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Abstract

This paper presents an approach for establishing corre-
spondences in timeand in spacebetween two different video
sequences of the same dynamic scene, recorded by station-
ary uncalibrated video cameras. The method simultane-
ously estimates both spatial alignmentas well as tempo-
ral synchronization(temporal alignment) between the two
sequences, using all available spatio-temporal information.
Temporal variations between image frames (such as mov-
ing objects or changes in scene illumination) are power-
ful cues for alignment, which cannot be exploited by stan-
dard image-to-image alignment techniques. We show that
by folding spatial and temporal cues into a single align-
ment framework, situations which are inherently ambiguous
for traditional image-to-image alignment methods, are often
uniquely resolved by sequence-to-sequence alignment.

We also present a “direct” method for sequence-to-
sequence alignment. The algorithm simultaneously esti-
mates spatial and temporal alignment parameters directly
from measurable sequence quantities, without requiring
prior estimation of point correspondences, frame correspon-
dences, or moving object detection. Results are shown on
real image sequences taken by multiple video cameras.

1 Introduction

The problem of image-to-image alignment has been ex-
tensively studied in the literature. By “image-to-image
alignment” we refer to the problem of densely estimating
point correspondences between two or more images (either
taken by a single moving camera, or by multiple cameras),
i.e., for each pixel (x; y) in one image, find its correspond-
ing pixel in the other image: (x0; y0) = (x+u; y+v), where
(u; v) is the spatial displacement. This paper addresses a
different problem – the problem of “sequence-to-sequence
alignment”, which establish correspondences both in time
and in spacebetween multiple sequences(as opposed to
multiple images). Namely, for each pixel (x; y) in each
frame (time) t in one sequence, find its corresponding frame
t0 and pixel (x0; y0) in the other sequence: (x0; y0; t0) =

(x+u; y+v; t+w), where (u; v; w) is the spatio-temporal
displacement.

The need for sequence-to-sequence alignment exists in
many real-world scenarios, where multiple video cameras
record information about the same scene over a period of
time. Some examples are: News items commonly doc-
umented by several media crews; sports events covered
by at least a dozen cameras recording the same scene
from different view points; wide-area surveillance of the
same scene by multiple cameras from different observa-
tion points. Grimson-et-al [7] suggested a few applica-
tions of multiple collaborating sensors. Reid and Zisser-
man [5] combined information from two independent se-
quences taken at the 66th World Cup, to resolve the con-
troversy regarding the famous goal. They manuallysyn-
chronized the sequences, and then computed spatial align-
ment between selected corresponding images (i.e., image-
to-image alignment). This is an example where spatio-
temporal sequence-to-sequence alignment may provide en-
hanced alignment.

Image-to-image alignment methods are inherently re-
stricted to the information contained in individual images
– the spatial variations within an image (which corresponds
to scene appearance). However, a video sequence contains
much more information than any individual frame does.
Scene dynamics (such as moving object, changes in illumi-
nation, etc) is a property that is inherent to the scene, and
is thus common to all sequences taken from different video
cameras. It therefore forms an additionalpowerful cue for
alignment.

Stein [6] proposed an elegant approach to estimating
spatio-temporal correspondences between two sequences
based on alignment of trajectories of moving objects. Cen-
troids of moving objects were detected and tracked in each
sequence. Spatio-temporal alignment parameters were then
seeked, which would bring the trajectories in the two se-
quences into alignment. No static-background information
was used in this step1. This approach is hence referred to
in our paper as “trajectory-to-trajectory alignment”. Giese
and Poggio [3] also used trajectory-to-trajectory alignment

1In a later step [6] refines the spatial alignment using static background
information. However, the temporal alignment is already fixed at that point.
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to classify human motion patterns. Both [6, 3] reported that
using temporal information (i.e., the trajectories) alone for
alignment across the sequences may not suffice, and can of-
ten lead to inherent ambiguities between temporal and spa-
tial alignment parameters.

