datafrom the experiment
containing rose, violet, asafoetida and 11 additional MC-odorants. All
comparisons containingrose areshowninred, all comparisons containing are
shownvioletinviolet and all comparisons containing asafoetidaare shownin
mustard (n=29 participants, 2 repetitions each). Correlation coefficient
r=-0.55,P<3x107%,n=52(r=-0.31,P<0.03, n=48 for comparisons excluding
identical pairs). b, Rated similarity versus angle distance betweenrose, violet
and asafoetida comparisonsin this experiment. The rated similarity data (dark
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blue) are the average of n=29 participants, mean of 2 repetitions. Dataare
mean +s.e.m. Blue circles areindividual ratings of similarity. ¢, Datafrom
experiments1and 2 used for model building, taken from Figs. 1f, 2c.
Correlation coefficientr=-0.66,P<3x10%,n=190 (r=-0.55,P<2x107",
n=182for comparisons excludingidentical pairs).d, End result of predicted
versus actual similarity of rose, violet and asafoetida, rated similarity (dark
blue)isasinb. Datafor predicted similarity (light blue) presented as mean
prediction using the linear regression model describedin ¢ (red line); the error
barsshow the confidence intervals (P=0.05) for this model prediction.

See Supplementary Methods for transformation from angle distance to
predicted similarity.
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Extended DataFig. 6 | Variability inindividual performance. a, Performance  displayed byindividual participants rather than by odorant comparison,
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by performance. The zaxis and colour both code participant performance estimatedinFig.3c. white,d’=1;red,d’<1; blue,d’>1.
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Extended DataFig.7 | Testing of significance by shuffling. We randomly
shuffled performance outcome in the previously published dataset®, and in
experiments 4-6.For each MC-odorant pair, we assigned performance (means
ofthe participants) randomly 10,000 times, and then computed the
correlation between angle distance and ‘shuffled’ performance. a, A copy of
Fig.3b.b, Aset of 100 traces (randomly picked for visualization purposes) of a
moving average of shuffled data, similar to the black linein a.Red dashed linein
aandbis performance ofd’=1(41.8% correct) c-f, Histogram of correlations
betweenangle distance and shuffled performance.Redlineis the correlation
of the observed data. ¢, The previously published data®. The correlation of
observed data (r=0.50,n=310 comparisons) outperforms the correlation of
shuffled data(P<107*,n=10,000 repetitions). d-f, Angle distanceis shownona
logscale.d, Experiment4, the correlation of observed data (r=0.51,n=50
comparisons) outperforms the correlation of shuffled data (P<10™*,n=10,000
repetitions). e, Experiment 5, the correlation of observed data (r=0.42,n=50
comparisons) is significantly stronger than the correlation of shuffled data
(P=0.0009,n=10,000 repetitions).f, Experiment 6, the correlation of
observeddata (r=0.53,n=40 comparisons) is significantly stronger than the
correlation of shuffled data (P=0.0013,n=10,000 repetitions). g-i, Same as
d-f, only hereangle distance was analysed using alinear rather than

logarithmicscale. g, Experiment4, the correlation of observed data (r=0.61,
n=>50 comparisons) outperforms the correlation of shuffled data (P<107*,
n=10,000repetitions). h, Experiment 5, the correlation of observed data
(r=0.43,n=50 comparisons) is significantly stronger than the correlation of
shuffled data (P=0.0015,n=10,000 repetitions).i, Experiment 6, the
correlation of observed data (r=0.45,n=40 comparisons) outperforms the
correlation of shuffled data (P<107*,n=10,000 repetitions). j-1, Here we verify
the validity of the choice of performance threshold, namely d’=1, in our data.
For this verification, we calculate the null distribution for d’for the discrimination
tasksinexperiments 4-6. To generate ameaningful distribution, we carefully
choose the shufflingin this analysis. For our data, we shuffled the correct
responses for each participantin each session, and assigned the responses to
different MC-odorant pairs. For each participant, we used a different label
assignment; this way we disentangle the difficulty of the task, and produce a
statisticonthe frequency at which one would expect each d’by chance. The
histograms of performance in the different experiments are shownin the case
inwhichthe dataof the participants have been shuffled participants. the red
areas show thebottomand top 5%; the greylineisd’=1.j, Experiment 4.

