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Abstract

The motion of a planar surface between two cam-
era views induces a homography. The homography de-
pends on the camera intrinsic and extrinsic parameters,
as well as on the 3D plane parameters. While camera
parameters vary across di�erent views, the plane geom-
etry remains the same. Based on this fact, we derive
linear subspace constraints on the relative motion of
multiple (� 2) planes across multiple views.

The paper has three main contributions: (i) We
show that the collection of all relative homographies
of a pair of planes (homologies) across multiple views,
spans a 4-dimensional linear subspace. (ii) We show
how this constraint can be extended to the case of
multiple planes across multiple views. (iii) We suggest
two potential application areas which can bene�t from
these constraints: (a) The accuracy of homography es-
timation can be improved by enforcing the multi-view
subspace constraints. (b) Violations of these multi-
view constraints can be used as a cue for moving ob-
ject detection. All the results derived in this paper are
true for uncalibrated cameras.

1 Introduction

Homography estimation is used for 3D analysis
[8, 9, 11, 4, 2, 6, 7], mosaicing [5], camera calibration
[12], and more. The induced homography between a
pair of views depends on the camera intrinsic and ex-
trinsic parameters, and on the 3D plane parameters [1].
While camera parameters vary across di�erent views,
the plane geometry remains the same. In this paper we
show how we can exploit this fact to derive multi-view
linear subspace constraints on the relative motion of
multiple (� 2) planes.

Linear subspace constraints on homographies have
been previously derived by Shashua and Avidan [10].
They showed that the collection of homographies of
multiple planes between a pair of views, spans a 4-
dimensional linear subspace. This constraint requires
the number of planes in the scene to be greater than
4. In this paper we �rst derive a \dual" constraint,
for a pair planes over multiple (> 4) views (Section 3).

This constraint is then extended to a constraint on
homographies of multiple planes across multiple views
(Section 4).

Algorithms for 3D analysis which are based on the
use of multiple homographies (in scenes with multiple
planes) have been suggested (e.g., [8, 9, 13, 7]). Most
of these algorithms rely on accurate precomputation of
the homographies. However, in scenes containing mul-
tiple planes, the image region corresponding to each
plane may be small. In such cases, the homography
estimation tends to be highly inaccurate [11] (i.e, when
applied to small image regions). In this paper we show
how the accuracy of homography estimation can be
improved by employing the multi-view subspace con-
straints (Section 5.1). We also show how violations of
these multi-view constraints can be used as a cue for
moving object detection (Section 5.2).

All the results derived in this paper are true for
uncalibrated camera.

2 Homographies - Basic Notations

Let ~Q = (X;Y; Z)t and ~Q0 = (X 0; Y 0; Z 0)t denote a
scene point with respect to two di�erent camera views,
respectively. Let ~q = (x; y; 1)t and ~q0 = (x0; y0; 1)t

denote the corresponding points in the two images. We
can write:

~q �= C ~Q , ~q0 �= C 0 ~Q0 (1)

where �= denotes equality up to a scale factor. C and
C 0 are 3� 3 matrices [1] (composed of camera internal
parameters and projection).

Let � be a planar surface with plane normal ~n, then
~nt ~Q = 1 for all points ~Q 2 � (~n = ~m

d�
, where ~m is a unit

vector in the direction of the plane normal, and d� is
the distance of the plane from the �rst camera center).
The transformation between the 3D coordinates of a
scene point Q 2 � in the two views, can be expressed
by:

~Q0 = G~Q (2)

where

G = R+ ~t~nt (3)



R is the rotation matrix and ~t is the translation of
the camera. Therefore, the induced transformation be-
tween the corresponding image points is:

~q0 �= H~q (4)

where
H = C 0(R+ ~t � ~nt)C�1 (5)

is the induced homography between the two views of
the plane �. From Eq. (4) it is clear that when H is
computed from image point correspondences, it can be
estimated only up to a scale factor.

3 Multi-View Two-Plane Constraint
Let J be a \reference" image, and let K1; : : : ;KF

be F other images of the same scene taken from dif-
ferent views. Let �r, �p be two planar surfaces in
the scene with plane normals ~nr and ~np, respectively.
Let Hf

r and Hf
p denote their corresponding homogra-

phies between the reference image J and an image Kf

(f = 1; : : : ; F ). Composing the homography of �p with
the inverse of the homography of �r yields a \relative
homography":

Hf
pr = (Hf

r )
�1Hf

p (6)

This is also known as a "plane homology" [3, 7]. Some
properties and invariants of planar homologies have
been discussed in [3], and used in [7]. Here we present
a di�erent set of constraints on homologies.