This paper proposes an approach to sequence-to-
sequence alignment, which simultaneously uses all avail-
able spatial and temporal information within a sequence.
We show that when there is no temporal information present
in the sequence, our approach reduces to image-to-image
alignment. However, when such information exists, it takes
advantage of it. Similarly, we show that when no static
spatial information is present, our approach reduces to
trajectory-to-trajectory alignment. Here too, when such
information is available, it takes advantage of it. Thus our
approach to sequence-to-sequence alignment combines the
benefits of image-to-image alignment with the benefits of
trajectory-to-trajectory alignment, and is a generalization
of both approaches. We show that it resolves many of the
inherent ambiguities associated with each of these two
classes of methods.

We also present a specific algorithm for sequence-to-
sequence alignment, which is a generalization of the direct
image alignment method of [1]. It is currently assumed
that the sequences are taken by stationary video cameras,
with fixed (but unknown) internal and external parameters.
Our algorithm simultaneously estimates spatial and tempo-
ral alignment parameters withoutrequiring prior estimation
of point correspondences, frame correspondences, moving
object detection, or detection of illumination variations.

The remainder of this paper is organized as follows: Sec-
tion 2 presents our direct method for the spatio-temporal
sequence-to-sequence alignment algorithm. Section 3 stud-
ies some inherent properties of sequence-to-sequence align-
ment, and compares it against image-to-image alignment
and trajectory-to-trajectory alignment. Section 4 provides
selected experimental results on real image sequences taken
by multiple unsynchronized and uncalibrated video cam-
eras. Section 5 concludes the paper.

2 The Sequence Alignment Algorithm

The scenario addressed in this paper is when the video
cameras are stationary, with fixed (but unknown) internal
and external parameters. The recorded scene can change dy-
namically, i.e., it can include multiple independently mov-
ing objects (there is no limitation on the number of moving
objects or their motions), it can include changes in illumina-
tion over time (i.e., within the sequence), and/or other tem-
poral changes. Temporal misalignmentcan result from the
fact that the two input sequences can be at different frame
rates (e.g., PAL and NTSC), or may have a time-shift (offset)
between them (e.g., if the cameras were not activated simul-
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Figure 1. The hierarchical spatio-temporal align-
ment framework A volumetric pyramid is constructed
for each input sequence, one for the reference sequence (on
the right side), and one for the second sequence (on the
left side). The spatio-temporal alignment estimator is ap-
plied iteratively at each level. It refines the approximation
based on the residual misalignment between the reference
volume and warped version of the second volume (drawn as
a skewed cube). The output of current level is propagated to
the next level to be used as an initial estimate.

taneously). The temporal shift may be at sub-frame units.
These factors give rise to a 1-D affine transformation in time.
Spatial misalignmentresults from the fact that the two cam-
eras are in different positions and have different internal cal-
ibration parameters. The spatial alignment can range from
2D parametric transformations to more general 3D transfor-
mations.

This section presents an algorithm for sequence to se-
quence alignment. The algorithm is a generalization of
the hierarchical direct image-to-image alignment method of
Bergen-et-al [1], and Irani-et-al [4]. While this specific al-
gorithm is a direct brightness-based method, the concept of
sequence-to-sequence alignment presented in this paper is
more general, and can similarly be used to extend feature-
based image-to-image alignment methods as well.

In [1, 4] the spatial alignment parameters were recovered
directly from image brightness variations, and the coarse-to-
fine estimation was done using a Gaussian image pyramid.
This is generalized here to recover the spatial and tempo-
ral alignment parameters directly from sequence brightness
variations, and the coarse-to-fine estimation is done within
a volumetric sequence pyramid. An image sequence is han-
dled as a volumeof three dimensional data, and not as a set
of two-dimensional images. Pixels become spatio-temporal
“voxels” with three coordinates: (x; y; t), where x; y denote
spatial image coordinates, and t denotes time. The multi-
scale analysis is done both in spaceand in time.

