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Abstract 

Accurate computation of image motion enables the 
enhancement of image sequences. Motion computa- 
tion in scenes having multiple moving objects is per- 
formed together with object segmentation by using a 
unique temporal integration approach. 

Having accurate motion estimation for image re- 
gions, these regions can be enhanced by fusing all suc- 
cessive frames covering the same region. Enhancement 
includes improvement of image resolution, filling-in 
occluded regions, and reconstruction of components 
in scenes involving transparency. 

1 Introduction 

We describe a method for detecting and tracking 
multiple moving objects, using both a large spatial 
region and a large temporal region, without assum- 
ing temporal motion constancy. When the large spa- 
tial region of analysis has multiple moving objects, 
the motion parameters and the locations of the ob- 
jects are computed for one object after another. The 
method has been applied successfully to parametric 
image motions such as affine and projective transfor- 
mations. Objects are tracked using temporal integra- 
tion of images registered according to the computed 
motions [9]. 

Once an object has been tracked and segmented, 
it can be enhanced using information from several 
frames. Tracked objects can be enhanced by filling-in 
occluded regions, and by improving the spatial resolu- 
tion of the imaged objects. When the sc.ene contains 
transparent motions, the transparent objects can be 
tracked and reconstructed separately. 

Sect. 2 describes briefly a method for segmenting 
the image plane into differently moving objects and 
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computing their motions using two frames. Sect. 3 
describes briefly the tracking of detected objects using 
temporal integration. Sect. 4 describes the algorithms 
for image enhancement. More details on the motion 
analysis and segmentation methods can be found in 

2 Multiple Motions in Image Pairs 
To detect differently moving objects in an image 

pair, a single motion is first computed, and a single 
object which corresponds to this motion is identified. 
We call this motion the dominant motion, and the cor- 
responding object the dominant object.  Once a dom- 
inant object has been detected, it is excluded from 
the region of analysis, and the process is repeated on 
the remaining image regions to find other objects and 
their motions. 

2.1 Processing the First Object 

Motion Computation. It is assumed that the pro- 
jected 3D motions of the objects can be approximated 
by some 2D parametric transformation in the image 
plane. We have chosen to use an iterative, multi- 
resolution, gradient-based approach for motion com- 
putation [a,  3,  41. The parametric motion models used 
in our current implementation are: pure translation (2 
parameters), affine transformation (6 parameters, [3]) 
and projective transformation (8 parameters [I]). 

The motion parameters of a single object in the 
image plane can be recovered by applying the iterative 
detection method to the entire region of analysis. This 
can be done even in the presence of other differently 
moving objects in the region of analysis, and with no 
prior knowledge of their regions of support [5, 91. 

[91. 

Segmentation. Once a motion has been deter- 
mined, we would like to identify the region having this 
motion. To simplify the problem, the two images are 
registered using the detected motion. The motion of 
the corresponding region is therefore canceled, and the 
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problem becomes that of identifying the stationary re- 
gions. 

In order to classify correctly regions having uni- 
form intensity, a multi-resolution scheme is used, as 
in low resolution levels the uniform regions are small. 
The lower resolution classification is projected on the 
higher resolution level, and is updated according to 
higher resolution information (gradient or motion) 
when it conflicts the classification from the lower res- 
olution level. 

Noise Sensitivity. The motion analysis and seg- 
mentation computed from two frames, as described in 
this section, are sensitive to noise. I t  is difficult to 
distinguish between intensity variations due to noise 
and intensity variations due to motion. The problem 
of noise is overcome once the algorithm is extended to 
handle longer sequences using temporal integration. 

3 Tracking by Temporal Integration 
The algorithm for the detection of multiple moving 

objects described in Sect. 2 is extended to track ob- 
jects in long image sequences. This is done by using 
temporal integration of images registered with respect 
to the tracked motion. The temporally integrated im- 
age serves as a dynamic internal representation image 
of the tracked object. 

