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Abstract

Traditional plane alignment techniques are typically
performed between pairs of frames. In this paper
we present a method for extending existing two-frame
planar-motion estimation techniques into a simultane-
ous multi-frame estimation, by exploiting multi-frame
geometric constraints of planar surfaces. The paper
has three main contributions: (i) we show that when
the camera calibration does not change, the collection
of all parametric image motions of a planar surface in
the scene across multiple frames is embedded in a low
dimensional linear subspace; (ii) we show that the rel-
ative image motion of multiple planar surfaces across
multiple frames is embedded in a yet lower dimensional
linear subspace, even with varying camera calibration;
and (iii) we show how these multi-frame constraints
can be incorporated into simultaneous multi-frame es-
timation of planar motion, without explicitly recovering
any 3D information, or camera calibration. The result-
ing multi-frame estimation process is more constrained
than the individual two-frame estimations, leading to
more accurate alignment, even when applied to small
mage Tegions.

1 Introduction

Plane stabilization (“2D parametric alignment”) is
essential for many video-related applications: it is used
for video stabilization and visualization, for 3D anal-
ysis (e.g., using the Plane+Parallax approach [5]), for
moving object detection, mosaicing, etc.

Many techniques have been proposed for estimating
the 2D parametric motion of a planar surface between
two frames. Some examples are [6, 3, 12, 2, 7]. While
these techniques are very robust and perform well when
the planar surface captures a large image region, they
tend to be highly inaccurate when applied to small im-
age regions. Moreover, errors can accumulate over a
sequence of frames when the motion estimation is per-
formed between successive pairs of frames (as is often
done in mosaic construction).

An elegant approach was presented in [9] for auto-
matically estimating an optimal (usually virtual) ref-
erence frame for a sequence of images with the corre-
sponding motion parameters that relate each frame to

the virtual reference frame. This overcomes the prob-
lem associated with error accumulation in sequential
frame alignment. However, the alignment method used
for estimating the motion between the virtual reference
frame and all other frames remains a two-frame align-
ment method.

Sequential two-frame parametric alignment meth-
ods do not exploit the fact that all frames imaging the
same planar surface share the same plane geometry.
In this paper we present a method for extending tradi-
tional two-frame planar-motion estimation techniques
into a simultaneous multi-frame estimation method, by
exploiting multi-frame linear subspace constraints of
planar motions (Section 4). The use of linear subspace
constraints, for motions analysis, has been introduced
by Tomasi and Kanade [11]. They used these con-
straints for factoring 2D correspondences into 3D mo-
tion and shape information. In contrast, here we use
linear subspace constraints for constraining our 2D pla-
nar motion estimation and not for factoring out any 3D
information. This results in a multi-frame estimation
technique which is more constrained than the individ-
ual two-frame estimation processes, leading to more
accurate alignment, even when applied to small image
regions. Furthermore, multi-frame rigidity constraints
relating multiple planar surfaces are applied to further
enhance parametric motion estimation in scenes with
multiple planar surfaces (Section 5).

2 Basic Model and Notations

The instantaneous image motion of a 3D planar sur-
face m, between two image frames can be expressed as
a 2D quadratic transformation [8, 1, 3, 5]:

(@ p) = X(7) -, (1)
where X (Z) is a matrix which depends only on the

pixel coordinates (Z) = (z,y):
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and 7 = (p1,p2,...,ps)" is a parameter vector:
p1=f'(vtx +Qy) p2=f7(1+atx)—7tz—1
Psi*ff(QZ*ﬁtx) pa = f'(vty — Qx)
ps = L (Qz +aty) pe = (1 +Bty) — vtz — 1
pr = 5(Qy —atz) PSZ_%(QX +Btz)

(2)



where @ = (a,3,7)! is the normal of the plane «
(ie., @'t = 1,V@ € ), O = (Ox,0y,0z)" and i =
(tx,ty,tz)t are the camera rotation and translation,
respectively, and f and f’ are the camera focal lengths
used for obtaining the two images.
The instantaneous motion model is valid when the
camera rotation is small and the forward translation is
small relative to the depth.

