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A measure of smell enables the creation of 
olfactory metamers

Aharon Ravia1 ✉, Kobi Snitz1, Danielle Honigstein1, Maya Finkel1, Rotem Zirler1, Ofer Perl1,  
Lavi Secundo1, Christophe Laudamiel2, David Harel3 & Noam Sobel1 ✉

Wavelength is a physical measure of light, and the intricate understanding of its link to 
perceived colour enables the creation of perceptual entities such as metamers—
non-overlapping spectral compositions that generate identical colour percepts1. By 
contrast, scientists have been unable to develop a physical measure linked to perceived  
smell, even one that merely reflects the extent of perceptual similarity between 
odorants2. Here, to generate such a measure, we collected perceptual similarity 
estimates of 49,788 pairwise odorants from 199 participants who smelled 242 different  
multicomponent odorants and used these data to refine a predictive model that links 
odorant structure to odorant perception3. The resulting measure combines 21 
physicochemical features of the odorants into a single number—expressed in radians— 
that accurately predicts the extent of perceptual similarity between multicomponent 
odorant pairs. To assess the usefulness of this measure, we investigated whether we 
could use it to create olfactory metamers. To this end, we first identified a cut-off in the 
measure: pairs of multicomponent odorants that were within 0.05 radians of each 
other or less were very difficult to discriminate. Using this cut-off, we were able to 
design olfactory metamers—pairs of non-overlapping molecular compositions that 
generated identical odour percepts. The accurate predictions of perceptual 
similarity, and the ensuing creation of olfactory metamers, suggest that we have 
obtained a valid olfactory measure, one that may enable the digitization of smell.

More than 100 years ago, Alexander Graham Bell noted that “we have 
very many different kinds of smells, all the way from the odor of vio-
lets and roses up to asafetida. But until you can measure their like-
nesses and differences you can have no science of odor”2. A measure 
of smell such as the one proposed by Bell can exist within a model 
of the olfactory perceptual quality space, and several models have 
recently been proposed4–7. These models typically rely on finding 
mathematical rules that link odorant structure to odour perception 
within a predictive framework3–9. One such model indeed predicted 
the pairwise perceptual similarity between multicomponent odor-
ants (MC-odorants)3, but the model was applied only to ‘laboratory 
MC-odorants’, which consist of molecular components that were 
first equilibrated for perceived intensity. By contrast, real-world 
MC-odorants such as those cited by Bell consist of many molecular 
components with vastly differing intensities. To resolve the differing 
intensities of the components, we selected the same 44 monomol-
ecules that were used previously3 (Supplementary Table 1). These 
molecules provide an effective span of physicochemical (Fig. 1a) and 
perceptual (Extended Data Fig. 1) olfactory space. In experiment 1a, 
23 participants (16 women, age 27.7 ± 3.3 years) rated the perceived 
intensity of each monomolecule alone (a flowchart of all experiments 
is shown in Extended Data Fig. 2). We then used these monomole-
cules, which widely ranged in perceived intensity (Fig. 1b), to generate 
14 varying-intensity real-world MC-odorants, which ranged in the 

number of components from 4 to 10. In experiment 1b, participants 
rated all pairwise perceptual similarities (comprising a visual analogue 
scale ranging from ‘identical’ to ‘extremely different’) between all 14 
MC-odorants (that is, similarity of MC-odorant 1 to 2, MC-odorant  
1 to 3, and so on, including four comparisons of the MC-odorants to 
themselves), culminating in 95 pairwise MC-odorant similarity ratings 
(Supplementary Table 2).

We calculated the difference between MC-odorants as previously 
described3. The distance function between the vectors representing 
MC-odorant u and MC-odorant v was computed as the angle between 
them in a 21 physicochemical descriptor space (Extended Data Table 1). 
It was given by: ( )θ( , ) = arccos ⋅

⋅u v u v
u v

, where ⋅u v is the dot product 
between the vectors and |u| and |v| are their Euclidean norms. When 
using the same MC-odorants with isointense components (that is, 
laboratory MC-odorants), the previous similarity model had a correla-
tion of r = −0.57, P < 2 × 10−9 between the predicted (from the structure) 
and actual perceptual similarity (Fig. 1c). However, when we applied 
this previous model to estimates made using the current MC-odorants, 
which contained the same components but varied in intensity (that is, 
real-world MC-odorants), the correlation decreased from r = −0.57 to 
r = −0.48, P < 7 × 10−7 (Fig. 1d).

There are two ways to calculate and plot such correlations: either 
with or without comparisons between identical MC-odorants. The 
above measure included such comparisons, but when removing 
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the comparisons between identical MC-odorants, the correlation 
shifts from r = −0.50, P < 5 × 10−7 using equated-intensity laboratory 
MC-odorants (Fig. 1c) to r = −0.30, P = 0.005 using the varying-intensity 

real-world MC-odorants (Fig. 1d). In other words, the effect of intensity 
on model performance is even greater.

To recover model performance so that it applies to real-world 
MC-odorants, we developed and applied a universal intensity factor. 
This factor adjusted the weight of each component in a MC-odorant 
to reflect its perceived intensity in an exponential way. In brief, a sig-
moidal function model was fitted to describe the nonlinear nature of 
the weightings of the vectors in the MC-odorant. We set out to identify 
the universal parameters that best fit the perceived intensity of any 
monomolecule to its vector length in the MC-odorant model. In other 
words, we sought parameters that optimized the correlation between 
the actual similarity ratings and the weighted angle distance of the 
results from experiment 1. We systematically varied α and β in the  
equation w x( ) =

e

1

1 +
x α

β− −   to incorporate component intensity in vector 

length. We then recalculated the correlation between the weighted 
angle distance and perceived similarity for each parameter pair. We 
selected the pair that resulted in the best correlation. We found that 
these universal parameters were α = −1.3, β = 0.07 (Fig. 1e), resulting in 

w x( ) =
e

1

1 +
x− −1.3
0.07

, where x represents the normalized perceived intensity.

Using this weighting in the model improved its performance from 
r = −0.48 to r = −0.60, P < 2 × 10−10 between predicted (from the struc-
ture) and actual perceptual similarity of the real-world MC-odorants 
(Fig. 1f), bringing the performance of our model up to the performance 
of the previous model when applied to intensity-equated MC-odorants 
(Z (two-tailed) = 0.20, P = 0.84). This reflects a 23% improvement in 
correlation or a 51% increase in explained variance (R2 statistic) by the 
new model compared to the old model, when using varying-intensity 
real-world MC-odorants. If we do not include pairwise comparisons of 
identical MC-odorants, the improvement provided by the new model 
is greater, from r = −0.30, P = 0.005 (Fig. 1d) to r = −0.41, P < 7 × 10−5 
(Fig. 1f), or a 36% improvement in prediction and an 86% increase in 
explained variance.

We next tested the generalization of this new model to newly 
obtained data. In experiment 2, we repeated experiment 1, but used 
14 new MC-odorants from a set of 44 new monomolecules that we had 
not used previously (Fig. 1a and Extended Data Fig. 1). Here, the original 
‘laboratory-odour’ similarity model3 showed a prediction of perceptual 
similarity from structure alone of r = −0.58, P < 7 × 10−10 (Fig. 2b), whereas 
the new weighted real-world similarity model showed a stronger cor-
relation of r = −0.76, P < 5 × 10−19 (Fig. 2c). This is a significant improve-
ment (Z (two-tailed) = 2.26, P = 0.024), reflecting a 31% improvement 
in correlation or 70% improvement in explained variance. Again, the 
improvement provided by the new model is greater when removing 
comparisons of identical MC-odorants, from r = −0.38, P < 3 × 10−4 using 
the old model (Fig. 2b) to r = −0.69, P < 4 × 10−14 using the new model 
(Fig. 2c). This reflects an 82% improvement in correlation and a 330% 
increase in explained variance.