k, Experiment5.1, Experiment 6.
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Extended DataFig. 8| Perceptualindependence of metamers. We wondered
whether metamers are simply instances of ‘olfactory white’. This would imply
that the difference between (not within) the 3 metamer pairs would be under
0.05radians. To address this question, we measured the distances between the
3 metamer pairs, which are as follows: pair 1and pair 2, 0.11 radians; pair 1and
pair3,0.13 radians; pair 2 and pair 3,0.07 radians. In other words, each
metamerisadistinct odour. Moreover, we next compared the metamers to
‘olfactory white’. We selected the ‘best’ white froma previously published
study®and measured its distance from each of the metamers. The obtained
minimal distances were 0.25,0.24 and 0.24, all of which are much higher than
0.05radians. One may note that the white in the previous study® may not have
been ‘true White’, asindeed that study did not have the underlying

computational framework developed here. Moreover, that study was restricted
to about 30 components. To address this, we generated 1,000 virtual versions
of white odours, by combining different sets of 100 components. We observe
thatall mean distances between the metamers and these whites are above
0.1radians, and that the minimal distance of any pair to any whiteis larger than
0.05radians. a-c, Histograms show distances between current metamer pairs
tothe1,000different white odours that we generated. Distance between one
odour (of the metamer pair) to the whites is showninblue, and distance
between the other odour (of the metamer pair) to the whitesisshowninred.
Circular points show distances of each odour in the pair to the three previously
described white odours®. Each panel shows one of the three metamer pairs
reported in this paper.
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Extended Data Table 1| The 21 physicochemical descriptors used for the optimized angle model

No. Indexoutof Abbreviation Description
4885
descriptors

1 45 nCIR Number of circuits (constitutional descriptors).

2 76 ZM1 First Zagreb index M1 (topological descriptors).

3 97 GNar Narumi geometric topological index (topological descriptors).

4 122 S1IK 1-path Kier alpha-modified shape index (topological descriptors).

5 187 piPC08 Molecular multiple path count of order 08 (walk and path counts).

6 936 MATSI1v Moran autocorrelation — lag 1 / weighted by atomic van der Waals
volumes (2D autocorrelations).

7 942 MATS7v Moran autocorrelation — lag 7 / weighted by atomic van der Waals
volumes (2D autocorrelations).

8 984 GATSI1v Geary autocorrelation — lag 1 / weighted by atomic van der Waals
volumes (2D autocorrelations).

9 1492 Eig05 AEA(bo) Eigenvalue n. 5 from augmented edge adjacency mat. weighted by bond
order.

10 1356 SM02 AEA(bo) Spectral moment of order 2 from augmented edge adjacency mat.
weighted by bond order.

11 1371 SM03 AEA(dm) Spectral moment of order 3 from augmented edge adjacency mat.
weighted by dipole moment.

12 1378 SM10_AEA(dm) Spectral moment of order 10 from augmented edge adjacency mat.
weighted by dipole moment.

13 1381 SM13 AEA(dm) Spectral moment of order 13 from augmented edge adjacency mat.
weighted by dipole moment

14 1103 SpMin3_Bh(v) Smallest eigenvalue n. 3 of Burden matrix weighted by van der Waals
volume Burden eigenvalues.

15 1806 RDF035v Radial Distribution Function - 035 / weighted by van der Waals volume.

16 2191 Glm 1% component symmetry directional WHIM index / weighted by mass.

17 2202 Glv 1% component symmetry directional WHIM index / weighted by van der
Waals volume.

18 2213 Gle I8 component symmetry directional WHIM index / weighted by
Sanderson electronegativity.

19 2248 G3s 3™ component symmetry directional WHIM index / weighted by I-state.

20 2452 R8u+ R maximal autocorrelation of lag 8 / unweighted.

21 2646 nRCOSR Number of thioesters (aliphatic).

The previously identified 21 descriptors® are shown. The first column is the descriptor number (ranging from 1to 21). The second column is the descriptor index in Dragon software®. The third
column is the descriptor abbreviation in Dragon software®. The fourth column is the full definition of each descriptor.