Using Eq. (5) and the Sherman-Morisson formula1

[14], it can be shown that, for rigidly moving planes �r
and �p, the matrix Hf

pr has the form:

Hf
pr = I + ~vf~ntpr

�

2
4 1 + h1 h2 h3

h4 1 + h5 h6
h7 h8 1 + h9

3
5

(7)

where ~vf = C Rf
�1
~tf

1+ ~nr
tRf�1~tf

, ~npr = ( ~np � ~nr)C
�1, I is a

3� 3 identity matrix and ~tf ; Rf are the camera trans-
lation and the camera rotation matrix, between the
reference image J and the image Kf . C is the camera
projection matrix at the reference view J . Note that
Cf (i.e., the projection matrix of Kf ) is eliminated by
the composition. Note that ~vf is view-dependent, i.e.,

1For a square matrix A, and two column vectors ~u, ~w, the
Sherman-Morrison formula gives:

(A+ ~u~w
t)�1 = A

�1 �
(A�1~u)(~wt

A
�1)

I + ~wtA�1~u

is common to all rigidly moving planes between a pair
of views J and Kf , whereas ~npr is plane-dependent,
i.e., is common to all views for a pair of planes �r and
�p.

Rearranging the components of the relative-
homography (3 � 3) matrix Hf

pr in a single (9 � 1)

column vector ~hfpr, we can rewrite Eq. (7) as:

~hfpr = Npr

2
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where

Npr =

2
6666666666664

nprX 0 0 1
nprY 0 0 0
nprZ 0 0 0
0 nprX 0 0
0 nprY 0 1
0 nprZ 0 0
0 0 nprX 0
0 0 nprY 0
0 0 nprZ 1

3
7777777777775

(9)

In practice ~hfpr are estimated only up to an unknown

scale factor �fpr (see Eq. (4)). Hence, the computed

relative homographies, denoted by
~~h
f

pr, are

~~h
f

pr = �fpr
~hfpr (10)

We now consider multiple views Kf ; f = 1 : : : F .
Since the matrix Npr depends only on plane normal
parameters, and on the camera calibration of the ref-
erence view, it is common to all views f = 1 : : : F ,
whose homographies are estimated relative to the ref-
erence frame J . Hence, we can stack all computed
relative homography vectors in a 9 � F matrix Hpr ,
where each column corresponds to a single image view
Kf (relative to the reference view J):

[Hpr]9�F =
h
~~h
1

pr � � �
~~h
F

pr

i
9�F

=

[Npr]9�4

�
~v1 : : : ~vF

1 1

�
4�F
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0 �Fpr
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(11)

The dimensionality of the matrices on the right hand
side of Eq. (11) implies that the matrix Hpr is of



rank 4 at most2. Hence the collection of all relative-
homographies of the two planes across all images, re-
sides in a 4-dimensional linear subspace. This con-
straint is complementary to the constraint shown by
Shashua and Avidan [10]. There, it was shown that
the collection of homographies of multiple (> 4) planes
between a pair (2) of views, spans a 4-dimensional lin-
ear subspace. In contrast, here we derived a rank-4
constraint for a pair (2) of planes over multiple (> 4)
views.

4 Multi-View Multi-Plane Constraints

As explained above, homographies are determined
only up to a scale factor. This scale factor di�ers
for every pair of planes and for every pair of views.
Therefore, the extension of the two-plane multi-view
factorization (Section 3), or the two-view multi-plane
factorization [10], into a multi-view multi-plane fac-
torization is not straightforward. To extend the low-
dimensionality linear subspace constraint to multiple-
planes, we constrain the scale factors, denoted by �fpr,
to be a product of two scalars: one of which is view-
dependent and one which is plane-dependent. This can
be done with no calibration information.

Let �1; : : : ; �P be P planar surfaces with normals
~n1; : : : ; ~nP , respectively. Let H

f
1 ; : : : ; H

f
P be their cor-

responding homography matrices between the refer-
ence view J and the other views Kf (f = 1 : : : F ). Let
�r be a reference plane (e.g., could be chosen as the
plane occupying the largest image region in the ref-
erence image). Assuming the relative homographies
Hf
pr(f = 1; : : : ; F ; p = 1; : : : ; P ), with respect to the

reference plane �r and the reference image J , have
been computed and are known up to a scale factor,
we can arbitrarily set one of the six o�-diagonal en-
tries in the relative homographies Hf

pr to be equal to
1 (i.e., h2; h3; h4; h6; h7 or h8; See Eq. (7)), while the
other entries are scaled accordingly. This results in a
scale factor �fpr , for the relative homographies, which
can be factored into a bilinear product of two scalars:

�fpr = �f � �p

where �f is view-dependent, and �p is plane-dependent
(e.g., if we choose h3 = 1, then we get: �fpr = 1

h3
=

1

v
f

X

� 1

nprZ
, i.e., �f = 1

v
f

X

and �p =
1

nprZ
). Note that �f

is common to all planes and �p is common to all views.
Since all planar surfaces �p share the same 3D camera
motion between a pair of views, we get from Eq. (11):

2In practice the actual rank may be even lower than 4, e.g.,
in cases of degenerate camera motion.
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where,
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The dimensionality of the matrices on the right hand
side of Eq. (12) implies that, the matrix H is of rank
4 at most.