Thus, the parameters identified in experiment 1 were generalizable 
to new data and provided strong predictions (these results were not a 
reflection of overall MC-odorant intensity similarity alone; Extended 
Data Fig. 3). This was a pleasant surprise, given that predictive mod-
els typically perform worse, not better, when using new data. We 
speculate that the differences in gained performance provided by 
the intensity factor across experiments reflect the molecule-specific 
concentration-to-perceived-intensity curves10. If a MC-odorant consists 
of components that have steep concentration-to-intensity curves, the 
effect of the factor will be large. If a MC-odorant consists of components 
that have shallow concentration-to-intensity curves, the influence 
of the factor will be smaller. Finally, we asked whether we could also 
predict rather than measure the component perceived intensity11. We 
generated a model that successfully predicted the perceived intensi-
ties for some components but not for others, and therefore did not 
proceed with this effort (Extended Data Fig. 3).
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Fig. 1 | The measure of smell predicts perceived similarity of real-world 
multicomponent odorants. a, The 172 molecules used across experiments 
overlaid on 4,046 molecules within the first and second principal components 
of a 21-descriptor physicochemical space. Here and throughout, the red lines in 
the histograms show the density estimation (see Methods). b, Histogram of 
intensity ratings by 22 participants for 44 odorant molecules used in 
experiment 1. c, d, f, Scatter plots in which each dot is a pairwise comparison of 
two MC-odorants. y axis, average similarity rated by participants (n = 22, two 
repetitions each); x axis, distance according to model. Vertical lines (error bars) 
show the between-participant s.e.m. Red regression lines include comparisons 
of identical MC-odorants (zero angle distance); black regression lines show the 
data with those comparisons removed. c, Original similarity model3 applied to 
MC-odorants with components first equated for perceived intensity. 
Correlation coefficient r = −0.57, P < 2 × 10−9, n = 95 (r = −0.50, P < 5 × 10−7 and 
n = 91 for comparisons excluding identical pairs). d, Original similarity model 
applied to the results of experiment 1 with components of varying intensities. 
Correlation coefficient r = −0.48, P < 7 × 10−7, n = 95 (r = −0.30, P < 5 × 10−3 and 
n = 91 for comparisons excluding identical pairs). e, Variation in the correlation 
between predicted and actual perceptual similarity as a function of variation in 
α and β. The point of optimal performance is denoted by as a black cross.  
f, Novel similarity model applied to the results of experiment 1 with 
components of varying intensities. Red lines through the data are linear fits. 
Correlation coefficient r = −0.60, P < 2 × 10−10, n = 95 (r = −0.41, P < 7 × 10−5 and 
n = 91 for comparisons excluding identical pairs).



Nature  |  www.nature.com  |  3

We acknowledge the variability in our results. A correlation of 
r = 0.76 suggests that we have captured 58% of the variance, or fail to 
explain 42% of the variance in the estimation of odorant similarity. 
However, we observe that variance in human colour perception at a 
given wavelength can reach 100%12, and predictions of auditory similar-
ity from physical stimulus attributes have similar variance to that we 
observe here13,14 (Extended Data Fig. 4). Nevertheless, such perceptual 
variability does not prevent predictions of perceptual similarity from 
physical structure that are at the heart of digitization in these sen-
sory systems. With that in mind, we investigated whether, despite the 
variability in our results, we could meet Bell’s challenge. A Master Per-
fumer (C.L.) provided us with formulas for rose, violet and asafoetida 
(Extended Data Table 2). In experiment 3, participants first rated the 
perceived intensity of each component. We then used our model to 
predict the perceptual pairwise similarity (‘likenesses and differences’ 
in Bell’s article) of these MC-odorants based on their structure and 
component intensity. Finally, 31 different participants smelled the 
MC-odorants and rated their actual pairwise perceptual similarity. We 
converted the angle distance to normalized predicted similarity on a 

scale ranging from 0 to 1 (Extended Data Fig. 5), and observed a good 
fit between predicted and actual similarity: violet–rose, predicted 
similarity = 0.75 ± 0.05, observed = 0.79 ± 0.18, t = −0.24, P = 0.81; rose–
asafoetida, predicted similarity = 0.26 ± 0.05, observed = 0.21 ± 0.17, 
t = 0.27, P = 0.79; violet–asafoetida predicted similarity = 0.32 ± 0.05, 
observed = 0.24 ± 0.20, t = 0.40, P = 0.69) (Fig. 2d). We submit that we 
have met Bell’s 104-year-old challenge. Moreover, a web-based tool 
(http://odorspace.weizmann.ac.il) enables the simple implementation 
of these algorithms to calculate the predicted perceptual pairwise simi-
larity of any two MC-odorants, the first step towards odour digitization.

Because odours that are more similar to each other are more dif-
ficult to discriminate, a measure that predicts similarity should also 
reversely predict discrimination performance. A standard discrimina-
tion task is the triangle test, in which participants are provided with 
three odorant samples, two of which are identical and one different. 
Their task is to identify the odd odorant. We applied our measure to 
a previously published dataset15: 26 participants who performed 260 
triangle decisions on MC-odorants ranging in size from 10 to 30 isoin-
tense components. We observed a correlation of r = 0.56, P < 5 × 10−23 
between the predicted similarity of the MC-odorants according to our 
measure and the inability of the participant to discriminate between 
them. Moreover, the more components in the mixture, the better our 
measure performed, culminating in a correlation of r = 0.68, P < 4 × 10−12 
for 30-component MC-odorants (Fig. 3a). In other words, our measure 
produces strong predictions of odorant discrimination performed by 
other groups who tested different participants on a different continent.

Given that our measure is associated with discriminability (Fig. 3a), 
we next investigated what the value of our measure is that is associated 
with the tipping point in the task; namely, the smallest distance between 
odours at which people can first reliably discriminate between them. 
This value is the just noticeable difference ( JND) in olfactory quality. 
In olfaction there are JNDs in odour intensity16, but no framework for 
JND in odour quality is available. We therefore set out to identify the 
JND in the previously published dataset15.

JND is typically attributed17,18 to a score of d′ = 1. In the triangle test, 
d′ = 1 is at 41.8% accuracy19,20. We observe that in the previously pub-
lished dataset15, 41.8% accuracy was obtained at an angle distance of 
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Fig. 2 | The measure of smell predicts the perceived similarity of rose, violet 
and asafoetida. a, The average intensity ratings provided by 30 participants 
for 43 odorant molecules (three repetitions each) used in experiment 2.  
b, c, Each dot is a pairwise comparison of two MC-odorants; the y axis shows the 
average actual similarity of the odorants as rated by the participants (n = 29, 
two repetitions each) and the x axis shows the distance according to the model 
being tested. Vertical lines (error bars) show the between-participant s.e.m. 
Red regression lines include comparisons of identical MC-odorants (zero angle 
distance); black regression lines show the data with those comparisons 
removed. b, Previously described similarity model applied to the results of 
experiment 2 with components of varying intensities. Correlation coefficient 
r = −0.58, P < 7 × 10−10, n = 95 (r = −0.38, P < 3 × 10−4, n = 91 for comparisons 
excluding identical pairs). c, Newly developed similarity model applied to the 
results of experiment 2 with components of varying intensities. Correlation 
coefficient r = −0.76, P < 5 × 10−19, n = 95 (r = −0.69, P < 4 × 10−14, n = 91 for 
comparisons excluding identical pairs). d, Solving Bell’s challenge: the 
predicted (light blue) versus actual (dark blue) pairwise similarity of rose, 
violet and asafoetida in experiment 3. Predicted similarity data (light blue) 
show the mean prediction using the linear regression model described in 
Extended Data Fig. 5c (red line); the error bars show the confidence intervals 
(P = 0.05) for the predictions of this model. Actual similarity data (dark blue) are 
the mean of n = 29 participants (two repetitions). Blue circles are individual 
ratings. Data are mean ± s.e.m.
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Fig. 3 | The measure of smell predicts performance in olfactory 
discrimination tasks. a, b, Each dot is a triangle test performed by n = 25 
participants. The y axis shows the accuracy as a percentage across trials; the x 
axis shows the distance between the MC-odorants according to our model.  
a, Performance in the triangle task as a function of angle distance using 
30-component MC-odorants. The red line is a linear fit with correlation 
coefficient r = 0.68, P < 4 × 10−12, n = 80 comparisons of MC-odorant pairs; the 
black line is a moving average. b, Performance in the triangle task as a function 
of angle distance using all data. The thick black line is the moving average, the 
thin dark-blue line is the best performer and the thin light-blue line is the worst 
performer. The dashed horizontal red line is 41.8% accuracy, or d′ = 1. The 
dashed vertical black line is the triangle-estimated JND, and odorant pairs in 
the red-shaded area cannot be discriminated from each other.
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0.051 radians between odorants (Fig. 3b). To get a sense of the possible 
variance in this value, we analysed the top and bottom 5% of perform-
ers. The best and worst performers had a JND of 0.02 and 0.14 radians, 
respectively (Fig. 3b). Between these extremes, we observe a relatively 
stable JND across participants (Extended Data Fig. 6) that had a mean at 
the 0.051 radians mark (bootstrap analysis suggests that this was not 
a chance determination; Extended Data Fig. 7).