Extended Data Table 2 | Formulas for rose, violet, asafoetida and for three olfactory metamers

Experiment #in MC-odorant Ingredient Percent in MC-odorant/ W (g) Intensity Concentration CID Odor
3 1 Citronellol Laevo 22g 53 100% 8842 Rose
3 2 Damascenone 0.2g 75 100% 5366074 Rose
3 3 Geraniol Pur 2g 50 100% 637566 Rose
3 4 Linalol 25g 60 100% 6549 Rose
3 5 Phen Eth Alc Pure 30g 40 100% 6054 Rose
3 6 Rose Oxyde Laevo 0.1g 70 100% 1712087 Rose
3 7 Triplal 0.5g 80 100% 93375 Rose
3 8 Cis-3-Hexenyl Isobutyrate 0.6g 70 100% 5352539 Rose
3 9 Citronellyl Acetate 8g 45 100% 9017 Rose
3 10 Citral 0.5g 75 100% 638011 Rose
3 11 Methyl Iso Eugenol 2g 40 100% 7128 Rose
3 1 Methyl lonone Beta 10g 50 100% 5375218 Violet
3 2 Cis-3-Hexenyl Acetate 0.2g 60 10% 5363388 Violet
3 3 Phenyl Ethyl Isobutyrate 2g 45 100% 7655 Violet
3 4 Linalol 78 60 100% 6549 Violet
3 5 Alpha lonone 20g 55 100% 5282108 Violet
3 6 Geonol 0.5g 35 0.01% 1213 Violet
3 7 lonone Beta 10g 50 100% 638014 Violet
3 8 Cis-3-Hexenol 0.5g 65 100% 5281167 Violet
3 9 Nonadienol 0.2g 60 1% 34134 Violet
3 10 Glycolierral 5g 35 100% 111418 Violet
3 11 Hedione High Cis 20g 35 100% 102861 Violet
3 1 Meth Meth Thiopropionate 2g 70 100% 61641 Asafoetida
3 2 PyrazoMethoxy 0.1g 1 1% 520098 Asafoetida
3 3 Meth Pentenoic Acid 1g 45 100% 18458 Asafoetida
3 4 Sulfox DIPG 0.2g 65 1% 61982 Asafoetida
3 5 Isolongifolene 30g 15 100% 11127402 Asafoetida
3 6 IPM 30g 2 100% 8042 Asafoetida
3 7 Dimethyl Sulfide 0.1g 70 1% 1068 Asafoetida
3 8 Galbanolene Super 0.1g 53 10% 5367412 Asafoetida
3 9 Isovalerianic Acid IPM 0.2g 50 10% 10430 Asafoetida
3 10 Phenyl Acetic Acid 1g 57.5 100% 999 Asafoetida
6 1 - 10% 39 1.00% 263 MC-odorant #223
6 2 - 10% 27 0.10% 660 MC-odorant #223
6 3 - 10% 22 0.10% 999 MC-odorant #223
6 4 - 10% 28 1.00% 1213 MC-odorant #223
6 5 - 10% 45 0.10% 6501 MC-odorant #223
6 6 - 10% 60 10.00% 9017 MC-odorant #223
6 7 - 10% 60 10.00% 82227 MC-odorant #223
6 8 - 10% 34 10.00% 91497 MC-odorant #223
6 9 - 10% 55 1.00% 637563 MC-odorant #223
6 10 - 10% 64 10.00% 5365049 MC-odorant #223
6 1 - 11.1% 23 10.00% 6106 MC-odorant #233
6 2 - 11.1% 30 0.10% 6544 MC-odorant #233
6 3 - 11.1% 30 1.00% 7059 MC-odorant #233
6 4 - 11.1% 31 1.00% 10890 MC-odorant #233
6 5 - 11.1% 31 10.00% 62240 MC-odorant #233
6 6 - 11.1% 49 1.00% 62378 MC-odorant #233
6 7 - 11.1% 30 0.10% 1712087 MC-odorant #233
6 8 - 11.1% 45 1.00% 5352438 MC-odorant #233
6 9 - 11.1% 30 1.00% 5363374 MC-odorant #233
6 1 - 10% 32 0.10% 1213 MC-odorant #225
6 2 - 10% 47 1.00% 6501 MC-odorant #225
6 3 - 10% 28 10.00% 6997 MC-odorant #225
6 4 - 10% 46 10.00% 7600 MC-odorant #225
6 5 = 10% 49 10.00% 7749 MC-odorant #225
6 6 - 10% 55 1.00% 10882 MC-odorant #225
6 7 - 10% 56 1.00% 439570 MC-odorant #225
6 8 - 10% 26 0.10% 5284503 MC-odorant #225
6 9 - 10% 69 10.00% 5352438 MC-odorant #225
6 10 - 10% 26 0.10% 5363374 MC-odorant #225
6 1 - 7.14% 27 0.10% 263 MC-odorant #235
6 2 - 7.14% 32 1.00% 326 MC-odorant #235
6 3 - 7.14% 46 0.10% 7406 MC-odorant #235
6 4 - 7.14% 42 0.10% 7519 MC-odorant #235
6 5 - 7.14% 46 1.00% 7966 MC-odorant #235
6 6 - 7.14% 30 10.00% 8042 MC-odorant #235
6 7 - 7.14% 39 1.00% 8174 MC-odorant #235
6 8 - 7.14% 60 10.00% 9017 MC-odorant #235
6 9 - 7.14% 31 1.00% 10890 MC-odorant #235
6 10 - 7.14% 43 0.10% 22201 MC-odorant #235
6 11 - 7.14% 48 0.10% 61072 MC-odorant #235
6 12 - 7.14% 44 1.00% 638014 MC-odorant #235
6 13 - 7.14% 48 0.10% 5323652 MC-odorant #235
6 14 - 7.14% 64 10.00% 5365049 MC-odorant #235
6 1 - 10% 23 10.00% 6106 MC-odorant #243
6 2 - 10% 30 0.10% 6544 MC-odorant #243
6 3 - 10% 30 1.00% 7059 MC-odorant #243
6 4 - 10% 42 0.10% 7519 MC-odorant #243
6 5 - 10% 46 1.00% 7966 MC-odorant #243
6 6 - 10% 46 0.10% 439570 MC-odorant #243
6 7 - 10% 29 0.10% 637511 MC-odorant #243
6 8 - 10% 48 0.10% 5323652 MC-odorant #243
6 9 - 10% 28 1.00% 5363233 MC-odorant #243
6 10 - 10% 64 10.00% 5365049 MC-odorant #243
6 1 - 8.33% 46 10.00% 325 MC-odorant #253
6 2 - 8.33% 46 0.10% 7406 MC-odorant #253
6 3 - 8.33% 55 1.00% 7710 MC-odorant #253
6 4 - 8.33% 32 0.10% 7731 MC-odorant #253
6 5 - 8.33% 42 10.00% 7888 MC-odorant #253
6 6 - 8.33% a5 0.10% 8130 MC-odorant #253
6 7 - 8.33% 55 1.00% 10882 MC-odorant #253
6 8 - 8.33% 40 0.10% 11002 MC-odorant #253
6 9 - 8.33% 58 0.10% 26331 MC-odorant #253
6 10 - 8.33% 45 1.00% 638011 MC-odorant #253
6 11 - 8.33% 69 10.00% 5352438 MC-odorant #253
6 12 - 8.33% 61 10.00% 5363374 MC-odorant #253