This implies that when solving for the homographies
while consistently setting one of the six o�-diagonal en-
tries of the relative homographies to be 1, we are guar-
anteed that the collection of all relative homographies,
of all planes across all views, lies in a 4-dimensional
linear subspace. This scaling of the relative homogra-
phies is possible only when at least one of the six o�-
diagonal entries is di�erent from zero for all planes, in
all views. An example where this fails to exist is the
identity matrix, which is the case of no motion.

5 Applications
In this section we present two di�erent potential

uses of the multi-view subspace constraints presented
in Sections 3 and 4. In Section 5.1 it is shown how
the accuracy of two-view homography estimation can
be improved by constraining it with information from
multiple images, using the multi-view subspace con-
straints. In Section 5.2 we show how violations of the
multi-view subspace constraints can be used as a cue
for detection of moving objects.

The purpose of this section is to convey the strength
and potential use of these constraints, and not to
present a particular algorithm.
5.1 Constrained Homography Computa-

tion

Homography estimation techniques perform well
when the planar surface captures a large image region.
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Figure 1: Constrained homography estimation. (a,b,c,d) sample images from a collection of 25 images obtained
from di�erent camera positions. Image 1.b was used as the reference image. (e) Example of bad results from
unconstrained two-view homography estimation of the stop sign region. The homography was estimated between the
reference view 1.b and view 1.c. All the point correspondences were located on the sign itself and none on the pole.
The displayed result is an overlay of the two images after registration according to the unconstrained homography.
Although the stop-sign appears aligned, the rest of the image is completely distorted. Note that the pole of the
stop-sign is already misaligned, although it lies on the same plane as the sign, and is very close to the region of
analysis. (f) The corresponding result from applying the constrained two-plane multi-view homography estimation
scheme, to the same region of analysis. The building was used as a reference plane (see text). The stop-sign is well
aligned, including the pole, and the building displays accurate 3D parallax.

However, they tend to be highly inaccurate when ap-
plied to small image regions [11], as is often the case
in scenes with multiple planar surfaces.

While each independent homography computation
is unreliable, all homographies of all planes, across all
views must satisfy the multi-view subspace constraints.
These constraints can therefore be used to compensate
for insu�cient spatial information.

Below we suggest one possible approach for taking
advantage of the multi-view subspace constraints in
the homography estimation:

(i) De�ne one image as the reference image J . Use any
existing method to estimate initial homographies, for
all planes and all images, with respect to the reference
image.
(ii) De�ne one of the planes to be a reference plane �r
(e.g., choose �r to be the plane with the largest image
region in J , or the one with the most reliable initial
homographies). Compute all the relative homographies
(homologies, see Eq. (6)), of all other planes for all
images, with respect to it.

(iii) If the number of planes = 2, do not perform any
scaling. Otherwise (#planes > 2) examine the entries
h2; h3; h4; h6; h7; h8 of all relative homographies and
choose the one which consistently di�ers from zero in
all of them. Scale the relative homographies such that
the chosen entry becomes 1.
(iv) Stack all relative homographies into a 9P � F

matrix H (see Eq. (12)).
(v) Project the columns of the matrix H onto a
low-dimensional linear subspace, by constraining its
rank to be � 4. This gives a matrix Ĥ. (The choice of
the actual rank of Ĥ, which may be even smaller than
4, can be done by examining the rate of decay of the
matrix singular values).
(vi) Re�ne the estimation of the individual homo-
graphies by computing: Hf

p = Hf
r Ĥ

f
pr, where H

f
r =

reference homography and Ĥf
pr = is the subspace-

projected relative homography (both in the regular
3� 3 matrix form).
(vii) If you're using an iterative framework to solve
for the homographies, repeat steps (i) to (vi) at each
iteration.
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Figure 2: Moving object detection. (a) Example of unconstrained two-view homography estimation of the car
region, between the reference view 1.b and view 1.c. The car appears well aligned after registration and overlay
of the two images according to the unconstrained homography. (b,c) The corresponding results from applying
the constrained multi-plane multi-view homography estimation scheme, to the car and the stop-sign simultaneously,
using the building as a reference plane. Since the car motion is inconsistent with those of the stop-sign and building
motion, applying the multi-plane multi-view constraint spoils the homography estimation of both the car (shown in
(2.b), where the car is no longer aligned), and the stop-sign (shown in (2.c), where the pole is not aligned). (d)
In contrast, the corresponding result from applying the constrained multi-plane multi-view homography estimation
scheme, to the stop-sign and the other road-sign simultaneously. The stop-sign is now well aligned, and the rest of
the image displays accurate 3D parallax.