To reduce the variability in this JND estimate, in experiment 4 we 
designed and generated 100 new MC-odorants selected to produce 
50 pairwise comparisons, 10 at each of the following angle distances: 
0.0125, 0.025, 0.05, 0.2 and 0.4 radians (Supplementary Table 1). These 
distances were selected because they are in the vicinity of the above 
initial JND estimate. We then tested around 27 participants (27 ± 10.4) 
for each comparison twice, generating a total of 2,720 triangle decisions 
(Supplementary Table 3). We observed a psychometric relationship 
between the log-transformed angle distance and triangle performance, 
with 41.8% accuracy falling just under 0.025 radians (Fig. 4a). In other 
words, our triangle results were similar to the previously published 
triangle results15, when compared in terms of performance as a func-
tion of angle distance between MC-odorants.

To generate a deciding value, we combined the data from both stud-
ies (ours and the previously published dataset15), and observed a JND 
that ranged from 0.0125 to 0.05, with a mean of 0.026 radians (Fig. 4b). 
This conclusion, however, has some limitations. First, our experiments 
(but not the previously published dataset15) were conducted using one 
concentration per MC-odorant. This may enable intensity cues to aid 
and affect discrimination scores. Second, and more importantly, tri-
angle experiments are not the method of choice for determining JNDs, 
because they have an inherent memory component that may affect 
results. Indeed, in colour discrimination tasks, performance drops to 
remarkably low levels if the colours are presented in succession rather 
than simultaneously21; however, in olfaction, different odorants cannot 
be presented simultaneously. To address this, we performed experi-
ment 5, in which 30 participants conducted a total of 12,000 trials of 
a two-alternative same–different task. This task enables the deriva-
tion of the JND with higher statistical power22,23. We used 50 pairs of 
MC-odorants that differed by 0.0125, 0.025, 0.05, 0.1 and 0.2 radians, 10 
different pairs for each value (Supplementary Table 1). Moreover, each 
odorant was used at two different concentrations to prevent intensity 
cues. During each experiment, each participant conducted 400 trials 
(spread across 8 days), half of which, on average, contained the ‘same’ 
and half of which comprised ‘different’ MC-odorant pairs.

We again observed that d′ increased as the angle distance increased 
(F4,29 = 17.07, P < 0.0001) (Fig. 4c), further verifying the validity of our 
measure and model using an additional dataset. We also again observed 
significant variability across participants; the JND ranged from 0.0125 to 
0.15 radians (Extended Data Fig. 6). In other words, consistent with the 
JND literature22,23, the results of the same–different task had higher sen-
sitivity than the triangle task, and combined these results suggest that 
the quality JND for odours in humans ranges from 0.0125 to 0.15 radians 
in odorant physicochemical space (Fig. 4c). At these angle distances, we 
observed several MC-odorants that had a d′ < 1; that is, they could not 
be distinguished from each other (for example, odorant pairs 86–96, 
87–97 and 88–98 in Supplementary Table 3).

The above indistinguishable MC-odorant pairs overlapped in their 
component identity (Supplementary Table 1), yet the extent of overlap 
alone did not explain our results. For example, in the large-scale pre-
dicted perceptual similarity experiment (Fig. 2c), the angle distance 
was a nearly twofold significantly better predictor than the degree 
of overlap (r = −0.69 for angle distance, r = 0.39 for degree of over-
lap, Z = 2.893, P = 0.002). Moreover, in the predictions for rose, violet 
and asafoetida, the overlap has zero predictive value (Extended Data 
Table 2). The degree of overlap alone, however, was equally predictive 
as the angle distance in the previously published dataset15 and in sev-
eral of our analyses (Figs. 1c, f, 4a, c). Thus, to further address this, we 

set out to predict the discriminability of completely non-overlapping 
MC-odorants for which the predictive value of degree of overlap was 
zero. If angle distance remains related to the discriminability of such 
MC-odorants, this suggests that we have captured an added aspect 
of the link between structure and perception in olfaction. Indeed, in 
colour vision, understanding the link between physical stimulus space 
and perceptual space enables the creation of mixtures with identical 
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Fig. 4 | The measure of smell enables the creation of an olfactory metamer. 
a–d, Each dot is a test performed by a group of participants. The y axis shows 
the percentage accuracy; the x axis shows the model distance between 
odorants (radians). Small circles reflect specific MC-odorant combinations 
(each circle has a small jitter along the x axis for visualization without overlay); 
large circles reflect the average at a given angle distance. The solid blue line is 
fit to a moving average; the red dashed line is d′ = 1. b, c, The dashed vertical 
black line shows the estimated JND. a, Mean performance for the 50 
MC-odorant pairs tested in experiment 4, trial numbers were 48, 56 or 64; 
participant numbers ranged from 14 to 32 per comparison (see Methods).  
b, Performance in a previously published dataset15 and experiment 4 
combined. Performance for each pair was estimated either as in a for data from 
experiment 4 or as in Fig. 3b for the previously published data15. Correlation 
coefficient r = 0.43, P < 2 × 10−15, n = 310 MC-odorant pairs. c, Performance in 
experiment 5. The pairwise d′ was estimated by n = 240 independent trials 
performed by 30 participants. d, Performance in experiment 6, with three 
metamers highlighted in red. The pairwise d′ was estimated by n = 280 
independent trials performed by 35 participants. e, Performance in 
experiment 7. Right, for each of 24 participants, three points are shown: 
performance in discriminations of R-carvone and S-carvone (blue), R-camphor 
and S-camphor (red), and between metamer MC-odorants 243 and 253 (black). 
Left, the distribution of d′ in the sample. The inset shows the average group d′ 
per condition, data are mean ± s.e.m. Performance d′ of each participant in 
each comparison was estimated using n = 32 independent trials.
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percept despite zero overlap in the component identity. Such mix-
tures in which the non-overlapping spectral compositions generate 
a common colour percept are known as metamers1. In experiment 
6, we asked whether a modified angle distance can be used to create 
olfactory metamers.

A group of 25 participants conducted a total of 8,000 trials in a 
two-alternative same–different task. We used 40 pairs of MC-odorants 
that differed by 0.0125, 0.025, 0.05, 0.1 and 0.2 radians, 8 different 
pairs for each value (Supplementary Table 1). Each odorant was used 
at two different concentrations, to prevent intensity cues. For each 
experiment, each participant conducted 320 trials (spread across  
6 days), half of which, on average, contained the ‘same’ and half of which 
comprised ‘different’ MC-odorant pairs.

We again observed in this set comprising non-overlapping 
MC-odorants that d′ increased as angle distance increased (F4,24 = 7.24, 
P = 3.1 × 10−5) (Fig. 4d). Overall performance with non-overlapping 
MC-odorants was higher than in MC-odorants with overlap, and no 
angle distance had an overall average of d′ < 1. For reasons that we do 
not understand, the fit between the measure and performance weak-
ened at the ultra-low angle distance values, a phenomenon that we 
also observed with overlapping MC-odorants (Fig. 4a). Although this 
prevents us from committing to a strict universal quality JND, at dis-
tances of 0.05 radians and less we nevertheless identify three cases 
of MC-odorants that were indistinguishable despite having no com-
ponents in common. Thus, despite noise at the lower angle-distance 
values, our model and measure uncovered three olfactory metamers 
(odorant pairs 223–233 and 225–235, which had an angle distance of 
0.025, and odorant pair 243–253, which had an angle distance of 0.05; 
Extended Data Table 2). Each of these metamer pairs was associated 
with a unique percept (Extended Data Fig. 8).