Let { I ( t ) }  denote the image sequence, and let M ( t )  
denote the segmentation mask of the tracked ob- 
ject computed for frame I ( t ) ,  using the segmentation 
method mentioned in Sect. 2.1. Initially, M ( 0 )  is the 
entire region of analysis. The temporally integrated 
image is denoted by Av(t) ,  and is constructed as fol- 
lows: 

Av(0) %f I ( 0 )  (1) 

Av(t + 1) kf (1 - w) . I ( t  + 1) + 
w . register(Av(t), I ( t  + 1)) 

where register(P, Q) denotes the registration of im- 
ages P and Q by warping P towards Q according to 
the motion of the tracked object computed between 
them, and 0 < w < 1 (currently w = 0.7). An ex- 
ample of a temporally integrated image is shown in 
Fig. 1. Following is a summary of the algorithm for 
detecting and tracking the dominant object in an im- 
age sequence: 

Starting a t  t = 0, do: 
1. Compute the dominant motion parameters between 
the temporal average Av( t )  and the new frame I(t+l), 
in the region M ( t )  of the tracked object (Sect. 2). 

Figure 1: A temporally integrated image. 
a) A single frame from a sequence. The scene 
contains four moving objects. 
b) The temporally integrated image after 5 
frames. The tracked motion is that of the 
ball. All other regions blur out. 

2. Warp the temporally integrated image Av(t)  and 
the segmentation mask M ( t )  towards the new frame 
I ( t  + 1) according to the computed motion parame- 
ters. 
3.  Identify the stationary regions in the registered im- 
ages (Sect. 2. l) ,  using the registered mask M ( t )  as an 
initial guess. This will be the region M ( t  + 1) of the 
tracked object in frame I ( t  + 1). 
4. Compute the next average Av(t + 1) using Eq. (l), 
and continue processing the next frame. 

When the motion model approximates well enough 
the temporal changes of the tracked object, shape 
changes relatively slowly over time in registered im- 
ages. Therefore, temporal integration of registered 
frames produces a sharp and clean image of the 
tracked object, while blurring regions having other 
motions. Fig. 1 shows a temporally integrated image 
of a tracked rolling ball. Comparing each new frame 
to the temporally integrated image rather than to the 
previous frame gives the algorithm a strong bias to 
keep tracking the same object. Since additive noise is 
reduced in the the average image of the tracked object, 
and since image gradients outside the tracked object 
decrease substantially, both segmentation and motion 
computation improve significantly. 

In the example shown in Figs. 2.c and 2.d, temporal 
integration is used to detect and track the first object 
using an affine motion model. In this sequence, taken 
by an infrared camera, the background moves due to 
camera motion, while the car has another motion. I t  is 
evident that the tracked object in Fig. 2.c is the back- 
ground, as all other regions in the image are blurred 
by their motion. 
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Figure 2: Detecting and tracking multiple 
moving objects using temporal integration 
(IR images). 
a-b) The first and last frames. Both the back- 
ground and the car are moving. 
c) The temporally integrated image of the 
first tracked object (the background). The 
moving car blurs out. 
d) Segmentation of the first tracked object 
(the background). White regions are those 
excluded from the tracked region. 
e) The temporally integrated image of the sec- 
ond tracked object (the car). The background 
blurs out. 
f )  Segmentation of the second tracked object. 

Figure 3: Reconstruction of occluded regions. 
a) The car appears in all frames. 
b) Full reconstruction of the background. 

Tracking Other Objects. After segmentation of 
the first object, and the computation of its motion be- 
tween every two successive frames, attention is given 
to other objects. This is done by applying once more 
the tracking algorithm to the rest of the image, af- 
ter excluding the first detected object from the region 
of analysis. The scheme is repeated recursively until 
no more objects can be detected [9]. An example of 
tracking the second object is shown in Figs. 2.e and 2.f. 

4 Image Enhancement 

Three methods are proposed for using the motion 
tracking for image enhancement: Reconstruction of 
occluded segments (Sect. 4.1), improvement of spatial 
resolution (Sect. 4.2), and reconstruction of transpar- 
ent moving patters (Sect. 4.3).  

4.1 Reconstruction of Occlusions 

When parts of a tracked object are occluded in some 
frames, but appear in others, a more complete view of 
the object can be reconstructed. The image frames 
are registered using the computed motion parameters. 
The object is then reconstructed by temporally av- 
eraging gray levels of all pixels which were classified 
as object pixels. Object regions will be reconstructed 
even if they are occluded in some frames. 

In the example shown in Fig. 3, the background 
of the infrared image sequence was completely recon- 
structed, eliminating the moving car from the scene. 

