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Abstract

This paper presents an approach for establishing corre-
spondencesin timeand in spacebetween two different video
sequences of the same dynamic scene, recorded by station-
ary uncalibrated video cameras. The method simultane-
ously estimates both spatial alignmentas well as tempo-
ral synchronizatiorn(tempora alignment) between the two
sequences, using all available spatio-temporal information.
Tempora variations between image frames (such as mov-
ing objects or changes in scene illumination) are power-
ful cues for alignment, which cannot be exploited by stan-
dard image-to-image alignment techniques. We show that
by folding spatial and tempora cues into a single align-
ment framework, situationswhich areinherently ambiguous
for traditional image-to-imagealignment methods, are often
uniquely resolved by sequence-to-sequence alignment.

We aso present a “direct” method for sequence-to-
sequence alignment. The algorithm simultaneoudy esti-
mates spatial and temporal alignment parameters directly
from measurable sequence quantitiagithout requiring
prior estimation of point correspondences, frame correspon-
dences, or moving object detection. Results are shown on
real image sequences taken by multiple video cameras.

1 Introduction

The problem of image-to-image alignment has been ex-
tensively studied in the literature. By “image-to-image
alignment” we refer to the problem of densely estimating
point correspondences between two or more images (either
taken by a single moving camera, or by multiple cameras),
i.e., for each pixel (z,y) in oneimage, find its correspond-
ing pixel intheotherimage: (2',y’) = (x+wu, y+v), where
(u,v) is the spatial displacement. This paper addresses a

different problem — the problem of “sequence-to-sequence

alignment”, which establish correspondences both in time
and in spacebetween multiple sequencesas opposed to
multiple images). Namely, for each pixel (z,y) in each
frame (time) ¢ in one sequence, find its corresponding frame
t' and pixel (z',y") in the other sequence: (z',y',t") =
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(z+wu,y+v,t+w), where (u, v, w) isthe spatio-temporal
displacement.

The need for sequence-to-sequence alignment exists in
many real-world scenarios, where multiple video cameras
record information about the same scene over a period of
time. Some examples are: News items commonly doc-
umented by several media crews,; sports events covered
by at least a dozen cameras recording the same scene
from different view points; wide-area surveillance of the
same scene by multiple cameras from different observa-
tion points. Grimson-et-al [7] suggested a few applica-
tions of multiple collaborating sensors. Reid and Zisser-
man [5] combined information from two independent se-
quences taken at the 66" World Cup, to resolve the con-
troversy regarding the famous goal. They manually syn-
chronized the sequences, and then computed spatial align-
ment between selected corresponding images (i.e., image-
to-image alignment). This is an example where spatio-
temporal sequence-to-sequenceaignment may provide en-
hanced alignment.

Image-to-image alignment methods are inherently re-
stricted to the information contained in individual images
—the spatial variationswithin an image (which corresponds
to scene appearance). However, a video sequence contains
much more information than any individual frame does.
Scene dynamics (such as moving object, changesin illumi-
nation, etc) is a property that is inherent to the scene and
is thus common to all sequences taken from different video
cameras. It therefore forms an additional powerful cue for
alignment.

Stein [6] proposed an elegant approach to estimating
spatio-temporal correspondences between two sequences
based on alignment of trajectories of moving objecten-
troids of moving objects were detected and tracked in each
sequence. Spatio-temporal alignment parameters were then
seeked, which would bring the trajectories in the two se-
guences into alignment. No static-background information
was used in this step®. This approach is hence referred to
in our paper as “trajectory-to-trajectory alignment’ Giese
and Poggio [3] also used trajectory-to-trajectory alignment

lin alater step [6] refines the spatial alignment using static background
information. However, thetemporal alignment isalready fixed at that point.



to classify human motion patterns. Both [6, 3] reported that
using temporal information (i.e., the trajectories) alone for
alignment across the sequences may not suffice, and can of -
ten lead to inherent ambiguities between temporal and spa-
tial alignment parameters.

This paper proposes an approach to sequence-to-
sequence alignmenivhich simultaneously uses all avail-
able spatial and temporal information within a sequence.
We show that when thereis no temporal information present
in the sequence, our approach reduces to image-to-image
alignment. However, when such information exists, it takes
advantage of it. Similarly, we show that when no static
spatial information is present, our approach reduces to
trajectory-to-trajectory alignment. Here too, when such
information is available, it takes advantage of it. Thus our
approach to sequence-to-sequence alignment combines the
benefits of image-to-image alignment with the benefits of
trajectory-to-trajectory alignment, and is a generalization
of both approaches. We show that it resolves many of the
inherent ambiguities associated with each of these two
classes of methods.