The above experiments were designed to measure group perfor-
mance. We can state that the group failed to discriminate between the 
metamers, but we cannot make statements with regards to the indi-
vidual participants. To estimate individual variability in olfactory meta-
merism, we designed experiment 7. In this experiment, 24 participants 
conducted a highly sensitive same–different two-interval forced-choice 
paradigm, in which each participant conducted 32 trials for every odor-
ant pair in question. This allows us to make statements with regards 
to discriminability by the group and by each participant alone. To 
provide a reference, we tested three odorant pairs that included a 
pair of enantiomers that had previously been identified as similar but 
discriminable (S-carvone and R-carvone)24, a pair of enantiomers that 
had previously been identified as indiscriminable (S-camphor and 
R-camphor)24, and the above-identified 0.05-radian-apart metamer 
MC-odorants 243 and 253 (important information regarding how to 
mix metamers is provided in the Supplementary Methods). Consistent 
with previous results, we observed that S-carvone and R-carvone were 
significantly discriminable at the group level, obtaining an average d′ 
score of 2.02 ± 1.26 (P = 8 × 10−6, bootstrap estimation of the mean). 
Moreover, we observed that S-carvone and R-carvone were significantly 
discriminable at the individual level for 18 out of 24 (all 18 values: d′ > 0, 
P < 0.026). By contrast, we observed that S-camphor and R-camphor 
were indiscriminable at the group level, obtaining an average d′ score 
of −1.26 ± 0.79 (P > 0.999, bootstrap estimation of the mean). We fur-
ther observed that only one participant could in fact significantly dis-
criminate between S-camphor and R-camphor (participant 8, d′ = 1.15, 
P = 0.026). Finally, we also observed that MC-odorants 243 and 253 were 
again indiscriminable at the group level, obtaining an average d′ score 
of −0.37 ± 1.02 (P = 0.96, bootstrap estimation of the mean). Moreover, 
we observed that only 3 of the 24 participants could significantly dis-
criminate between MC-odorants 243 and 253 (participants 4, 6 and 8, 
d′ = 1.15, P = 0.026, d′ = 1.35, P = 0.006 and d′ = 1.35, P = 0.006, respec-
tively). In other words, the inability to discriminate between these two 
non-overlapping MC-odorants was pervasive (87.5%), and those who 
could discriminate between them, could do so only barely (Fig. 4e).

Here we have met Bell’s challenge (Fig. 2d) and generated olfactory 
metamers (Fig. 4e). This analogy between olfaction and colour vision 
was restricted by two key differences between these sensory systems. 
First, whereas in colour vision one can view two different stimuli simul-
taneously, in olfaction one can smell only one stimulus at a time25. This 
adds an inter-stimulus interval to the olfactory comparison, and dif-
ferent inter-stimulus intervals will result in different JNDs. Second, 
whereas in colour vision, receptor space is relatively constant across 
trichromatic individuals, there is an approximately 30% difference in 
receptor space across individuals in olfaction26. Although these two 
differences would suggest added variance in olfaction compared with 
colour vision, the variability that we observed in olfactory metamer-
ism was not greater than that observed in colour metamerism. This 
statement rests not on a lack of variability in olfaction, but rather on 
greater variability in colour perception than typically appreciated12,27. 
For example, any two trichromatic individuals will often disagree on 
colour matches28, and the standard deviation in colour metameric 
match tasks is between 5 and 15%, with outliers that deviate by as much 
as 40% from mean performance29. We note that variability in our olfac-
tory metameric task was around 15%. In other words, the probability that 
individuals will find a given pair of colour metamers to be indiscrimina-
ble is strikingly similar to the probability of indiscriminability for the 
olfactory metamers of experiment 7. This observation, combined with 
the existence of olfactory metamers, hints at the potential underlying 
importance of this set of results, as a major question in olfaction relates 
to the underlying dimensionality of olfactory perceptual space15,30–32. 
With that in mind, we observe that the probability for generating two 
converging non-overlapping mixtures becomes less probable as dimen-
sionality increases33,34. Therefore, the existence of olfactory metamers 
joins several recent efforts6,9,35 to suggest that the perceptual space in 
olfaction has a far lower dimensionality than previously estimated. In 
addition, our results have implications for various aspects of olfaction, 
and foremost for the probability of digitizing smell (Supplementary 
Discussion). Realization of these potential implications rests in part 
on necessary future refinement of the current framework. In particu-
lar, we acknowledge the counter-model behaviour at the ultra-low 
angle distance values (Fig. 4d). In this case, the expected increase in 
indiscriminability between 0.025 and 0.0125 radians did not occur (in 
fact, we found a trend to the opposite), and we have no explanation 
for this. This suggest that we have yet to explain all of the variance in 
this system (Supplementary Discussion). Nevertheless, we generated 
a measure that allowed us to meet Bell’s challenge (Fig. 2d), to predict 
performance in discrimination tests performed by us and by others 
(Fig. 3a) and to create olfactory metamers (Fig. 4e). Thus, we provide 
a reliable measure of smell.
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Methods

Participants
In total, 199 participants (128 women) aged 19–42 years participated 
in the 7 experiments conducted here. Some participated in more than 
one type of experiment, as data collection for this manuscript lasted 
for about four years. Participants were all in general good health, with 
no reported history of neurological or mental illness, and had neither 
olfactory deficits nor chronic or acute conditions that involved the 
respiratory tracts. All participants provided written informed consent 
to procedures approved by the Weizmann Institute IRB Committee, 
and all participants were paid for participation.

Location
All experiments were conducted in rooms specially constructed for 
human olfaction experiments in the Olfaction Laboratory at Weiz-
mann Institute. These rooms are coated in stainless steel to prevent 
odour adhesion over time, and are subserved by rapid air exchange 
with humidity and temperature control, as well as HEPA and carbon 
filtration. All of these measures minimize cross-trial contaminations.

Odorants
All discrimination tasks were conducted using MC-odorants. All 
MC-odorants, except for the three mentioned below, were prepared 
specifically for these experiments using 180 monomolecular compo-
nents (the components and mixture formulas are provided in Supple-
mentary Table 1). Three MC-odorants were prepared by C.L. to imitate 
the odours of rose, violet and asafoetida (Extended Data Table 2). 
Monomolecules were purchased from Sigma-Aldrich. All odorants 
were diluted with either 1,2-propanediol or isopropyl myristate (IPM).

Tasks
In all tasks, participants were alone in the experimental room, moni-
tored from an adjacent control room. All interactions were computer 
controlled: the selection of jars to sniff was by computer on-screen 
indication, and ratings were inputted using a computer mouse that 
was used to either mark a visual analogue scale (VAS) or to select the 
correct answers. Intensity and similarity experiments were performed 
on an internal website coded in Dropal. The discrimination experiments 
(triangle tasks and same–different tasks) were coded and ran in MAT-
LAB, using the Psychophysics Toolbox extensions36–38. All experimental 
sessions were limited to one hour at the most, and were continued 
across days.

Intensity ratings. On each trial, the participant received an arbitrarily 
marked sniff jar. The participant was instructed to sniff the jar once 
and then enter their perceived intensity rating on a VAS. The intertrial 
interval (ITI) was 30 s. The order of the odours was randomized.

Similarity ratings. On each trial, the participant received two arbitrar-
ily marked sniff jars. The participant was instructed to sniff them by 
predetermined order (counterbalanced across participants), and then 
enter their perceived similarity rating on a VAS. ITI was 40 s.

Triangle task. On each trial, the participant received three arbitrarily 
marked sniff jars, two containing an identical MC-odorant and one 
containing a different MC-odorant. The participants were permitted 
only one sampling per odorant, and were instructed to select the odd 
odorant. The inter-stimulus interval was self-paced and the ITI was 
>30 s (added variability reflecting trial time).

Same–different task. On each trial, the participant received two 
arbitrarily marked sniff jars, containing either identical or different 
MC-odorants. The participants were permitted unrestricted sampling 
per odorant, and were instructed to determine whether the pair was 

‘same’ or ‘different’. The inter-stimulus interval was self-paced and the 
ITI was >30 s.