Fig 1 illustrates the hierarchical spatio-temporal estima-
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tion framework. The rest of this section is organized as fol-
lows: Section 2.1 describes the core step (the inner-loop)
within the iterate-refine algorithm. In particular, it gener-
alizes the image brightness constraint to handle sequences.
Section 2.2 presents a few sequence-to-sequence alignment
models which were implemented in the current algorithm.
Section 2.3 presents the volumetric sequence-pyramid. Sec-
tion 2.4 summarizes the algorithm.

2.1 The Sequence Brightness Error

Let S; S0 be two input image sequences, where S de-
notes the reference sequence, S0 denotes the second se-
quence. Let (x; y; t) be a spatio-temporal “voxel” in the
reference sequence S. Let u,v be its spatial displace-
ments, and w be its temporal displacement. Denote by
~P = (~Pspatial; ~Ptemporal) the unknown alignment parame-
ter vector. While every “voxel” (x,y,t) has a different local
spatio-temporal displacement (u,v,w), they are all globally
constrained by the parametric model ~P . Therefore, every
“voxel” (x,y,t) provides one constraint on the global param-
eters. A global constraint on ~P is obtained by minimizing
the following SSD objective function:

ERR(~P ) =
X
x;y;t

(S0(x; y; t)�S(x�u; y�v; t�w))2; (1)

where: u = u(x; y; t; ~P ), v = v(x; y; t; ~P ), w =

w(x; y; t; ~P ). ~P is estimated using the Gauss-Newton min-
imization technique. This is done by linearizing the differ-
ence term (S0 � S) in Eq. (1). This step results in a new
error term, which is quadratic in the unknown displacments
(u,v,w):

ERR(~P ) =
X
x;y;t

(e(x; y; t; ~P ))2; (2)

where,

e(x; y; t; ~P ) = S0(x; y; t)�S(x; y; t)+[u v w]rS(x; y; t);
(3)

and rS = [SxSySt] = [@S
@x

@S
@y

@S
@t

] denotes a spatio-
temporal gradient of the sequence S. Eq. (3) directly re-
lates the unknown displacements (u; v; w) to measurable
brightness variations within the sequence. To allow for large
spatio-temporal displacements (u; v; w), the minimization
of Eq. (1) is done within an iterative-warp coarse-to-fine
framework (see Sections 2.3 and 2.4).

Note that the objective function in Eq. (2) integrates all
available spatio-temporal information in the sequence. Each
spatio-temporal “voxel” (x,y,t) contributes as much infor-
mation as it reliably can to each unknown . For example, a
“voxel” which lies on a stationary vertical edge, (i.e., Sx 6=
0; Sy = St = 0), affects only the estimation of the param-
eters involved in the horizontal displacement u(x; y; t; ~P ).
Similarly, a “voxel” in a uniform region (Sx = Sy = 0)
which undergoes a temporal change (St 6= 0), e.g., due

to variation in illumination, contributes only to the estima-
tion of the parameters affecting the temporaldisplacement
w(x; y; t; ~P ). A highly textured “voxel” on a moving object
(i.e., Sx 6= 0; Sy 6= 0; St 6= 0), contributes to the estimation
of all the parameters.

2.2 Spatio-Temporal Alignment Models

In our current implementation, ~P =
(~Pspatial; ~Ptemporal) was chosen to be a parametric trans-
formation. Let ~p = (x; y; 1)T denote the homogeneous
spatial coordinates of a spatio-temporal “voxel” (x; y; t).
Let H be the 3� 3 matrix of the spatial parametric trans-
formation between the two sequences. Denoting the rows
of H by [H1; H2; H3]

T , the spatial displacement can be
written as: u(x; y; t) = H1~p

H3~p
�x, and v(x; y; t) = H2~p

H3~p
� y.

