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Abstract

Accurate computation of image motion enables the
enhancement of image sequences. Motion computa-
tion in scenes having multiple moving objects is per-
formed together with object segmentation by using a
unique temporal integration approach.

Having accurate motion estimation for image re-
gions, these regions can be enhanced by fusing all suc-
cessive frames covering the same region. Enhancement
includes improvement of image resolution, filling-in
occluded regions, and reconstruction of components
in scenes involving transparency.

1 Introduction

We describe a method for detecting and tracking
multiple moving objects, using both a large spatial
region and a large temporal region, without assum-
ing temporal motion constancy. When the large spa-
tial region of analysis has multiple moving objects,
the motion parameters and the locations of the ob-
jects are computed for one object after another. The
method has been applied successfully to parametric
image motions such as affine and projective transfor-
mations. Objects are tracked using temporal integra-
tion of images registered according to the computed
motions [9].

Once an object has been tracked and segmented,
it can be enhanced using information from several
frames. Tracked objects can be enhanced by filling-in
occluded regions, and by improving the spatial resolu-
tion of the imaged objects. When the scene contains
transparent motions, the transparent objects can be
tracked and reconstructed separately.

Sect. 2 describes briefly a method for segmenting
the image plane into differently moving objects and
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computing their motions using two frames. Sect. 3
describes briefly the tracking of detected objects using
temporal integration. Sect. 4 describes the algorithms
for image enhancement. More details on the motion
analysis and segmentation methods can be found in

[9].
2 Multiple Motions in Image Pairs

To detect differently moving objects in an image
pair, a single motion is first computed, and a single
object which corresponds to this motion is identified.
We call this motion the dominant motion, and the cor-
responding object the dominant object. Once a dom-
inant object has been detected, it is excluded from
the region of analysis, and the process is repeated on
the remaining image regions to find other objects and
their motions.

2.1 Processing the First Object

Motion Computation. It is assumed that the pro-
Jected 3D motions of the objects can be approximated
by some 2D parametric transformation in the image
plane. We have chosen to use an iterative, multi-
resolution, gradient-based approach for motion com-
putation [2, 3, 4]. The parametric motion models used
in our current implementation are: pure translation (2
parameters), affine transformation (6 parameters, [3])
and projective transformation (8 parameters [1]).
The motion parameters of a single object in the
image plane can be recovered by applying the iterative
detection method to the entire region of analysis. This
can be done even in the presence of other differently
moving objects in the region of analysis, and with no
prior knowledge of their regions of support [5, 9].

Segmentation. Once a motion has been deter-
mined, we would like to identify the region having this
motion. To simplify the problem, the two images are
registered using the detected motion. The motion of
the corresponding region is therefore canceled, and the



problem becomes that of identifying the stationary re-
gions.

In order to classify correctly regions having uni-
form intensity, a multi-resolution scheme is used, as
in low resolution levels the uniform regions are small.
The lower resolution classification is projected on the
higher resolution level, and is updated according to
higher resolution information (gradient or motion)
when it conflicts the classification from the lower res-
olution level.

Noise Sensitivity. The motion analysis and seg-
mentation computed from two frames, as described in
this section, are sensitive to noise. It is difficult to
distinguish between intensity variations due to noise
and intensity variations due to motion. The problem
of noise is overcome once the algorithm is extended to
handle longer sequences using temporal integration.

3 Tracking by Temporal Integration

The algorithm for the detection of multiple moving
objects described in Sect. 2 is extended to track ob-
Jjects in long image sequences. This is done by using
temporal integration of images registered with respect
to the tracked motion. The temporally integrated im-
age serves as a dynamic internal representation image
of the tracked object.