Same–different two-interval forced-choice task. On each trial, partic-
ipant received four arbitrary sniff jars, comprising two different pairs. 
One pair was identical and the other was different. The participants were 
permitted unrestricted sampling per odorant, and were instructed to 
determine which pair was the different one. The inter-stimulus interval 
was self-paced, and ITI was >30 s.

Obtaining chemical descriptors
For each odorant, 4,885 physicochemical descriptors were calculated 
using DRAGON software39. Out of these descriptors, 21 descriptors 
(Extended Data Table 1) that had previously been shown to be efficient 
for mixture modelling were extracted. Because the descriptors meas-
ure properties on different scales, each of the 21 descriptors was then 
normalized to a 0–1 continuous scale. This was done as follows; the list 
of values Vd was extracted for each descriptor. The minimum and 
maximum value for each descriptor was found in a list of 4,064 mol-
ecules that were descripted to have a smell. For each odour, the normal-
ized value on that descriptor was computed as: V

V V
v − min( )

max( ) − min( )
d

d d
 . Then 

the maximal value for an odour with that descriptor was exactly 1, and 
the minimal value was exactly 0 and other odours had a value in 
between. A vector of length 21, each valued between 0 and 1, then rep-
resented each odour.

Modelling MC-odorants
Each MC-odorant was modelled as a weighted vector summation of its 
components, generating a 21-dimensional representation of each 
MC-odorant. In this modelling, we assume that no chemical interactions 
occur between MC-odorant components, and knowingly overlook this 
possibility, which remains a source of possible unexplained variance. 
The weights for each monomolecule were determined according to 
its perceived intensity. The function that converts perceived intensity 
to vector weights was assumed to be psychometric in the form of 

e

1

1 +
x α

β− −
 . Its parameters, α and β, were fitted using the data of experiment 

1. This is summed up to the following equation m x= ∑ x
e

21
1

1 +
21x

− int−1.3
0.07

, 

where m stands for the mixture, x for the components, and m21 and x21 
are the 21-dimensional representations of m and x. Additionally, xint, 
stands for the normalized intensity rating of each component. Here, 
the normalization process relates to the following process. First, the 
intensity ratings of each individual are normalized between the mini-
mal and maximal values of that participant to obtain values between 
0 and 1. Next, these ratings are averaged across the poll of each par-
ticipant. According to the between-individual variance in ratings, we 
set an ideal poll to n > 25 participants.

Obviously, α and β could be better optimized for each individual 
component, yet here we opted to develop a universal set of values, 
reflecting an optimal molecular-identity-independent compromise.

Distance between odours
The distance function between the vector that represents MC-odorant 
u and the vector that represents MC-odorant v was computed as the 
angle between them in the 21-dimensional space. It was given by: 

u v u v
u v( )θ( , ) = arccos ⋅

⋅
, where u v⋅  is the dot product between the vec-

tors and |u| and |v| are their Euclidean norms.

Statistical analysis
All statistical analysis was conducted in MATLAB release 2019b (The 
MathWorks).

Density estimation. All density estimations for graphical purposes 
were performed using kernel methods (Epanechnikov kernel).
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Pearson’s correlation coefficient. All correlations are Pearson’s cor-
relation coefficients. The P values derived from them are tested against 
the H0 hypothesis that the correlation equals zero.

Calculating correlations with or without comparisons of identical 
MC-odorants. In estimating the prediction of perceived similarity 
from angle distance, we can calculate the correlation either with (red 
lines in the figures) or without (black lines in the figures) comparisons 
between identical MC-odorants (both red and black lines are shown in 
Figs. 1c, d, f, 2b, c and Extended Data Figs. 3a, b, e, f, h, i, 4a, 5a, c; only red 
lines are shown in Fig. 3a and Extended Data Fig. 4b, c; only black lines 
are shown in Extended Data Fig. 3d, g). There are arguments for either 
path; in generating predictions of perceived similarity from odorant 
structure, we are trying to capture two sources of variance: the differ-
ence between people and the difference between molecules. One could 
argue that in comparisons between identical MC-odorants, we have ne-
gated the variance associated with molecules, and therefore we should 
not consider this correlation. This would be unarguable if people had 
consistently rated the perceptual similarity of identical MC-odorants 
at 100%, or at minimum, always rated the perceptual similarity of iden-
tical MC-odorants as the same. Neither of these outcomes, however, 
occurred. Thus, one could argue that including these comparisons 
is informative for capturing the representation of olfactory percep-
tual space. In any case, here we present both outcomes, and notably 
put forward the method that in fact diminishes the impact of our new 
algorithm. In other words, we highlight the less rewarding outcome.

Estimation of performance as a function of angle distance in the 
triangle task. To estimate the performance on the triangle test as a 
function of the angle distance, we sorted the data according to the com-
puted angle distance, and used a moving average method to estimate 
performance at each point. Then, a cubic interpolation was performed 
to generate a continuous function. Because the triangle test requires a 
relatively large number of trials to achieve satisfying statistical power, 
we used 47 trials per point estimation.

Derivation of d′. To analyse the forced choice experiments, we used 
methods from signal-detection theory. d′ is a standard measure for 
the discriminability of two different stimuli. One advantage of using 
d′ is that it is consistent between different paradigms, and enables the 
comparison of different discrimination tasks. Here, power analysis and 
d′ calculation for the triangle test was derived according a previously 
published study20, and power analysis computation for the same– 
different task was calculated as described previously22. Calculation of 
d′ was done as described previously18,40 using the differences method. 
The same–different two-interval forced-choice experiment was carried 
out as described previously41,42.

Computing d′ per MC-odorant pair in the triangle task. The measure 
of d′ was computed for each MC-odorant pair. The percentage of cor-
rect responses out of all of the responses of all participants was taken 
for this analysis. In the previously published dataset15, pairs were rated 
once for each participant. In the data of experiment 4, each MC-odorant 
was rated either once or twice in two different sessions. In the case of 
two ratings by the same participant, both sessions responses were 
used separately, that is, as if they were rated by different individuals.

Computing d′ per MC-odorant pair in the same–different task. 
To compute d′ for each MC-odorant pair, false-positive answers and 
true-positive answers were accumulated for all participants. That way, 
each pair had a sufficient number of comparisons, in order to have suf-
ficient power for measuring d′. This method allowed testing of large 
number of pairs (50) in a reasonable number of comparisons. To control 
for method biases, the same analysis was repeated after the answers 

of the participants were shuffled between pairs, in a different way for 
each participant. This method was used for both experiment 5 and 6.

Statistical considerations regarding the number of participants
For the similarity experiments, the number of participants and  
comparisons follows a previous study3.

For the triangle test, the number of participants was chosen to allow 
sufficient statistical power for a discrimination analysis at the group 
level, requiring that each participant rates each pair once. This provided 
power to detect large differences of d′ < 2 for a MC-odorant pair, and 
d′ < 1 for a group of 10 pairs at each angle distance.

For the same–different tasks the same considerations were followed; 
here we also allowed more than one comparison per participant. Experi-
ments 5 and 6 had the same number of repetitions for each pairwise 
comparison per participant. At the angle distance level, in experiment 6 
there were 8 instead of 10 pairs, and thus more participants conducted 
this experiment. For the same–different two-interval forced-choice 
task individual-level considerations were taken, as well as pairwise 
comparison-level considerations. We therefore used fewer odours, but 
more repetitions (72 instead of 8) per odour per participant.

Summary of the experiments
Experiment 1 (similarity). In experiment 1, 24 participants (14 women) 
rated 44 monomolecules for their intensities. Each molecule was rated 
twice during two sessions on two different days. Next, these 44 mole-
cules were used to build 14 MC-odorants as described previously3. Then, 
95 of these MC-odorant pairs (all of the pairwise different molecules 
and 4 the same molecules) were rated for similarity by 23 participants. 
Finally, the 23 participants rated the intensity of the 14 MC-odorants, 
each MC-odorant was rated 3 times in a single session.