Note that H is common to all frames, because the cam-
eras are stationary. When the two cameras have different
frame rates (such as with NTSC and PAL) and possibly a
time shift, a 1-D affine transformation suffices to model
the temporal misalignment between the two sequences:
w(t) = d1t + d2 (where d1 and d2 are real numbers). We
have currently implemented two different spatio-temporal
parametric alignment models:

Model 1: 2D spatial affine transformation & 1D temporal
affine transformation. The spatial 2D affine model is
obtained by setting the third row of H to be: H3 = [0; 0; 1].
Therefore, for 2D spatial affine and 1D temporal affine
transformations, the unknown parameters are: ~P =
[h11 h12 h13 h21 h22 h23 d1 d2], i.e., eight unknowns. The
individual voxel error of Eq. (3) becomes: e(x; y; t; ~P ) =
S0 � S + [(H1~p� x) (H2~p� y) (d1t+ d2)]rS; which is
linear in all unknown parameters.

Model 2: 2D spatial projective transformation & a tem-
poral offset. In this case, w(t) = d (d is a real
number, i.e., could be a sub-frame shift), and ~P =
[h11 h12 h13 h21 h22 h23 h31 h32 h33 d]. Each spatio-
temporal “voxel” (x,y,t) provides one constraint:

e(x; y; t; ~P ) = S0�S+
�
(
H1~p

H3~p
�x) (

H2~p

H3~p
�y) d

�
rS: (4)

The 2D projective transformation is not linear in the un-
known parameters, and hence requires some additional ma-
nipulation. To overcome this non-linearity, Eq. (4) is multi-
plied by the denominator (H3~p), and renormalized with its
current estimate from the last iteration, leading to a slightly
different error term:

enew(x; y; t; ~P ) = H3~p=Ĥ3~p � eold(x; y; t; ~P ); (5)

where Ĥ3 is the current estimate of H3 in the iterative pro-
cess, and eold is as defined in Eq. (4). Let Ĥ and d̂ be the cur-
rent estimates of H and d, respectively. Substituting H =
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Ĥ + �H and d = d̂+ �d into Eq. (5), and neglecting high-
order terms, leads to a new error term, which is linear in all
unknown parameters (�H and �d). We found in our experi-
ments that in addition to second order terms (e.g, �H�d), the
first order term d̂�H3 is also negligible and can be ignored.

In the above implementations ~P was assumed to be a
parametric transformation. However, the presented frame-
work is more general, and is not restricted to parametric
transformations alone. (u; v; w) can be equally expressed in
terms of 3D parameters (the epipole, the homography, and
the shape). See [1] for a hierarchy of possible spatial align-
ment models.

2.3 Spatio-Temporal Volumetric Pyramid

The estimation step described in section 2.1 is embedded
in an iterative-warp coarse-to-fine estimation framework.
This is implemented within a spatio-temporal volumetric
pyramid. Multi-scale analysis provides three main benefits:
(i) Larger misalignments can be handled, (ii) the conver-
gence rate is faster, and (iii) it avoids getting trapped in lo-
cal minima. These three benefits are discussed in [1] for the
case of spatial (image) alignment. Here they are extended to
the temporal domain as well.

The Gaussian2 image pyramid [2] is generalized to a
Gaussian sequence (volumetric) pyramid. The highest res-
olution level is defined as the input sequence. Consecutive
lower resolution levels are obtained by low-pass filtering
(LPF) both in spaceand time, followed by sub-sampling by
a factor of 2 in all three dimensions x, y, and t. Thus, for
example, if one resolution level of the volumetric sequence
pyramid contains a sequence of 64 frames of size 256�256
pixels, then the next resolution level contains a sequence of
32 frames of size 128� 128, etc. A discussion of the trade-
offs between spatial and temporal low-pass-filtering may be
found in Appendix A.

2.4 Summary of the Algorithm

The iterative-warp coarse-to-fine estimation process is
schematically described in Fig 1, and is summarized below:
1. Construct two spatio-temporal volumetric pyramids,
one for each input sequence: (S0 := S); S1; S2::SL and
(S0

0 := S0); S0

1; S
0

2::S
0

L. Set ~P := ~P0 (usually the identity
transformation).
2. For every resolution level, l = L::0, do:

(a) Warp S0

l using the current parameter estimate:

Ŝ0

l := warp(S0

l ;
~P ).