4.2 Improvement of Spatial Resolution 

The resolution of an image is determined by the 
physical characteristics of the sensor: the optics, the 
density of the detector elements, and their spatial re- 
sponse. Resolution improvement by modifying the 
sensor can be prohibitive. An increase in the sam- 
pling rate could, however, be achieved by obtaining 
more samples of the imaged object from a sequence of 
images in which the object appears moving. In this 
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section, we present an algorithm for processing image 
sequences to obtain improved resolution of differently 
moving objects. This is an extension of our method 
presented in [8], which now handles more general mo- 
tion models. 

While earlier research on super-resolution [7, 8, 101 
has dealt only with static scenes and with pure trans- 
lational motion of the entire scene in the image plane, 
we deal with dynamic scenes and with more complex 
motions within the image plane. The segmentation 
of the image plane into the differently moving objects 
and their tracking, using the algorithm mentioned in 
Sections 2 and 3,  enables processing of each object 
separately. 

The Imaging Model. The imaging process, yield- 
ing the observed image sequence { g k } ,  is modeled by: 
g k ( m ,  n)  = ak(h(Tk(f(x:, Y))) + %(xi Y)) 1 where 

gk is the image of the tracked object in the k t h  

frame. 

f is a high resolution image of the tracked object 
in a desired reconstruction view (the objective of 
the super-resolution algorithm). 

Tk is the 2D geometric transformation from f to 
g k ,  determined by the computed motion param- 
eters of the tracked object and by the degree of 
decrease in resolution. 

h is a blurring operator, determined by the point 
spread function of the sensor. When lacking 
knowledge of the sensor’s properties, it is assumed 
to be a Gaussian. 

q k  is an additive noise term. 

b k  is an operator which digitizes and decimates 
the image into pixels and quantizes the resulting 
pixels values. 

The receptive f i e l d  (in f )  of a detector whose output 
is g k ( m ,  n)  is uniquely defined by its center (5, y) and 
its shape. The shape is determined by the region of 
support of the blurring operator h ,  and by the inverse 
geometric transformation Tk-’ .  Similarly, the center 
( c ,  y) is obtained by Tk-’((m, n)) .  

The construction of a higher resolution image f, 
which approximates f as accurately as possible, and 
surpasses the visual quality of the observed images in 
{ g k } ,  is attempted. It is assumed that the acceleration 
of the camera while imaging a single image frame is 
negligible. 

Rewnstluctcd Image original Image 

Simulated 
Low-resolution 

Compare simulated and 
observed low-nsolulion 

Figure 4: Schematic diagram of the super res- 
olution algorithm 

The Super-Resolution Algorithm. The pre- 
sented algorithm for solving the super resolution prob- 
lem is iterative. Starting with an initial guess f(’) for 
the high resolution image, the imaging process is sim- 
ulated to obtain a set of low resolution images { g p ) }  
corresponding to the observed input images { g k } .  If 
f(’) were the correct high resolution image, then the 
simulated images {gp)} should be identical to the ob- 
served images { g k } .  The difference images { g k  - g p ) }  
are then computed, and used to improve the initial 
guess by “backprojecting” each value in the difference 
images onto its receptive field in f(’), yielding an im- 
proved high resolution image f(l). This process is re- 
peated iteratively to minimize the error function 

The algorithm is schematically described in Fig. 4. 

The imaging process of gk at the nth iteration is 
simulated by: g ( n )  = T k ( f ( n ) )  * h. Let I denote a 
high resolution pixel, and y’ denote a low resolution 
pixel. Then the iterative update scheme of the high 
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resolution image is expressed by: 

(gk($ - g6"'($Y& 

ll& 

f ( n t l ) ( q  = f ( n ) ( q  + f E U k Y k , 5  

U k yk ,d 

(2) 
where Y k , $  denotes the set of all pixels in g k  that in- 
clude l in their receptive field, and h& is the relative 
contribution of f(n)(l) in the imaging process of the 
pixel gp)(g. 

Eq. (2) computes the following: The value off'") 
a t  each high resolution pixel Z is updated according to 
all the low resolution pixels ;which it influences. The 
contribution to S to a low resolution pixel j ;  belong- 
ing to an input image gk is the error ( g k ( g  - s?'($) 
multiplied by a factor of hia. Therefore, strongly in- 
fluenced low resolution pixels also strongly influence 
f("+')(l), while weakly influenced low resolution pix- 
els hardly influence f("+')(l). Since receptive fields 
of different low resolution pixels overlap, f("+l)(l)'s 
new value is influenced by several low resolution pix- 
els. All corrections suggested by the various low res- 
olution pixels are then averaged. Taking an average 
also reduces additive noise. 