Experiment 2 (similarity). In experiment 2, 29 participants (19 women) 
rated 43 new monomolecules for their intensities. Each molecule was 
rated three times during three sessions on three different days. Next, 
these 44 molecules were used to build 14 MC-odorants similar to ex-
periment 1. Then, 100 of these MC-odorant pairs (all of the pairwise 
different molecules and 9 the same molecules) were rated for similarity 
by 29 participants. Finally, the 29 participants rated the intensity of the 
14 MC-odorants, each MC-odorant was rated 3 times in one session.

Experiment 3 (similarity). In experiment 3, 15 participants (12 women) 
rated 42 monomolecules for their intensities. Each molecule was rated 
twice in two sessions on two different days. Next, these 42 molecules 
were used to build 11 MC-odorants similar to experiment 1; in addi-
tion, we used 3 different MC-odorants prepared by C.L. that imitate 
the odours of rose, violet and asafoetida. Then, 52 of these MC-odorant 
pairs (all of the 3 comparisons between rose, violet and asafoetida and 
additional 49 randomly selected MC-odorants) were rated for similar-
ity by 26 participants (19 women), each MC-odorant was rated 3 times 
in one session.

Experiment 4 (discrimination). In experiment 4, 14 participants  
(8 women) rated 50 monomolecules for their intensities. Each molecule 
was rated twice in two sessions on two different days. Next, these 50 
molecules were used to build 100 MC-odorants (50 pairs); this time, the 
MC-odorants were automatically found, such that each pair was one 
of five different angle distances (0.0125, 0.025, 0.05, 0.2 and 0.4 radi-
ans apart) from each other (10 pairs per distance). Then, 20 of these 
pairs (those at distances 0.2 and 0.05) were rated for oddity (triangle 
test) by 14 participants (10 women); each pair was rated twice by each 
participant. Another 20 pairs (those at distances 0.4 and 0.025) were 
rated for oddity (triangle test) by 32 participants (27 women); each pair 
was rated once by each participant. The remaining 10 pairs (those at 
distance 0.0125) were rated by 33 participants (20 women); each pair 
was rated once by each participant.



Experiment 5 (discrimination). In experiment 5, we generated an ad-
ditional 20 MC-odorants (10 pairs) at a distance of 0.1 radians apart 
using the same 50 monomolecular components used in experiment 
4. Then, these 10 pairs together with the 40 pairs used in the previous 
experiment (at distances of 0.0125, 0.025, 0.05 and 0.2) were rated in a 
same–different task by 30 participants (24 women). Each MC-odorant 
was prepared at two concentrations: one as written (100%) and the other 
as a 10% dilution in IPM. For the ‘same’ comparisons, MC-odorants with 
different dilutions were used twice for each odour, for the ‘different’ 
comparisons all four combinations of the dilutions were used. In total, 
each pair was rated eight times by each participant. In summary, 30 
participants repeated the task 400 times, 8 times for each of the 50 
pairs. The participants completed the task in 8 sessions (50 ratings 
per session).

Experiment 6 (discrimination). In experiment 6, 14 participants (10 
women) rated 72 monomolecules for their intensities. Each molecule 
was rated at three different concentrations for a total of 216 intensity 
ratings, each molecule was rated once at each concentration. Each 
participant completed the ratings in four sessions on different days. 
Next, these 50 molecules were used to build 80 MC-odorants (40 
pairs); this time the MC-odorants were automatically found, such 
that each pair was in one of five different angle distances from each 
other (eight pairs per distance), and such that MC-odorant assigned 
to a pair will not overlap in their components. Presentation of the 
stimuli followed experiment 5. Each MC-odorant was also prepared 
in a diluted version (10% in IPM). Then, these 40 pairs were rated in 
a same–different task by 35 participants (21 women), each pair was 
rated 8 times. For the ‘same’ comparisons MC-odorants with dif-
ferent dilutions were used twice for each odour, for the ‘different’ 
comparisons all four combinations of dilutions were used. In total, 
each pair was rated eight times by each participant. In summary, 35 
participants repeated the task 320 times, 8 times for each of the 40 
pairs. The participants completed the task in 6 sessions (52 or 54 
ratings per session).

Experiment 7 (discrimination). In experiment 7, one pair of meta-
meres from the previous experiment was used (MC-odorants 243 and 
253), in addition to two pairs of enantiomers (R- and S-carvone and 
R- and S-camphor). Each MC-odorant was also prepared in a diluted 
version (10% in IPM). Then, these 3 pairs were rated on a same–differ-
ent two-interval forced-choice task by 24 participants (18 women); 
each participant rated each pair 32 times in three different sessions 
on different days. On each trial, each MC-odorant was presented in 
one of the two dilutions.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All data generated during this study are included in the Article and 
its Supplementary Information. All the odorants used are included in 
Supplementary Table 1, all behavioural similarity results are included 
in Supplementary Table 2 and all behavioural discrimination results 
are included in Supplementary Table 3. An additional external data-
set used can be found in the supplementary material of a previously 
published study15.

Code availability
The custom code used to process the data collected in this study is 
available at https://gitlab.com/AharonR/olfaction.
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Extended Data Fig. 1 | The odorants used projected into perceptual space. 
a, As in the main text, the 148 molecules used across experiments overlaid on 
4,046 molecules within the first and second principal components of the 
21-descriptor physicochemical space. b, The same molecules within the first 
and second principal components of perceptual space. Perceptual space data 
for 470 molecules as background (data from previously published studies4,7), 
containing 115 of the 148 molecules that we used. c, Histograms showing the 
experiment odorant distribution on each principal component (PC) in the 

range of PC1–PC6. The principal components were computed as in a, on the 
21-descriptor physicochemical space. There is a large decline in the explained 
variance from the third principal component onward. d, Histograms showing 
the distances between all odorant pairs, per experiment. The distances are 
summed (black line) for the overall distribution. Although monomolecules 
were not used as a stimulus for discrimination, this is to show that there was no 
bias in their selection, because for each experiment the distances of the pairs 
spanned a range of distances.



Extended Data Fig. 2 | Experimental flowchart. Ordered depiction of the tasks across the seven reported experiments.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Factoring and predicting odorant intensity.  
a, b, Factoring odorant intensity. a, In experiment 1, the overall MC-odorant 
intensity could have been used to determine similarity, n = 23 participants for 
intensity ratings and 22 participants for similarity ratings. Correlation 
coefficient r = −0.61, P < 6 × 10−11, n = 95 (r = −0.57, P < 6 × 10−11, n = 91, for 
comparisons excluding identical pairs). To check whether intensity similarity 
and angle-distance similarity account for overlapping information, we built a 
linear model considering the two factors. We found that this two-factor model 
could account for larger variability than each of the models alone (adjusted 
R2 = 0.37 versus adjusted R2 = 0.32 for intensity difference and adjusted R2 = 0.16 
for angle distance). Both factors were significant in this model (both P < 0.005). 
In other words, although intensity differences could explain variance in the 
results, angle distance was a significant factor as well, and could explain 
independent variance. b, The same analysis for experiment 2. Here, MC-
odorant intensity was weakly, albeit significantly correlated with MC-odorant 
similarity (n = 30 participants for intensity ratings and 29 participants for 
similarity ratings, correlation coefficient r = −0.22, P = 0.03, n = 95) and this 
correlation was entirely explained by comparing odorants to themselves, and 
once these comparisons were removed, the correlation was lost altogether 
(r = 0.04, P = 0.68, n = 91 for comparisons excluding identical pairs). Thus, 
experiment 2 largely negated this overall concern. c–i, Predicting odorant 
intensity. c, Estimated performance of predicted intensity model as 
correlation between actual and predicted intensity on k-fold test-set 
(Supplementary Methods). Expected variance estimated using cross-
validation (k varied according to the number of molecules (n) used in each 
concentration; k = 8, 10, 10 and 5, and n = 134, 422, 346 and 58 for 
concentrations of 10−1, 10−3, 10−5 and 10−7, respectively). In the violin plot large 
points are averages of k-folds, vertical lines are quartiles 2–3. All four models 
have correlations significantly larger than zero, with peak at the 
10−3 concentration (average r = 0.67). d–i, We used the 10−3 concentration data 
(Supplementary Methods) to devise a predictive model for intensity ratings, 
this time excluding molecules used in experiments 1 and 2 to avoid overfitting. 
d, g, Intensity predictions generated by this model for monomolecule 