Fig. 1 shows a comparison of applying two-view and
multi-view homography estimation to small image re-
gions. 25 images were taken from di�erent viewing
positions. Because the camera is imaging the scene
from a short distance, and because its motion con-
tains a translation, di�erent planar surfaces (e.g., the
building, the stop-sign, etc.) induce di�erent homogra-
phies. The induced homographies of the building were
�rst estimated, using a two-view estimation method.
Since it occupies a large image region, these were com-
puted accurately enough. The building was chosen as
the reference plane, hence, its computed homographies
were used as inputs for constraining the estimation of
the homographies corresponding to the other planes
in the scene, using the approach described above. Be-
cause the stop-sign occupies a very small image region,
an unconstrained two-view homography estimation of
the stop-sign gave distorted results (see Fig. 1.e). The
two-plane multi-view homography estimation, on the

other hand, gave good results for all images, even-
though applied to the same small region (see Fig. 1.f).
For the purpose of these experiments the homogra-
phies where estimated using Least-Squares �t to pre-
computed point correspondences.

5.2 Moving Object Detection

The multi-view subspace constraints of Sections 3
and 4 are true only for planar surfaces moving rigidly
with respect to each other. Planar surfaces with di�er-
ent 3D motions will not necessarily comply with these
constraints. Given two planar surfaces (�r and �p),
we can construct the matrix Hpr of their relative ho-
mographies (see Eq. (11)) and examine its rank. If
rank(Hpr) > 4 then the two planes cannot be rigid
with respect to each other. Note that this is a su�-
cient condition, but not a necessary one. In the case of
multiple planes, we can do the same with the matrix H
of Eq. (12), after appropriate scaling (see Section 4).

In the presence of noise, however, the rank of the
matrix H may appear to be larger than 4 even for



rigid planes. To avoid misinterpretation due to errors
in the homography estimation, and to detect rank vi-
olations which are truly due to inconsistent 3D mo-
tion, we take the following approach: We apply the
multi-view rigidity scheme presented in Section 5.1 to
improve the estimation of the individual homographies
and their relative-homographies, as if the planes were
rigid with respect to each other. If the planes are in
fact rigid with respect to each other, (i.e., have the
same 3D motions across all views) then this process
will improve their homography estimation. (This can
be veri�ed e.g., by comparing the accuracy of align-
ment before and after applying the rank estimation).
If, on the other hand, the planes are not rigid with
respect to each other (i.e., have di�erent 3D motions
across some views), then forcing the multi-view low-
dimensionality constraint will spoil the homography es-
timation, leading to larger misalignment errors. This
is detected as a case of inconsistent 3D motion.

Fig. 2 presents the results of applying the multi-
plane multi-view homography estimation to non-
rigidly moving objects. The scene contains a car, mov-
ing independently of the camera motion. Using the
previously computed homographies of the building re-
gion as a reference plane, we applied the multi-plane
multi-view scheme, of Section 5.1, to the car and the
stop-sign simultaneously (this time using the parame-
ter scaling of Section 4). Since the car is not moving
rigidly with respect to the stop-sign and the building,
applying the constrained estimation resulted in worse
homography estimation for the car as well as for the
stop-sign, than those found by two-view unconstrained
process (See Figs. 2.b and 2.c). In contrast, the same
multi-plane multi-view scheme, was applied simultane-
ously to the stop-sign and the other road-sign. Ac-
curate homography estimation is now achieved (See
Fig. 2.d). Hence, the degradation in the homography
estimation observed in Figs. 2.b and 2.c, indicates that
the car is moving 3D-inconsistently with respect to the
other planes (the building and the two signs).

6 Concluding Remarks

In this paper we showed that the collection of ho-
mologies of multiple planar surfaces across multiple
views, are embedded in a low dimensional linear sub-
space. We further showed that these constraints can
be used to improve homography estimation in multi-
planar scenes, and serve as a cue for moving object
detection. While the paper presented the core con-
straints and the core elements of such approaches, the
integration of these elements into a single end-to-end
algorithm remains a task for our future research.
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