3 Two-Frame Parametric Alignment

In this paper, we extend the direct two-frame motion
estimation approach of [3, 6] to multiple frames. To
make the paper self contained, we briefly outline the
basic two-frame technique below.

Two image frames (whose parametric image motion
is being estimated) are referred to by the names “refer-
ence” image J and “inspection” image K. A Gaussian
pyramid is constructed for J and K, and the motion
parameters from J to K are estimated in a coarse-
to-fine manner. Within each pyramid level the sum
of squared linearized differences (i.e., the linearized
brightness constancy measure) is used as a match mea-
sure. This measure (Err) is minimized with respect to
the unknown 2D motion parameters g of Eq. (1):

2
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where (@(Z;p)) is defined in Eq. (1), J(Z) and K(ZF)
denote the brightness value of image J and K at pixel
Z, respectively, and V.J(Z) denotes the spatial gradi-

t
ent of J at &: VJ(Z) = (%(f), g—;(f)) . The sum is
computed over all the points within a region of interest
(often the entire image). Deriving Err with respect to
the unknown parameters p and setting to zero, yields

eight linear equations in the eight unknowns:
where C is an 8 x 8 matrix:
=Y [X(a‘:’)t V(&) - V(&) - X(f)] :

and b is an 8 x 1 vector:

b= Yo |[X@VI@)- (@) - K@)
This le@ds to the linear solution p=C~! -b. Note that
C and b are constructed of measurable image quanti-
ties, hence the word direct estimation. This process
does not require recovery of any 3D information.

Let p; denote the estimate of the quadratic param-
eters at iteration i. p,11 = p; + dp can be solved for by
estimating the infinitesimal increment 5}). After iter-
ating certain number of times within a pyramid level,
the process continues at the next finer level, etc.

Figs. 1.f, 1.i show an example of applying this para-
metric alignment method. This is an airborne sequence
taken from a large distance, hence the camera induced
motion can be described by a single 2D parametric

transformation of Eq. (1). Fig. 1.c was the reference
image and Fig. 1.b was the inspection image. Fig. l.e
shows the amount of misalignment between the two
input images. When the method is applied to the en-
tire image region, it yields accurate alignment (at sub-
pixel accuracy), as can be seen in Figs. 1.f and 1.i.
However, once the same method is applied to a small
image region (such as the rectangular region marked
in Figs. 1.g, 1.j), its accuracy degrades significantly.
The farther a pixel is from the region of analysis, the
more misaligned it is. In the next section we show
how employing multiple frames (as opposed to two)
can be used to increase accuracy of image alignment
even when applied to small image regions.

4 Multi-Frame Parametric Alignment
In this section we present a method for extending
the two-frame technique reviewed in section 3 into a
multi-frame technique, which exploits multi-frame con-
straints on the image motion of a planar surface. In
section 4.1 we derive such a multi-frame constraint,
and in section 4.2 we show how it can be incorporated
into the 2D parametric estimation of planar motion,
without requiring any recovery of 3D information, or
camera calibration.
4.1 Single Plane Geometric Constraint
Let J be a reference frame, and let K, ..., K% be a
sequence of F inspection frames imaging the same pla-
nar surface with the same focal length f. Let ', ..., p7
be the corresponding quadratic parameter vectors of
the planar motion (see Eq. (1)). The instantaneous
motion model of Eq. (1) is a good approximation of
the motion over short video segments, as the camera
does not gain large motions in short periods of time.
In some cases, such as airborne video, this approxima-
tion is good also for very long sequences. Choosing
the reference frame as the middle frame extends the
applicability of the model to twice as many frames.
We arrange p,...,p* in an 8 x F matrix P where
each column corresponds to one frame. From Eq. (2):
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and fj,ﬁj, are the camera translation and rotation,
between the reference frame J and frame K7 (j =



Figure 1: (a,b,c,d) Sample frames from a 17-frame airborne video clip. Apart from camera motion, there is also a small

moving car. Fig. 1.c was the reference frame. (e) The absolute differences between two input frames (1.b and 1.c) indicate

wmitial misalignment. (f,1) High quality alignment (at sub-pizel accuracy) from applying the two-frame technique to the entire

tmage region. 1.f shows absolute differences after alignment, while 1.1 shows the average of the two aligned images. Only the

wndependently moving car is misaligned. (g,j) Poor alignment from applying the two-frame alignment to a small image region,

marked by a rectangle. Although the rectangular region is well aligned (apart from the moving car), large misalignments

can be detected in image pizels which are distant from the analysis region. (h,k) High quality alignment from applying the

constrained multi-frame alignment to the same small rectangular region. It was applied simultaneously to all 17 frames.