intensities in experiments 1 (d) and 2 (g). The x axis is actual intensity (averages 
of n = 23 participants, 2 repetitions each for experiment 1; and n = 29 
participants, 3 repetitions each for experiment 2) and the y axis is predicted 
intensity. We show correlations in black and in red to be compatible with other 
panels, although no zero intensity odours were included. d, Correlation 
coefficient r = 0.36, P < 0.02, n = 44 monomolecules. g, Correlation coefficient 
r = 0.68, P < 7 × 10−7, n = 43 monomolecules. e, h, Angle distance estimation 
using the intensity factor. The intensity factor was calculated based on 
predicted intensity (d, g) as in Fig. 1e; these predicted factors were then used to 
model MC-odorants. Finally, angle distances between pairs of MC-odorants 
were calculated according to predicted intensity compared to those obtained 
by rated intensity (as used in the main text). e, Correlation coefficient r = 0.53, 
P < 3 × 10−8, n = 95 (r = 0.29, P < 6 × 10−3, n = 91 for comparisons excluding identical 
pairs). h, Correlation coefficient r = 0.73, P < 2 × 10−17, n = 95 (r = 0.56, P < 7 × 10−9, 
n = 91 for comparisons excluding identical pairs). f, i, Prediction of measured 
similarity from angle distances calculated using predicted intensity (similar to 
Figs. 1f, 2c). In the scatter plot, each dot is a pairwise comparison of MC-
odorants; the y axis shows their actual similarity as rated by participants (for 
experiment 1, n = 22, 2 repetitions; for experiment 2, n = 29, 2 repetitions) and 
the x axis shows their angle distance according to predicted intensity. Red 
regression lines include comparisons of identical MC-odorants (zero angle 
distance), black regression lines are with those comparisons removed.  
f, Correlation coefficient r = −0.50, P < 3 × 10−7, n = 95 (r = −0.29, P < 6 × 10−3, n = 91 
for comparisons excluding identical pairs). i, Correlation coefficient r = 0.74, 
P < 9 × 10−19, n = 95 (r = 0.54, P < 5 × 10−8, n = 91 for comparisons excluding 
identical pairs). f, i, Correlations between previous and current results were not 
significantly different. f, Experiment 1, difference between result using rated 
and predicted monomolecule intensities (r = −0.41 and r = −0.29, respectively) 
was not significantly different (Z = 0.91, P = 0.36, two-tailed, n = 91 
comparisons). i, Experiment 2, same procedure, difference between r = −0.69 
and r = −0.54 was not significantly different (Z = −1.62, P = 0.011, two-tailed, 
n = 91 comparisons). We summarize that this is a promising direction for the 
future, but beyond the scope of this manuscript.
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Extended Data Fig. 4 | Variability in predictions of perceptual similarity 
from structure in olfaction and audition. a, Recreation of Fig. 2c, which 
shows our underlying results, with the point of maximal variance highlighted 
with a blue ellipse. b, Data extracted from figure 22 from a previously published 
study13, which shows the state-of-the-art predictions from around ad 2000 of 
sound similarity from sound structure (overlaying points may be missing, as 
these data were extracted from the graph). Correlation coefficient r = −0.80, 
P < 2 × 10−103, n = 462. c, Data extracted from figure 3 of a previously published 
study14, which shows the state-of-the-art predictions from around ad 2014 of 
sound similarity from sound structure. Note that we formatted the data to 
compare the datapoints to our data by putting the data into the same graph 
colour and structure and by reversing the axes. Correlation coefficient 

r = −0.84, P < 3 × 10−26, n = 96. d, Comparison of points of maximal variance 
across datasets (blue, olfaction; red and green, audition). In audition 
technology, the major standard is PEAQ—the ITU standard for objective 
measurement of perceived audio quality. PEAQ defines the subjective 
difference grade, which is the equivalent of our ‘perceived similarity’, and the 
objective difference grade (ODG), which is the equivalent of our ‘angle 
distance’. The field is tasked with developing different objective difference 
grades, which can be made of various combined measures such as frequency, 
timbre, power, and so on. We observe that the overall correlation in audition is 
not very different from olfaction, and that the variability at a given physical 
distance is perhaps even greater in audition compared with olfaction.



Extended Data Fig. 5 | From angle distance to perceived similarity.  
a, c, Scatter plots om which each dot is a pairwise comparison of two odorants; 
the y axis shows their actual similarity as rated by participants and the x axis 
shows their distance according to the model. a, Data from the experiment 
containing rose, violet, asafoetida and 11 additional MC-odorants. All 
comparisons containing rose are shown in red, all comparisons containing are 
shown violet in violet and all comparisons containing asafoetida are shown in 
mustard (n = 29 participants, 2 repetitions each). Correlation coefficient 
r = −0.55, P < 3 × 10−5, n = 52 (r = −0.31, P < 0.03, n = 48 for comparisons excluding 
identical pairs). b, Rated similarity versus angle distance between rose, violet 
and asafoetida comparisons in this experiment. The rated similarity data (dark 

blue) are the average of n = 29 participants, mean of 2 repetitions. Data are 
mean ± s.e.m. Blue circles are individual ratings of similarity. c, Data from 
experiments 1 and 2 used for model building, taken from Figs. 1f, 2c. 
Correlation coefficient r = −0.66, P < 3 × 10−25, n = 190 (r = −0.55, P < 2 × 10−15, 
n = 182 for comparisons excluding identical pairs). d, End result of predicted 
versus actual similarity of rose, violet and asafoetida, rated similarity (dark 
blue) is as in b. Data for predicted similarity (light blue) presented as mean 
prediction using the linear regression model described in c (red line); the error 
bars show the confidence intervals (P = 0.05) for this model prediction. 
See Supplementary Methods for transformation from angle distance to 
predicted similarity.
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Extended Data Fig. 6 | Variability in individual performance. a, Performance 
displayed by individual participant rather than by odorant comparison, sorted 
by performance. The z axis and colour both code participant performance 
accuracy. White, 41.8% accuracy or d′ = 1; red, d′ < 1; blue, d′ > 1. b, Performance 

displayed by individual participants rather than by odorant comparison, 
sorted by performance. Colour codes are shown for the participant d′ as 
estimated in Fig. 3c. white, d′ = 1; red, d′ < 1; blue, d′ > 1.



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Testing of significance by shuffling. We randomly 
shuffled performance outcome in the previously published dataset15, and in 
experiments 4–6. For each MC-odorant pair, we assigned performance (means 
of the participants) randomly 10,000 times, and then computed the 
correlation between angle distance and ‘shuffled’ performance. a, A copy of 
Fig. 3b. b, A set of 100 traces (randomly picked for visualization purposes) of a 
moving average of shuffled data, similar to the black line in a. Red dashed line in 
a and b is performance of d′ = 1 (41.8% correct) c–f, Histogram of correlations 
between angle distance and shuffled performance. Red line is the correlation 
of the observed data. c, The previously published data15. The correlation of 
observed data (r = 0.50, n = 310 comparisons) outperforms the correlation of 
shuffled data (P < 10−4, n = 10,000 repetitions). d–f, Angle distance is shown on a 
log scale. d, Experiment 4, the correlation of observed data (r = 0.51, n = 50 
comparisons) outperforms the correlation of shuffled data (P < 10−4, n = 10,000 
repetitions). e, Experiment 5, the correlation of observed data (r = 0.42, n = 50 
comparisons) is significantly stronger than the correlation of shuffled data 
(P = 0.0009, n = 10,000 repetitions). f, Experiment 6, the correlation of 
observed data (r = 0.53, n = 40 comparisons) is significantly stronger than the 
correlation of shuffled data (P = 0.0013, n = 10,000 repetitions). g–i, Same as  
d–f, only here angle distance was analysed using a linear rather than 

logarithmic scale. g, Experiment 4, the correlation of observed data (r = 0.61, 
n = 50 comparisons) outperforms the correlation of shuffled data (P < 10−4, 
n = 10,000 repetitions). h, Experiment 5, the correlation of observed data 
(r = 0.43, n = 50 comparisons) is significantly stronger than the correlation of 
shuffled data (P = 0.0015, n = 10,000 repetitions). i, Experiment 6, the 
correlation of observed data (r = 0.45, n = 40 comparisons) outperforms the 
correlation of shuffled data (P < 10−4, n = 10,000 repetitions). j–l, Here we verify 
the validity of the choice of performance threshold, namely d′ = 1, in our data. 
For this verification, we calculate the null distribution for d′ for the discrimination  
tasks in experiments 4–6. To generate a meaningful distribution, we carefully 
choose the shuffling in this analysis. For our data, we shuffled the correct 
responses for each participant in each session, and assigned the responses to 
different MC-odorant pairs. For each participant, we used a different label 
assignment; this way we disentangle the difficulty of the task, and produce a 
statistic on the frequency at which one would expect each d′ by chance. The 
histograms of performance in the different experiments are shown in the case 
in which the data of the participants have been shuffled participants. the red 
areas show the bottom and top 5%; the grey line is d′ = 1. j, Experiment 4.  
k, Experiment 5. l, Experiment 6.