(b) Refine ~P according to the residual misalignment
between the reference Sl and the warped Ŝ0

l

(see Section 2.1).

2A Laplacian pyramid can equally be used.

(c) Repeat steps (a) and (b) until jj�P jj < �.
(3) Propagate ~P to the next pyramid level l � 1, and repeat
the steps (a),(b),(c) for Sl�1 and S0

l�1.

The resulting ~P is the spatio-temporal transformation,
and the resulting alignment is at sub-pixel spatial accuracy,
and sub-frame temporal accuracy. Results of applying this
algorithm to real image sequences are shown in Section 4.

3 Properties of Sequence-to-Sequence Align-
ment

This section studies several inherent properties of
sequence-to-sequence alignment. In particular it is shown
that sequence-to-sequence alignment is a generalization of
image-to-image alignment and of trajectory-to-trajectory
alignment approaches. It is shown how ambiguities in
spatial alignment can often be resolved by adding temporal
cues, and vice versa, how temporal ambiguities (reported
in [6, 3]) can be resolved by adding spatial cues. These
issues are discussed in Sections 3.1 and 3.2. We further
show that temporal information is not restricted to mov-
ing objects. Different types of temporal events, such as
changes in scene illumination, can contribute useful cues
(Section 3.3). These properties are illustrated by examples
from the algorithm presented in Section 2. However, the
properties are general, and are not limited to that particular
algorithm.

3.1 Sequence-to-Sequence vs. Image-to-Image
Alignment

This section shows that sequence-to-sequence is a gener-
alization of image-to-image alignment. We first show that
when there are no temporal changes in the scene, sequence-
to-sequence alignment reduces to image-to-image align-
ment, with an improved signal-to-noise ratio. In particular it
is shown that in such cases, the presented algorithm in Sec-
tion 2 reduces to the image alignment algorithm of [1].

When there are no temporal changes in the scene, all tem-
poral derivatives within the sequence are zero: St � 0.
Therefore, for any voxel (x; y; t), the error term of Eq. (3)
reduces to:

eseq(x; y; t; ~P )| {z }
seq-to-seq

) = S0 � S + [u; v]
� Sx
Sy

�
=

= I 0 � I + [u; v]
� Ix
Iy

�
= eimg(x; y; ~P )| {z }

img-to-img

:

where, I(x; y) = S(x; y; t) is the image frame at time t.
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Figure 2. Spatial ambiguities in image-to-image alignment (a) and (b) display two sequences of a moving ball. (c) and
(d) show two corresponding frames from the two sequences. There are infinitely many valid image-to-image alignments between the
two frames, some of them shown in (e), but only one of then aligns the two trajectories.

Time
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Figure 3. Spatio-temporal ambiguity in
trajectory-to-trajectory alignment This figure
shows a small airplane crossing a scene viewed by two
cameras. The airplane trajectory does not suffice to
uniquely determine the alignment parameters. Arbitrary
time shifts can be compensated by appropriate spatial
translation along the airplane motion direction. Sequence-
to-sequence alignment, on the other hand, can uniquely
resolves this ambiguity, as it uses both the scene dynamics
(the plane at different locations), and the scene appearance
(the static ground). Note that spatial information alone
does not suffice in this case either.

Therefore, the SSD function of Eq. (2) reduces to:

ERRseq(~P ) =
P

x;y;t(e(x; y; t;
~P ))2 =

=
P

t

�P
x;y(e(x; y; t;

~P ))2
�
=
P

tERRimg(~P ):

namely, the image-to-image alignment objective function,
averaged over all frames.