Even pizels distant from the analysis window appear well aligned.

1..F). Note that the shape matrix S is common to all
frames, because they all share the same plane normal
7 = (a, 3,7)! and focal length f. The dimensionality
of the matrices on the right hand side of Eq. (4) implies
that, without noise, the parameter matrix P is of rank
6 at most. This implies that the collection of all the
p’’s (j = 1..F) resides in a low dimensional linear sub-
space. The actual rank of P may be even lower than
6, depending on the complexity of the camera motion
over the sequence (e.g., in case of uniform motion it
will be 1).

4.2 Incorporating Sub-Space Constraint
into Multi-Frame Estimation

In this section we show how the low-rank con-
straint on P can be incorporated into the estimation
of p, ..., pF", without explicitly solving for any 3D in-
formation, nor for camera calibration.

It is not advisable to first solve for P and then
project its columns onto a lower dimensional subspace,
because then the individual 7’s will already be very
erroneous. Instead, we would like to use the low di-
mensionality constraint to constrain the estimation of
the individual $7’s a-priori. We next show how we
can apply this constraint directly to measurable image
quantities prior to solving for the individual j’s.

Since all inspection frames K',..., K¥ share the
same reference frame J, Eq. (3) can be extended to
multiple frames as:

Cxs - [ 70" Jg p = [ bt bF ]BxF (6)
or, in short: C-P = B. Eq. (6) implies that rank(B) <
rank(P) < 6. B contains only measurable image quan-
tities. Therefore, instead of applying the low-rank con-
straint to P, we apply it directly to B, and only then
solve for P. Namely: at each iteration ¢ of the algo-
rithm, first compute B; = [b} - --bL], and then project
its columns onto a lower-dimensional linear subspace
by seeking a matrix B; of rank r (r < 6), which is
closest to B; (in the Frobenius norm). Then solve for
P, = C;lﬁi, which yields the desired ’s.

The advantage of applying the constraint to B in-
stead of P can also be explained as follows: Note that
the matrix C in Eq. (3) is the posterior inverse co-
variance matrix of the parameter vector p. Therefore,
applying the constraint to B is equivalent to applying
it to the matrix P, but after normalizing its columns
by the inverse covariance matrix C (Note that all p7’s
share the same C).

To equalize the effect of subspace projection on all
matrix entries, and to further condition the numerical



process, we use the coordinate normalization technique
suggested by [4] (Also used in the two-frame method).

Fig. 1 shows a comparison of applying the two-frame
and multi-frame alignment techniques. Figs. 1.gand 1.j
show the result of applying the two-frame alignment
technique (See section 3) to a small image region. The
region of interest (marked rectangle) is indeed aligned,
but the rest of the image is completely distorted. In
contrast, the multi-frame constrained alignment (ap-
plied to 17 frames), successfully aligned the entire im-
age eventhough applied only to the same small region.
This can be seen in Figs. 1.h and 1.k.

Fig. 2 shows a quantitative comparison of the two-
frame and multi-frame alignment techniques. When
applying two-frame motion estimation to the small re-
gion, the farther the pixel is from the center of the
region the larger the error is. However, when apply-
ing multi-frame motion estimation to the same small
region, the errors everywhere are at sub-pixel level.

Fig. 3 shows another comparison of applying two-
frame alignment and multi-frame alignment to small
image regions. The sequence contains 34 frames taken
by a moving camera. Because the camera is imaging
the scene from a short distance, and because its motion
also contains a translation, therefore different planar
surfaces (e.g., the house, the road-sign, etc.) induce
different 2D parametric motions. As long as the house
was not occluded, the two-frame alignment, when ap-
plied only to the house region, stabilized the house
reasonably well. However, once the house was par-
tially occluded by the road-sign, and was not fully in
the camera’s field of view, the quality of the two-frame
alignment degraded drastically (see Figs. 3.f and 3.j).
The multi-frame constrained alignment, on the other
hand, successfully aligned the house, even in frames
where only a small portion of the house was visible (see
Figs. 3.g and 3.k). In this case, the actual rank used
was much smaller than 6 (it was 2), and was detected
from studying the rate of decay of the eigenvalues of
the matrix B.