Extended Data Fig. 8 | Perceptual independence of metamers. We wondered 
whether metamers are simply instances of ‘olfactory white’. This would imply 
that the difference between (not within) the 3 metamer pairs would be under 
0.05 radians. To address this question, we measured the distances between the 
3 metamer pairs, which are as follows: pair 1 and pair 2, 0.11 radians; pair 1 and 
pair 3, 0.13 radians; pair 2 and pair 3, 0.07 radians. In other words, each 
metamer is a distinct odour. Moreover, we next compared the metamers to 
‘olfactory white’. We selected the ‘best’ white from a previously published 
study8 and measured its distance from each of the metamers. The obtained 
minimal distances were 0.25, 0.24 and 0.24, all of which are much higher than 
0.05 radians. One may note that the white in the previous study8 may not have 
been ‘true White’, as indeed that study did not have the underlying 

computational framework developed here. Moreover, that study was restricted 
to about 30 components. To address this, we generated 1,000 virtual versions 
of white odours, by combining different sets of 100 components. We observe 
that all mean distances between the metamers and these whites are above 
0.1 radians, and that the minimal distance of any pair to any white is larger than 
0.05 radians. a–c, Histograms show distances between current metamer pairs 
to the 1,000 different white odours that we generated. Distance between one 
odour (of the metamer pair) to the whites is shown in blue, and distance 
between the other odour (of the metamer pair) to the whites is shown in red. 
Circular points show distances of each odour in the pair to the three previously 
described white odours8. Each panel shows one of the three metamer pairs 
reported in this paper.
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Extended Data Table 1 | The 21 physicochemical descriptors used for the optimized angle model

The previously identified 21 descriptors3 are shown. The first column is the descriptor number (ranging from 1 to 21). The second column is the descriptor index in Dragon software39. The third 
column is the descriptor abbreviation in Dragon software39. The fourth column is the full definition of each descriptor.



Extended Data Table 2 | Formulas for rose, violet, asafoetida and for three olfactory metamers

These formulas for rose, violet and asafoetida were provided by C.L. The first column is the experiment in which the odours were used. The second column is the number of components in the 
mixture. The third column is the ingredient name. The fourth column is either absolute weight in the mixture (in grams) or the percentage in the mixture. The fifth column is the rated intensity of 
the ingredient. The sixth column is the ingredient concentration (vol/vol). The seventh column is the PubChem chemical identifier number (CID). The eighth column is the MC-odorant in which 
the ingredient was used.
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Study description The study includes quantitative experimental data.  
It includes quantitative data that was obtained from human ratings. In addition, it includes quantitative data of molecular descriptors was 
obtained from DRAGON software.

Research sample In total 199 participants (128 women), aged 19-42 participated in the 7 experiments conducted by us. Some participated in more than 
one type of experiment. As we looked for participants with a functioning sense of smell, participants were all in general good health, with 
no reported history of neurological or mental illness, and neither olfactory deficits nor chronic or acute conditions that involved the 
respiratory tracts. Most of the participants were students in either the Weizmann Institute of Science or the Faculty of Agriculture, Food 
and Environment, Hebrew University. Both campuses are located in Rehovot. 
Participants were chosen as representative sample of the population with functioning sense of smell. 
In addition, an external dataset*, previously published was used. In this dataset, data was collected from 26 participants aged 18-50 with 
a functioning sense of smell. 
*Bushdid, C., Magnasco, M. O., Vosshall, L. B., & Keller, A. (2014). Humans can discriminate more than 1 trillion olfactory stimuli. Science, 
343(6177), 1370-1372. 

Sampling strategy In order to pre-determine sample sizes we relied on power tests and sample sizes from previous experiments.  
For experiments 1-3 we relied on data from Weiss et al. 2012, Snitz et al. 2013. 
For experiment 4 we relied on data from Bushdid et. al. 2014, and power tests from Ennis et al. 1993. 
For experiment 5-7 we relied on power tests from Stillman et al. 1995. 
Trials were randomized per subject in each experimental session. 
During the entire experiment period participants interacted only with the computer with no one else in the room, except the first trial in 
the first session were experimenter was present in the  room to validate understanding of the  task.

Data collection In all tasks participants were alone in the experimental room, monitored from an adjacent control room. All interactions were computer 
controlled: selection of jars to sniff was by computer commend, and ratings were inputted by computer mouse that was used to either 
mark a visual analogue scale (VAS) or select correct answers. Intensity and similarity experiments were ran on an internal website coded 
in Dropal. The Discrimination experiments (triangle tasks, same-different tasks, and same-different 2IFC tasks) were coded and ran in 
MATLAB, using the Psychophysics Toolbox extensions . All experimental sessions were limited to one hour at the most, and were 
continued across days.  
The researcher was blind to condition in the relevant experiments (experiments with more than one condition).

Timing Data for experiment 1 was collected between November 2015 and December 2015. 
Data for experiment 2 was collected during May 2016.  
Data for experiment 3 was collected during March 2017.  
Data for experiment 4 was collected between May 2017 and August 2017.  
Data for experiment 5 was collected between June 2018 and July 2018.  
Data for Experiment 6 was collected between April 2019 and August 2019 
Data for Experiment 7 was collected between November 2019 and January 2020

Data exclusions Participants were excluded from analysis only in cases they did not complete the entire experimental protocol. 
In experiment 1, 3 out of 26 participants that started  experiment did not complete the 2 intensity sessions and were excluded from the 
intensity analysis, additional 1 subject did not complete the similarity analysis and was excluded from further analysis. 
In experiment 2, out of 32 participants that started  experiment  did not complete the 3 intensity sessions and were excluded from the 
intensity analysis, additional 1 subject did not complete the similarity analysis and was excluded from further analysis. 
In experiment 3, 1 out of 30 participants who started the similarity experiment did not complete the 2 intensity sessions and were 
excluded from the similarity analysis. 
In experiment 4, 1 out of 15 participants who started the intensity experiment did not complete the 2 sessions of the similarity analysis 
and were excluded from the analysis. 
In experiment 5, 6 out of 36 participants who started the discrimination experiment did not complete the 8 sessions and were excluded 
from the similarity analysis. 
In experiment 6, 6 out of 41 participants who started the discrimination experiment did not complete the 6 sessions and were excluded 
from the similarity analysis. 
In the external dataset collected by Bushdid data, 1 out of 26 participants was exculded from further anaysis, as his overall results over 
260 trials were as good as chance level performance, and he was suspected to be anosmic. 

Non-participation In total, two participants declined participation after one session, as the experiment was different than what they expected.

Randomization Participants were not allocated into experimental groups.
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Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics See above.

Recruitment Participants were recruited by advertisements published is a mailing list of lab (addressed hundreds of people), advertisements 
in Facebook group dedicated to experiments, and that is popular among students in Rehovot. 
There was no bias in selection, moreover it was done by 4 different experimenters for the 7 experiments. Self-selection bias may 
have been pariticpants tendency to respond to recruitment ads. However the total numbers of participants and their 
demographics were diverse, and in any case should not impact olfactory perception and ratings or bias them.

Ethics oversight All participants provided written informed consent to procedures approved by the Weizmann Institute IRB Committee, and all 
participants were paid for participation

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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