We next show that when the scene doescontain temporal
variations, sequence-to-sequence uses more information for
spatial alignment than image-to-image alignment has access
to. In particular, there are ambiguous scenarios for image-
to-image alignment, which sequence-to-sequencealignment
can uniquely resolve. Fig. 2 illustrates a case which is am-
biguous for image-to-image alignment. Consider a uniform
background scene with a moving ball (Fig. 2.a and Fig. 2.b).
At any given frame (e.g., Fig. 2.c and Fig. 2.d) all the spa-

tial gradients are concentrated in a very small image region
(the moving ball). In these cases, image-to-image align-
ment cannot uniquely determine the correct spatial transfor-
mation (see Fig. 2.e). Sequence-to-sequence alignment, on
the other hand, does not suffer from spatial ambiguities in
this case, as the spatial transformation must simultaneously
bring into alignment all corresponding frames across the two
sequences, i.e., the two trajectories (depicted in Fig. 2.a and
Fig. 2.b) must be in alignment.

3.2 Sequence-to-Sequence vs. Trajectory-to-
Trajectory Alignment

While “trajectory-to-trajectory” alignment can also han-
dle the alignment problem in Fig. 2, there are often cases
where analysis of trajectories of temporal information alone
does not suffice to uniquely determine the spatio-temporal
transformation between the two sequences. Such is the
case in Fig. 3. When only the moving object information
is considered (i.e., the trajectory of the airplane), then for
any temporal shift, there exists a consistent spatial trans-
formation between the two sequences, which will bring
the two trajectories in Figs. 3.c and 3.d into alignment.
Namely, in this scenario, trajectory-to-trajectory alignment
will find infinitely many valid spatio-temporal transforma-
tions. Stein [6] noted this spatio-temporal ambiguity, and re-
ported its occurrence in car-traffic scenes, where all the cars
move in the same direction with similar velocities. ([3] also
reported a similar problem in their formulation).

While trajectory-to-trajectory alignment will find in-
finitely many valid spatio-temporal transformations for the
scenario in Fig. 3, only one of those spatio-temporal trans-
formations will also be consistent with the static background
(i.e., the tree and the horizon). Sequence-to-sequence align-
ment will therefore uniquelyresolve the ambiguity in this
case, as it forces both spatial and temporal information to
be brought simultaneouslyinto alignment across the two se-
quences.

The direct method for sequence-to-sequence alignment
presented in Section 2 is only one possible algorithm for
solving this problem. The concept of sequence-to-sequence
alignment, however, is more general, and is not limited
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Figure 4. Scene with moving objects. Rows (a) and (b) display five representative frames (0,100,200,300,400) from the refer-
ence and second sequences, respectively. The spatial misalignment is easily observed near image boundaries, where different static
objects are visible in each sequence. The temporal misalignment is observed by comparing the position of the gate in frames 400. In
the second sequence it is already open, while still closed in the reference sequence. Row (c) displays superposition of the representa-
tive framesbefore spatio-temporal alignment. The superposition composes the red and blue bands from reference sequence with the
green band from the second sequence. Row (d) displays superposition of corresponding framesafter spatio-temporal alignment. The
dark pink boundaries in (d) correspond to scene regions observed only by the reference camera. The dark green boundaries in (d) cor-
respond to scene regions observed only by the second camera.For full color sequences see www.wisdom.weizmann.ac.il/Seq2Seq

to that particular algorithm. One could, for example, ex-
tend the feature-based trajectory-to-trajectory alignment al-
gorithm of [6] into a feature-basedsequence-to-sequence
alignment algorithm, by adding static feature correspon-
dences to the dynamic features.

While feature-based methods can theoretically account
for larger spatio-temporal misalignments, it is important to
note that the direct method suggested in Section 2 obtains
spatio-temporal alignment between the two sequences with-
out the need to explicitly separate and distinguish between
the two types of information – the spatial and the tempo-
ral. Moreover, it does not require any explicit detection and
tracking of moving objects, nor does it need to detect fea-
tures and explicitly establish their correspondences across
sequences. Finally, because temporal variations need not
be explicitly modeled in the direct method, it can exploit

other temporal variations in the scene, such as changes in
illumination. Such temporal variations are not captured by
trajectories of moving objects.