5 Extending to Multiple Planes

In this section we show that in scenes containing
multiple planar surfaces, even stronger geometric con-
straints can be derived and used to improve the para-
metric motion estimation. We present two different
multi frame geometric constraints for sequences with
multiple planes. The second constraint does not re-
quire constant camera calibration.
5.1 The Multi-Plane Rank-6 Constraint

Let 71,...,mTm be m planar surfaces with normals
ﬁﬂ'l = [alaﬂlaf}/l]tv L ﬁﬂ"m = [amaﬂmaf}/m]ta respec-
tively. Let Py, ..., Pr, be the corresponding quadratic
motion parameter matrices, and let Sy, ..., Sz, be the
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Figure 2: A quantitative comparison of two-frame and
multi-frame alignment. The values in the graph correspond to
misalignments in Figs. 1.9 and 1.h. These errors are displayed
as a function of the distance from the center of the rectangular
region in Fig. 1. The results of two-frame alignment applied to

the entire image region (Fig. 1.f) were used as ground truth.

corresponding shape matrices, as defined by Egs. (4)
and (5). We can stack the P;, (7 = 1...m) matrices to
form an 8m x F matrix P, where each column corre-
sponds to one frame. Since all planar surfaces 7, share
the same 3D camera motion between a pair of frames,
we get from Eq. (4):

Pr, h

[ A L ]
af ar 6xF
8m X6

(7)
The dimensionality of the matrices on the right hand
side of Eq. (7) implies that, without noise, the param-
eter matrix P is also of rank 6 at most. (As before, the
actual rank of P may be even lower than 6, depending
on the complexity and variability of the camera motion
over the sequence).
5.2 Incorporating Multi-Plane

Constraint into Estimation

Again we would like to apply the constraint to mea-
surable image quantities. We show next how this can
be done. Let Cy,,...,Cr,, be the matrices correspond-
ing to planes 7y, ...,m,. Note that the matrices Cr,’s
are different from each other due to the difference in
the region of summation, which is the region of each
planar surface in the reference frame. We can write:

P7r1n SmxF Sﬂ'm

Rank-6

C 0 s 0
61 e 0 Pr, B,
(.) 0 e c7‘:77] Pr,,, 8mxF BT"“ 8mxF
(8)

or, in short: C - P = B. Note that here, as opposed to
Eq. (6), P, B and C contain information from all planar
surfaces. Eq. (8) implies that rank(B) < rank(P) < 6.



Figure 3: (a,b,c,d,e) sample images from a sequence of 34 frames. Image 3.b was used as the reference frame. (f) Bad
two-frame alignment of the house region between the reference frame 3.b and frame 3.d. The frame was completely distorted
because the house region was significantly occluded by the road-sign; (j) shows same result overlayed on top of the reference
1mage 3.b. (g) The corresponding result from applying the constrained multi-frame alignment. The house is now well aligned
even though only a small portion of the house is visible (see overlay image (k)), while the rest of the image is not distorted.
The road sign is not aligned because is at a different depth, and displays accurate 3D parallaz. (h,l) Badly distorted two-
frame alignment applied to the road-sign between frames 3.b and 3.a (where the sign is barely visible). Although the sign
appears aligned, the rest of the image is distorted, and the house displays wrong parallaz. (i,m) The corresponding result
(to (h,l)) from applying the constrained multi-plane (multi-frame) alignment to the sign (see text). The house displays now
accurate 3D parallaz.