We also present a specific algorithm for sequence-to-
sequence alignment, which is a generalization of the direct
image alignment method of [1]. It is currently assumed
that the sequences are taken by stationary video cameras,
with fixed (but unknown internal and external parameters.
Our agorithm simultaneously estimates spatial and tempo-
ral alignment parameters withoutrequiring prior estimation
of point correspondences, frame correspondences, moving
object detection, or detection of illumination variations.

Theremainder of this paper is organized asfollows: Sec-
tion 2 presents our direct method for the spatio-temporal
sequence-to-sequence alignment algorithm. Section 3 stud-
ies someinherent properties of sequence-to-sequencealign-
ment, and compares it against image-to-image alignment
and trajectory-to-trgjectory alignment. Section 4 provides
selected experimental results on real image sequences taken
by multiple unsynchronized and uncalibrated video cam-
eras. Section 5 concludes the paper.

2 The Sequence Alignment Algorithm

The scenario addressed in this paper is when the video
cameras are stationary, with fixed (but unknown internal
and external parameters. Therecorded scene can change dy-
namically, i.e., it can include multiple independently mov-
ing objects (there is no limitation on the number of moving
objectsor their motions), it can include changesin illumina-
tion over time (i.e., within the sequence), and/or other tem-
poral changes. Temporal misalignmerdan result from the
fact that the two input sequences can be at different frame
rates(e.g., PAL and NTSC), or may haveatime-shift (offset)
between them (e.g., if the cameraswere not activated simul-
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Figure 1. The hierarchical spatio-temporal align-

ment framework A volumetric pyramid is constructed

for each input sequence, one for the reference sequence (on
the right side), and one for the second sequence (on the
left side). The spatio-temporal alignment estimator is ap-
plied iteratively at each level. It refines the approximation
based on the residual misalignment between the reference
volume and warped version of the second volume (drawn as
a skewed cube). The output of current level is propagated to

the next level to be used as an initial estimate.

taneoudly). The temporal shift may be at sub-frame units.
Thesefactorsgiverisetoal-D affinetransformationintime.
Spatial misalignmenesults from the fact that the two cam-
erasarein different positionsand have different internal cal-
ibration parameters. The spatial alignment can range from
2D parametric transformationsto more general 3D transfor-
mations.

This section presents an algorithm for sequence to se-
guence alignment. The agorithm is a generalization of
the hierarchical direct image-to-image alignment method of
Bergen-et-al [1], and Irani-et-al [4]. While this specific al-
gorithm is a direct brightness-based method, the concept of
sequence-to-sequence alignment presented in this paper is
more general, and can similarly be used to extend feature-
based image-to-image alignment methods as well.

In[1, 4] the spatia alignment parameterswere recovered
directly fromimage brightnessvariations, and the coarse-to-
fine estimation was done using a Gaussian image pyramid.
This is generalized here to recover the spatial and tempo-
ral alignment parameters directly from sequence brightness
variations, and the coarse-to-fine estimation is done within
avolumetric sequence pyramidn image sequenceis han-
dled as a volumeof three dimensional data, and not as a set
of two-dimensional images. Pixels become spatio-temporal
“voxels’ with three coordinates: (z, v, t), where z, y denote
spatial image coordinates, and ¢ denotes time. The multi-
scale analysisis done both in spaceand in time

Fig 1illustrates the hierarchical spatio-temporal estima-



tion framework. The rest of this section is organized asfol-
lows: Section 2.1 describes the core step (the inner-loop)
within the iterate-refine algorithm. In particular, it gener-
alizes the image brightness constraint to handle sequences.
Section 2.2 presents afew segquence-to-sequence alignment
models which were implemented in the current algorithm.
Section 2.3 presentsthe volumetric sequence-pyramid. Sec-
tion 2.4 summarizesthe algorithm.