3.3 Illumination Changes as a Cue for Alignment

Temporal derivatives are not necessarily a result of in-
dependent object motion, but can also result from other
changes in the scene which occur over time, such as changes
in illumination. Dimming or brightening of the light source
are often sufficient to determine the temporal alignment.
Furthermore, even homogeneous image regions contribute
temporal constraints in this case. This is true although their
spatial derivatives are zero, since global changes in illumi-
nation produce prominent temporal derivatives.

For example, in the case of the algorithm presented in
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Figure 5. Scene with varying illumination.
Rows (a) and (b) display three representative frames
(200,250,300) from the reference and second sequences,
respectively. The temporal misalignment can be observed in
the upper left corner of frame 250, by small differences in il-
lumination. (c) displays superposition of the representative
framesbefore alignment (red and blue bands from reference
sequence and green band from the second sequence). (d)
displays superposition of corresponding framesafter
spatio-temporal alignment. The accuracy of the temporal
alignment is evident from the hue in the upper left corner
of frame 250, which is pink before alignment (frame 250.c)
and white after temporal alignment (frame 250.d). The
dark pink boundaries in (d) correspond to scene regions
observed only by the reference camera.For full color
sequences see www.wisdom.weizmann.ac.il/Seq2Seq

Section 2, for a voxel in a uniform region (Sx = Sy = 0)
undergoing illumination variation (St 6= 0), Eq. (3) pro-
vides the following constraint on the temporalalignment
parameters: e(x; y; t; ~P ) = (S0(x; y; t) � S(x; y; t)) +

w(x; y; t; ~P )St(x; y; t): Note that, in general, changes in il-
lumination need not be global. For example, an outdoor
scene on a partly cloudy day, or an indoor scene with spot-
lights, can be exposed to local changes in illumination. Such
local changes provide additional constraints on the spatial
alignment parameters. An example of applying our algo-
rithm to sequences with only changes in illumination is
shown in Fig. 5.

4 Experiments

In our experiments, two different interlaced CCD cam-
eras (mounted on tripods) were used for sequence acquisi-
tion. Typical sequence length is several hundreds of frames.
Fig. 4 shows a scene with a car driving in a parking lot.
When the car reaches the exit, the gate is raised. The two in-
put sequences Figs. 4.a and 4.b were taken from a distance
(from two different windows of a tall building). Fig. 4.c
displays superposition of representative frames, generated
by mixing the red and blue bands from the reference se-
quence with the green band from the second sequence. This
demonstrates the initial misalignment between the two se-
quences, both in time (the sequences were out of synchro-
nization; note the different timing of the gate being lifted
in the two sequences), as well as in space (note the mis-
alignment in static scene parts, such as in the other parked
cars or at the bushes). Fig. 4.d shows the superposition
of frames after applying spatio-temporal alignment. The
second sequence was spatio-temporally warped towards the
reference sequence according to the computed parameters.
The recovered temporal shift was 46.5 frames, and was ver-
ified against the ground truth, obtained by auxiliary equip-
ment. The recovered spatial affine transformation indicated
a translation on the order of a 1=5 of the image size, a small
rotation, a small scaling, and a small skew (due to differ-
ent aspect ratios of the two cameras). Note the good qual-
ity of alignment despite the overall difference in chroma and
brightness between the two input sequences.