Let {I(¢)} denote the image sequence, and let M (t)
denote the segmentation mask of the tracked ob-
ject computed for frame I(¢), using the segmentation
method mentioned in Sect. 2.1. Initially, M (0) is the
entire region of analysis. The temporally integrated
image is denoted by Av(t), and is constructed as fol-
lows:

def

Av(0)
Av(t +1)

1(0)
Q-w)-I(t+1)+
w - register(Av(t), I(t + 1))

(1)

def

where register(P, Q) denotes the registration of im-
ages P and Q by warping P towards Q according to
the motion of the tracked object computed between
them, and 0 < w < 1 (currently w = 0.7). An ex-
ample of a temporally integrated image is shown in
Fig. 1. Following is a summary of the algorithm for
detecting and tracking the dominant object in an im-
age sequence:

Starting at ¢ = 0, do:

1. Compute the dominant motion parameters between
the temporal average Av(t) and the new frame I(t+1),
in the region M(t) of the tracked object (Sect. 2).
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Figure 1: A temporally integrated image.

a) A single frame from a sequence. The scene
contains four moving objects.

b) The temporally integrated image after 5
frames. The tracked motion is that of the
ball. All other regions blur out.

2. Warp the temporally integrated image Av(f) and
the segmentation mask M(t) towards the new frame
I(t + 1) according to the computed motion parame-
ters.

3. Identify the stationary regions in the registered im-
ages (Sect. 2.1), using the registered mask M (t) as an
initial guess. This will be the region M (¢ + 1) of the
tracked object in frame I(t + 1).

4. Compute the next average Av(t + 1) using Eq. (1),
and continue processing the next frame.

When the motion model approximates well enough
the temporal changes of the tracked object, shape
changes relatively slowly over time in registered im-
ages. Therefore, temporal integration of registered
frames produces a sharp and clean image of the
tracked object, while blurring regions having other
motions. Fig. 1 shows a temporally integrated image
of a tracked rolling ball. Comparing each new frame
to the temporally integrated image rather than to the
previous frame gives the algorithm a strong bias to
keep tracking the same object. Since additive noise is
reduced in the the average image of the tracked object,
and since image gradients outside the tracked object
decrease substantially, both segmentation and motion
computation improve significantly.

In the example shown in Figs. 2.c and 2.d, temporal
integration is used to detect and track the first object
using an affine motion model. In this sequence, taken
by an infrared camera, the background moves due to
camera motion, while the car has another motion. It is
evident that the tracked object in Fig. 2.c is the back-
ground, as all other regions in the image are blurred
by their motion.
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Figure 2: Detecting and tracking multiple
moving objects using temporal integration
(IR images).

a-b) The first and last frames. Both the back-
ground and the car are moving.

¢) The temporally integrated image of the
first tracked object (the background). The
moving car blurs out.

d) Segmentation of the first tracked object
(the background). White regions are those
excluded from the tracked region.

e) The temporally integrated image of the sec-
ond tracked object (the car). The background
blurs out.

f) Segmentation of the second tracked object.
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Figure 3: Reconstruction of occluded regions.
a) The car appears in all frames.
b) Full reconstruction of the background.

Tracking Other Objects. After segmentation of
the first object, and the computation of its motion be-
tween every two successive frames, attention is given
to other objects. This is done by applying once more
the tracking algorithm to the rest of the image, af-
ter excluding the first detected object from the region
of analysis. The scheme is repeated recursively until
no more objects can be detected [9]. An example of
tracking the second object is shown in Figs. 2.e and 2.f.

4 Image Enhancement

Three methods are proposed for using the motion
tracking for image enhancement: Reconstruction of
occluded segments (Sect. 4.1), improvement of spatial
resolution (Sect. 4.2), and reconstruction of transpar-
ent moving patters (Sect. 4.3).

4.1 Reconstruction of Occlusions

When parts of a tracked object are occluded in some
frames, but appear in others, a more complete view of
the object can be reconstructed. The image frames
are registered using the computed motion parameters.
The object is then reconstructed by temporally av-
eraging gray levels of all pixels which were classified
as object pixels. Object regions will be reconstructed
even if they are occluded in some frames.

In the example shown in Fig. 3, the background
of the infrared image sequence was completely recon-
structed, eliminating the moving car from the scene.