I t  is important to note that the original high res- 
olution frequencies may not always be fully restored. 
For example, if the blurring function is an ideal low 
pass filter, and its Fourier transform has zero values 
a t  high frequencies, it is obvious that the frequency 
components which have been filtered out cannot be 
restored. In such cases, there is more than one high 
resolution image which gives the same low resolution 
images after the imaging process. A good choice of 
initial guess is the average of the registered low reso- 
lution images of the tracked ob'ect in the desired re- 

initial guess leads the algorithm to a smooth solution, 
which is usually a desired one. The algorithm con- 
verges rapidly (usually within less than 5 iterations), 
and has parallel characteristics. 

In Fig. 5, the resolution of a car's license plate was 
improved from 15 frames. 

4.3 Reconstruction of Objects in Trans- 
parent Motion 

construction view: f ( O )  = Ck=l R -  TI, ' ( g k ) .  Such an 

A region contains transparent motions if it con- 
tains several differently moving image patterns that 
appear superimposed. For example: moving shad- 
ows, spotlights, reflections in water, transparent sur- 
faces moving past one another, etc. In this section, 
we present a method for isolating and reconstructing 

Figure 5: Improvement of spatial resolution 
using 15 frames. The sampling rate was in- 
creased by 2 in both directions. 
a) The best frame from the image sequence. 
b) The license plate magnified by 2 using bi- 
linear interpolation. 
c) The improved resolution image. 

tracked objects in transparent motion. Previous anal- 
ysis of transparency [4, 6, 111 assumed some motion 
constancy, which excludes most sequences taken from 
an unstabilized moving camera. Their work detected 
the motions of two superimposed transparent motions, 
but did not reconstruct the transparent objects. 

Theoretically, transparent motion yields several 
motion components a t  each point, and segmentation 
cannot be used to isolate one of the transparent ob- 
jects. In practice, however, pixels do not equally sup- 
port different motions, so segmentation can be used to 
extract pixels which support better a single motion in 
the region of analysis. We use the temporal integra- 
tion scheme described in Sect. 3 to track the dominant 
transparent object. The temporal averaging restores 
the dominant transparent object, while blurring out 
the other transparent objects, making them less no- 
ticeable. Comparing each new frame to the temporally 
integrated image rather than to the previous frame 
gives the algorithm a strong bias to keep tracking the 
same transparent object. 

For recovering the second transparent object, the 
temporal integration method is applied once more to 
the sequence, after some delay. Let Awl@) denote the 
temporally integrated image of the first transparent 
object. Starting a t  frame I ( t ) ,  the algorithmis applied 
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a)  

Figure 6: Reconstruction of “transparent” 
objects. 
a-b) The first and last frames in a sequence. 
A moving tripod is reflected in the glass of a 
picture of flowers. 
c )  The first reconstructed object was the pic- 
ture. The tripod faded away. 
d) The second reconstructed object was the 
tripod. The flowers faded away. 

only to pixels for which the value of Il(t) - Avl(t)I is 
high. This difference image has high values in regions 
which contain prominent features of transparent ob- 
jects in I ( t )  that faded away in the temporally inte- 
grated image Avl( t ) ,  and low values in regions which 
correspond to the first dominant transparent object. 
Therefore, we use the values 3f the absolute differ- 
ence image as an initial mask for the search of the 
next dominant object in the temporal integration al- 
gorithm from Sect. 3.  Now that the algorithm tracks 
the second dominant object, the new temporally in- 
tegrated image Avz(t) restores the second dominant 
transparent object, and blurs out the other transpar- 
ent objects, including the first dominant object. 

In Fig. 6,  the reconstruction of transparent moving 
objects is shown. 

5 Concluding Remarks 
Temporal integration of registered images proves to 

be a powerful approach to motion analysis, enabling 
human-like tracking of moving objects. The tracked 
object remains sharp while other objects blur out, 
which enables accurate segmentation and motion com- 
putation. Tracking can then proceed on other objects. 

Information from several registered frames enables 

enhancement of tracked objects like reconstruction of 
occluded regions, improv.ement of image resolution, 
and reconstruction of transparent objects. 
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