These formulas for rose, violet and asafoetida were provided by C.L. The first column is the experiment in which the odours were used. The second column is the number of components in the
mixture. The third column is the ingredient name. The fourth column is either absolute weight in the mixture (in grams) or the percentage in the mixture. The fifth column is the rated intensity of
the ingredient. The sixth column is the ingredient concentration (vol/vol). The seventh column is the PubChem chemical identifier number (CID). The eighth column is the MC-odorant in which
the ingredient was used.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a | Confirmed

E The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

E A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

E The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection MATLAB Release 2017b, The MathWorks, Inc., Natick, Massachusetts, United States. Psychophysics Toolbox Version 3 (PTB-3) and an
internal website coded in Dropal
Data analysis MATLAB Release 2019b, The MathWorks, Inc., Natick, Massachusetts, United States. Dragon 6, Talete SRL, Italy.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All the data that support the findings of this study are uploaded with the manuscript.

All raw behavioral data is published as supplementary material. All the odorants used are in Data File #1, all behavioral similarity results are in Data File #2, all
behavioral discrimination results are in Data File #3.
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Study description

Research sample

Sampling strategy

Data collection

Timing

Data exclusions

Non-participation

Randomization

The study includes quantitative experimental data.
It includes quantitative data that was obtained from human ratings. In addition, it includes quantitative data of molecular descriptors was
obtained from DRAGON software.

In total 199 participants (128 women), aged 19-42 participated in the 7 experiments conducted by us. Some participated in more than
one type of experiment. As we looked for participants with a functioning sense of smell, participants were all in general good health, with
no reported history of neurological or mental illness, and neither olfactory deficits nor chronic or acute conditions that involved the
respiratory tracts. Most of the participants were students in either the Weizmann Institute of Science or the Faculty of Agriculture, Food
and Environment, Hebrew University. Both campuses are located in Rehovot.