4.2 TImprovement of Spatial Resolution

The resolution of an image is determined by the
physical characteristics of the sensor: the optics, the
density of the detector elements, and their spatial re-
sponse. Resolution improvement by modifying the
sensor can be prohibitive. An increase in the sam-
pling rate could, however, be achieved by obtaining
more samples of the imaged object from a sequence of
images in which the object appears moving. In this



section, we present an algorithm for processing image
sequences to obtain improved resolution of differently
moving objects. This is an extension of our method
presented in [8], which now handles more general mo-
tion models.

While earlier research on super-resolution {7, 8, 10]
has dealt only with static scenes and with pure trans-
lational motion of the entire scene in the image plane,
we deal with dynamic scenes and with more complex
motions within the image plane. The segmentation
of the image plane into the differently moving objects
and their tracking, using the algorithm mentioned in
Sections 2 and 3, enables processing of each object
separately.

The Imaging Model. The imaging process, yield-
ing the observed image sequence {gx}, is modeled by:
gr(m,n) = ok (h(Te(f(z, v))) + me(2,y)) , where

e g; is the image of the tracked object in the &
frame.

e f is a high resolution image of the tracked object
in a desired reconstruction view (the objective of
the super-resolution algorithm).

e T} is the 2D geometric transformation from f to
gk, determined by the computed motion param-
eters of the tracked object and by the degree of
decrease in resolution.

e h is a blurring operator, determined by the point
spread function of the sensor. When lacking
knowledge of the sensor’s properties, it is assumed
to be a Gaussian.

e 7 is an additive noise term.

e 0} is an operator which digitizes and decimates
the image into pixels and quantizes the resulting
pixels values.

The receptive field (in f) of a detector whose output
is gr(m, n) is uniquely defined by its center (z,y) and
its shape. The shape is determined by the region of
support of the blurring operator i, and by the inverse
geometric transformation T3 ~'. Similarly, the center
(z,y) is obtained by T} ~*((m, n)).

The construction of a higher resolution image f,
which approximates f as accurately as possible, and
surpasses the visual quality of the observed images in
{gx}, 1s attempted. It is assumed that the acceleration
of the camera while imaging a single image frame is
negligible.
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Figure 4: Schematic diagram of the super res-
olution algorithm

The Super-Resolution Algorithm. The pre-
sented algorithm for solving the super resolution prob-
lem is iterative. Starting with an initial guess 7 for
the high resolution image, the imaging process is sim-
ulated to obtain a set of low resolution images {ggo)}
corresponding to the observed input images {gx}. If
f(©) were the correct high resolution image, then the
simulated images { ggo)} should be identical to the ob-
served images {gi}. The difference images {gx — g,(co)}
are then computed, and used to improve the initial
guess by “backprojecting” each value in the difference
images onto its receptive field in f(°) yielding an im-
proved high resolution image f(1). This process is re-
peated iteratively to minimize the error function

= 573 (0le,9) - 67(2,9))?

kE (a9)

The algorithm is schematically described in Fig. 4.

The imaging process of g at the n;j iteration is
simulated by: ¢(®) = Ty(f) * h. Let & denote a
high resolution pixel, and § denote a low resolution
pixel. Then the iterative update scheme of the high



resolution image is expressed by:

3T (0@ - oV (@)hE;
JEURY 2
Z ha’;,

FEULY 2

FONE) = (@) +

2
where Y} z denotes the set of all pixels in g;, that En%
clude & in their receptive field, and hgy. 1s the relative
contribution of f(")(£) in the imaging process of the
pixel ggcn)(gf).

Eq. (2) computes the following: The value of f(*)
at each high resolution pixel & is updated according to
all the low resolution pixels § which it influences. The
contribution to & to a low resolution pixel ¢ belong-
ing to an input image g; is the error (gi () — g%”)(g]'))
multiplied by a factor of h’j“.y.. Therefore, strongly in-
fluenced low resolution pixels also strongly influence
f(”“)(i’), while weakly influenced low resolution pix-
els hardly influence f(”"'l)(:i'). Since receptive fields
of different low resolution pixels overlap, f(”“)(i’)’s
new value is influenced by several low resolution pix-
els. All corrections suggested by the various low res-
olution pixels are then averaged. Taking an average
also reduces additive noise.