We thus project the columns of matrix B onto a lower- where 77 = [fjtﬂ(, fjtg,, T= th]t, and:
dimensional subspace, at each iteration, resulting in

B (which is closest to B in the Frobenius norm), and [ 1(7" —) 0 0 W
then solve for P = C~' - B. In other words, we solve _l(a" o) 8 7(%07 )
for all parametric motions of all planar surfaces, across } 7(ﬁ"0_ p) (v — 7e) 0

all frames, simultaneously. The low-rank constraint is AS, = 0 %(;n _ ;r) 0
stronger here than in the single plane case, because the 0 2By = Br) (v — )
matrix B is of a larger dimension (8m x F'). 0 0 —L(ay —ar)
5.3 Relative Motion Rank-3 Constraint L 0 0 —+(By —Br) J

Moreover, by looking at the relative motion of pla-
nar surfaces we can get an even stronger geometric con-
straint, which is true even for the case of varying cam-
era focal length.

Let f and f’/ be the focal length of the frame .J
and frame K7, respectively. Let 7, be an arbitrary R
planar surface (. could be one of 7y, ..., 7). Denote AP, ASq,

Apy = P — P (n = 1l.m). Tt is easy to see from AP=| - _ | R e
Eq. (2) that taking the difference Ap) eliminates all ef- W —
fects of camera rotation, leaving only effects of camera mm L gmxr| ASr, 8mx3

translation and the focal length: (10)
The dimensionality of the matrices on the right hand

[Aﬁ;]gxl = [AS,]sx3[P]3x1 (9) side of Eq. (10) implies that, without noise, the differ-

Agn is common to all frames. The camera transla-
tion # and focal length f7 are common to all planes
(between the reference frame J and frame K7). We
can therefore extend Eq. (9) to multiple planes and
multiple frames as follows:



ence parameter matrix AP is of rank 3 at most.

It is possible to obtain a similar constraint (with
rank < 4), for general homographies case [13] (as op-
posed to the instantaneous case). The rank-4 con-
straint is an extension to the constraint shown by [10].
Shashua and Avidan presented a rank-4 constraint on
the collection of homographies of multiple planes be-
tween a pair of frames. In our case [13] the constraints
are on multiple planes across multiple frames. We refer
the reader to [13] for more details.

In the next section (5.4) we show how the multi-
plane rank-3 constraint can be incorporated into the
multi-frame estimation process to further enhance
planar-motion estimation.

5.4 Incorporating the Rank-3 Constraint
into Multi-Frame Estimation

Assume that for one planar surface, 7., we know the
collection of all its parametric motions, Py, . (This is
either given to us, or estimated at previous iteration).
We would like to use the (rank < 3) constraint to
refine the estimation of the collection of parametric
motions Py, ..., Py, , of all other planes. Using Eq. (8)
we derive:

B7‘r1 - Cﬂ'l ) PTr,‘
C-AP = : =B* (11
B7r,,, - C7r,,, . P’]T.,‘

8mxF

Therefore rank(B*) < rank(AP) < 3. To Incorpo-
rate the constraint into the estimation of the individual
Pr,’s, we project the columns of the matrix B* onto
a lower-dimensional (< 3) subspace at each iteration,
resulting in B* (which is closest to B* in Frobenius
norm). Therefore, (from Eq. (11)) we can estimate a
new matrix B**

Cry

B*=C-P= P, +B* (12)

Cr,,

and then solve for P, = C;nl - By*. Note that here
B* and B** are constructed from measurable image
quantities (B and C), as well as from the parameters
Py, which are either known or else estimated at pre-
vious iteration. The process is repeated at each itera-
tion. Note: (i) If we know that the focal length does
not change along the sequence, we can also apply the
constraint rank(B**) < rank(P) < 6 prior to solving
for Py, ; (ii) . can alternate between the planes, but
we found it to work best when 7, was chosen to be a
“dominant” plane (i.e., one whose matrix C,, is best
conditioned).

Fig. 3 also presents a comparison of regular (uncon-
strained) two-frame alignment with the multi-plane

constrained alignment, applied to the road-sign. The
motion parameters of the house region were first
estimated using the single-plane multi-frame con-
strained alignment (see Section 4). These were then
used as inputs for constraining the estimation of the
sequence of 2D motion parameters of the road-sign.
The two-frame alignment technique did not perform
well in cases when the sign was only partially visible
(see Figs. 3.h and 3.1). The multi-plane (multi-frame)
constrained alignment, on the other hand, stabilized
the sign well even in cases when the sign was only
partially visible (see Figs. 3.i and 3.m).
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