Fig. 5 illustrates that temporal alignment is not limited
to motion information alone. A light source was brightened
and then dimmed down, resulting in observable illumination
variations in the scene. The cameras were imaging a pic-
ture on a wall from significantly different viewing angles,
inducing a significant perspective distortion. Fig. 5.a and
5.b show a few representative frames from two sequences
of several hundred frames each. The effects of illumina-
tion are particularly evident in the upper left corner of the
image. Fig. 5.c shows a superposition of the representative
frames from both sequences beforespatio-temporal align-
ment. Fig. 5.d shows superposition of corresponding frames
after spatio-temporal alignment. The recovered temporal
offset (21.3 frames) was verified against the ground truth.
The accuracy of the temporal alignment is evident from the
hue in the upper left corner of frame 250, which is pink be-
fore alignment (frame 250.c) and white after temporal align-
ment (frame 250.d). The reader is encouraged to view full
color sequences at www.wisdom.weizmann.ac.il/Seq2Seq

5 Conclusion and Future Work

In this paper we have introduced a new approach to
sequence-to-sequence alignment, which simultaneously
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uses all available spatial and temporal information within
the video sequences. We showed that our approach com-
bines the benefits of image-to-image alignment with the
benefits of trajectory-to-trajectory alignment, and is a
generalization of both approaches. Furthermore, it resolves
many of the inherent ambiguities associated with each of
these two classes of methods.

The current discussion and implementation were re-
stricted to stationary cameras, and hence used only two types
of information cues for alignment - the scene dynamicsand
the scene appearance. We are currently extending our ap-
proach to handle moving cameras. This adds a third type of
information cue for alignment, which is inherent to the scene
and is common to the two sequences - the scene geometry.

While the approach is general, we have also presented
a specific algorithm for sequence-to-sequence alignment,
which recovers the spatio-temporal alignment parameters
directly from spatial and temporal brightness variations
within the sequence. However, the paradigm of sequence-
to-sequence alignment extends beyond this particular algo-
rithm and beyond direct methods. It can equally employ
feature-based matching across sequences, or other type of
match measures (e.g., mutual information).
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Appendix A: Spatio-Temporal Aliasing

This appendix discusses the tradeoff between temporal
aliasing and spatial resolution. The intensity values at a
given pixel (x0; y0) along time induces a 1-D temporal sig-
nal: s(x0;y0)(t) = S(x0; y0; t). Due to the object motion,
a fixed pixel samples a moving object at different locations,
denoted by the “trace of pixel (x0; y0)”. Thus temporal vari-
ations at pixel (x0; y0) are equal to the gray level variations

 (Xo,Yo)

The trace of pixel
(Xo, Yo) over time

Intensity

v

 (Xo,Yo) (Xo,Yo)

v

∆
t

frame 0 frame 1 frame 2

trace

v

 (Xo,Yo)
s     (t)

(a) (b)

Figure 6. Induced temporal frequencies. Three
frames 0,1,2 of a car moving up right with velocityv are
presented above. A fixed pixel(x0; y0) is marked on each
frame. (a) displays the trace of the pixel. (b) displays the
gray level values along this trace.

along the trace (See Fig. 6). Denote by �trace the spatial
step size along the trace. For an object moving at velocity
v: �trace = v�t, where �t is the time difference be-
tween two successive frames. To avoid temporal aliasing,
�trace must satisfy the Shannon-Whittaker sampling theo-
rem: �trace <= 1

2! ; where ! is the upper bound on the
spatial frequencies. Applying this rule to our case, yields
the following constraint: v�t = �trace <= 1

2! : This
equation characterizes the temporalsampling rate which is
required to avoid temporal aliasing. In practice, video se-
quences of scenes with fast moving objects often contain
temporal aliasing. We cannot control the frame rate ( 1

�t
)

nor object’s motion (v): We can, however, decrease the spa-
tial frequency upper bound! by reducing the spatial resolu-
tion of each frame (i.e., apply a spatial low-pass-filter). This
implies that for video sequences which inherently have high
temporal aliasing, it may be necessary to compromise in spa-
tial resolution of alignment in order to obtain correct tempo-
ral alignment. Therefore, the LPF (low pass filters) in our
spatio-temporal pyramid construction (Section 2.3) should
be adaptively selected in space and in time, in accordance
with the rate of temporal changes. This method, however,
is not applicable when the displacement of the moving ob-
ject is larger than its own size.
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