It is important to note that the original high res-
olution frequencies may not always be fully restored.
For example, if the blurring function is an ideal low
pass filter, and its Fourier transform has zero values
at high frequencies, it is obvious that the frequency
components which have been filtered out cannot be
restored. In such cases, there is more than one high
resolution image which gives the same low resolution
images after the imaging process. A good choice of
initial guess is the average of the registered low reso-
lution images of the tracked ob}'{ect in the desired re-
construction view: f(0 = £ % 737! (g;). Such an
imitial guess leads the algorithm to a smooth solution,
which is usually a desired one. The algorithm con-
verges rapidly (usually within less than 5 iterations),
and has parallel characteristics.

In Fig. 5, the resolution of a car’s license plate was
improved from 15 frames.

4.3 Reconstruction of Objects in Trans-
parent Motion

A region contains transparent motions if it con-
tains several differently moving image patterns that
appear superimposed. For example: moving shad-
ows, spotlights, reflections in water, transparent sur-
faces moving past one another, etc. In this section,
we present a method for isolating and reconstructing

Figure 5: Improvement of spatial resolution
using 15 frames. The sampling rate was in-
creased by 2 in both directions.

a) The best frame from the image sequence.
b) The license plate magnified by 2 using bi-
linear interpolation.

¢) The improved resolution image.

tracked objects in transparent motion. Previous anal-
ysis of transparency [4, 6, 11] assumed some motion
constancy, which excludes most sequences taken from
an unstabilized moving camera. Their work detected
the motions of two superimposed transparent motions,
but did not reconstruct the transparent objects.

Theoretically, transparent motion yields several
motion components at each point, and segmentation
cannot be used to isolate one of the transparent ob-
Jects. In practice, however, pixels do not equally sup-
port different motions, so segmentation can be used to
extract pixels which support better a single motion in
the region of analysis. We use the temporal integra-
tion scheme described in Sect. 3 to track the dominant
transparent object. The temporal averaging restores
the dominant transparent object, while blurring out
the other transparent objects, making them less no-
ticeable. Comparing each new frame to the temporally
integrated image rather than to the previous frame
gives the algorithm a strong bias to keep tracking the
same transparent object.

For recovering the second transparent object, the
temporal integration method is applied once more to
the sequence, after some delay. Let Avi(t) denote the
temporally integrated image of the first transparent
object. Starting at frame I(t), the algorithm is applied
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Figure 6: Reconstruction of “transparent”
objects.

a-b) The first and last frames in a sequence.
A moving tripod is reflected in the glass of a
picture of flowers.

c) The first reconstructed object was the pic-
ture. The tripod faded away.

d) The second reconstructed object was the
tripod. The flowers faded away.

only to pixels for which the value of |I(t) — Avi(t)] is
high. This difference image has high values in regions
which contain prominent features of transparent ob-
jects in I(t) that faded away in the temporally inte-
grated image Av;(¢), and low values in regions which
correspond to the first dominant transparent object.
Therefore, we use the values of the absolute differ-
ence image as an initial mask for the search of the
next dominant object in the temporal integration al-
gorithm from Sect. 3. Now that the algorithm tracks
the second dominant object, the new temporally in-
tegrated image Aws(t) restores the second dominant
transparent object, and blurs out the other transpar-
ent objects, including the first dominant object.

In Fig. 6, the reconstruction of transparent moving
objects is shown.

5 Concluding Remarks

Temporal integration of registered images proves to
be a powerful approach to motion analysis, enabling
human-like tracking of moving objects. The tracked
object remains sharp while other objects blur out,
which enables accurate segmentation and motion com-
putation. Tracking can then proceed on other objects.

Information from several registered frames enables
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enhancement of tracked objects like reconstruction of
occluded regions, improvement of image resolution,
and reconstruction of transparent objects.
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