Participants were chosen as representative sample of the population with functioning sense of smell.

In addition, an external dataset*, previously published was used. In this dataset, data was collected from 26 participants aged 18-50 with
a functioning sense of smell.

*Bushdid, C., Magnasco, M. O., Vosshall, L. B., & Keller, A. (2014). Humans can discriminate more than 1 trillion olfactory stimuli. Science,
343(6177), 1370-1372.

In order to pre-determine sample sizes we relied on power tests and sample sizes from previous experiments.

For experiments 1-3 we relied on data from Weiss et al. 2012, Snitz et al. 2013.

For experiment 4 we relied on data from Bushdid et. al. 2014, and power tests from Ennis et al. 1993.

For experiment 5-7 we relied on power tests from Stillman et al. 1995.

Trials were randomized per subject in each experimental session.

During the entire experiment period participants interacted only with the computer with no one else in the room, except the first trial in
the first session were experimenter was present in the room to validate understanding of the task.

In all tasks participants were alone in the experimental room, monitored from an adjacent control room. All interactions were computer
controlled: selection of jars to sniff was by computer commend, and ratings were inputted by computer mouse that was used to either
mark a visual analogue scale (VAS) or select correct answers. Intensity and similarity experiments were ran on an internal website coded
in Dropal. The Discrimination experiments (triangle tasks, same-different tasks, and same-different 2IFC tasks) were coded and ran in
MATLAB, using the Psychophysics Toolbox extensions . All experimental sessions were limited to one hour at the most, and were
continued across days.

The researcher was blind to condition in the relevant experiments (experiments with more than one condition).

Data for experiment 1 was collected between November 2015 and December 2015.
Data for experiment 2 was collected during May 2016.

Data for experiment 3 was collected during March 2017.

Data for experiment 4 was collected between May 2017 and August 2017.

Data for experiment 5 was collected between June 2018 and July 2018.

Data for Experiment 6 was collected between April 2019 and August 2019

Data for Experiment 7 was collected between November 2019 and January 2020

Participants were excluded from analysis only in cases they did not complete the entire experimental protocol.

In experiment 1, 3 out of 26 participants that started experiment did not complete the 2 intensity sessions and were excluded from the
intensity analysis, additional 1 subject did not complete the similarity analysis and was excluded from further analysis.

In experiment 2, out of 32 participants that started experiment did not complete the 3 intensity sessions and were excluded from the
intensity analysis, additional 1 subject did not complete the similarity analysis and was excluded from further analysis.

In experiment 3, 1 out of 30 participants who started the similarity experiment did not complete the 2 intensity sessions and were
excluded from the similarity analysis.

In experiment 4, 1 out of 15 participants who started the intensity experiment did not complete the 2 sessions of the similarity analysis
and were excluded from the analysis.

In experiment 5, 6 out of 36 participants who started the discrimination experiment did not complete the 8 sessions and were excluded
from the similarity analysis.

In experiment 6, 6 out of 41 participants who started the discrimination experiment did not complete the 6 sessions and were excluded
from the similarity analysis.

In the external dataset collected by Bushdid data, 1 out of 26 participants was exculded from further anaysis, as his overall results over
260 trials were as good as chance level performance, and he was suspected to be anosmic.

In total, two participants declined participation after one session, as the experiment was different than what they expected.

Participants were not allocated into experimental groups.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a 7 Involved in the study
[ ] Antibodies X[ ] chip-seq
[] Eukaryotic cell lines XI|[ ] Flow cytometry
|:| Palaeontology |Z| |:| MRI-based neuroimaging

[] Animals and other organisms
|Z| Human research participants

[] clinical data
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Human research participants

Policy information about studies involving human research participants

Population characteristics See above.

Recruitment Participants were recruited by advertisements published is a mailing list of lab (addressed hundreds of people), advertisements
in Facebook group dedicated to experiments, and that is popular among students in Rehovot.
There was no bias in selection, moreover it was done by 4 different experimenters for the 7 experiments. Self-selection bias may
have been pariticpants tendency to respond to recruitment ads. However the total numbers of participants and their
demographics were diverse, and in any case should not impact olfactory perception and ratings or bias them.

Ethics oversight All participants provided written informed consent to procedures approved by the Weizmann Institute IRB Committee, and all
participants were paid for participation

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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