2.1 The SequenceBrightnessError

Let S, S’ be two input image sequences, where S de-
notes the reference sequence, S’ denotes the second se-
quence. Let (z,y,t) be a spatio-tempora “voxel” in the
reference sequence S. Let u,v be its spatial displace-
ments, and w be its temporal displacement. Denote by
P= (Pspatml, Ptempoml) the unknown alignment parame-
ter vector. While every “voxe” (x,y,t) has a different local
spatio-temporal displacement (u,v,w), they are all globally
constrained by the parametric model P. Therefore, every
“voxel” (x,y,t) provides one constraint on the global param-
eters. A global constraint on P is obtained by minimizing
the following SSD objective function:

ERR(ﬁ) = Z(S'(;v,y,t)—S(:v—u,y—v,t—w))2, (1)
x,y,t
where: u = u(z,y,tP), v = v(z,y,tP), w =

w(z,y,t; 13). P is estimated using the Gauss-Newton min-
imization technique. Thisis done by linearizing the differ-
enceterm (S’ — S) in Eq. (1). This step results in a new
error term, which is quadratic in the unknown displacments
(u,v,w):

ERR(P) = (e(x,y,t; P))?, 2

where, z,y,t
e(x,y,t; P) = §'(z,4,t) = S(z,y,t) + [uv w]VS(z,y,1),
(©)
and VS = [9.5,59,] = [52 35 7] denotes a spatio-

temporal grad|ent of the sequence S. Eq. (3) directly re-
lates the unknown displacements (u, v, w) to measurable
brightnessvariationswithinthe sequence. Toallow for large
spatio-temporal displacements (u, v, w), the minimization
of Eqg. (1) is done within an iterative-warp coarse-to-fine
framework (see Sections 2.3 and 2.4).

Note that the objective function in Eq. (2) integrates all
available spatio-temporal informationin the sequence. Each
spatio-temporal “voxel” (x,y,t) contributes as much infor-
mation as it reliably can to each unknown . For example, a
“voxel” which lies on astationary vertical edgdi.e., S, #
0,5, = S = 0), affects only the estimation of the param-
etersinvolved in the horizontal displacement u(z, y, t; 13).
Similarly, a “voxel” in a uniform region (S, = S, = 0)
which undergoes a temporal change (S; # 0), eg., due
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to variation in illumination, contributes only to the estima-
tion of the parameters affecting the temporaldisplacement
w(z,y,t; P). A highly textured “voxel” on amoving object
(i.e, S #0,5, # 0,5, #0), contributesto the estimation
of all the parameters.

2.2 Spatio-Temporal Alignment Models

In our current implementation, P =
(P’Spatwl, I%empoml) was chosen to be a parametric trans-
formation. Let 7 = (z,y,1)’ denote the homogeneous
spatial coordinates of a spatio-temporal “voxel” (z,y,t).
Let H be the 3 x 3 matrix of the spatial parametric trans-
formation between the two sequences. Denoting the rows
of H by [Hy, Hs, H3]T, the spatial displacement can be
written as: u(zx,y,t) = glg —z,andv(z,y,t) = gig — .
Note that H is common to all frames, because the cam-
eras are stationary. When the two cameras have different
frame rates (such as with NTSC and PAL) and possibly a
time shift, a 1-D affine transformation suffices to model
the temporal misalignment between the two sequences:
w(t) = dit + dy (Whered; and d. arereal numbers). We
have currently implemented two different spatio-temporal
parametric alignment models:

Model 1: 2D spatial affine transformation & 1D temporal
affine transformation  The spatial 2D affine model is
obtained by setting the third row of H tobe: Hs = [0,0, 1].
Therefore, for 2D spatial affine and 1D temporal affme
transformations, the unknown parameters are: P =
[hll h12 h13 h21 h22 h23 dl dg], i.e., e|ght unknowns. The
individual voxel error of Eq. (3) becomes. e(z,y, t; 13) =
S'— S+ [(Hip—z) (Hop— y) (dit + d2)] VS, which is
linear in all unknown parameters.

Model 2: 2D spatial projective transformation & a tem-
poral offset In this case, w(t) = d (d is ared
number, i.e., could be a sub-frame shift), and P =
[h1 hi2 has ko1 hoo hag hgi hse hgs d]. Each spatio-
temporal “voxel” (x,y,t) provides one constraint:

, H\p Hyp

S’ — S+[(H 7 —x) (Hsﬁ y)d]VS. (4)
The 2D projective transformation is not linear in the un-
known parameters, and hence requires some additional ma-
nipulation. To overcomethis non-linearity, Eq. (4) is multi-
plied by the denominator (Hs), and renormalized with its
current estimate from the last iteration, leading to adightly
different error term:

enew(x, y? t’ ﬁ)

e(z,y,t; P) =

= HSﬁ/IfIBﬁ : eold(xvyat;ﬁ)v (5)

where H; is the current estimate of H; irl the itgrative pro-
cess, and e, isasdefinedin Eq. (4). Let H and d bethecur-
rent estimates of H and d, respectively. Substituting H =



H+6H andd = d + 6d into Eg. (5), and neglecting high-
order terms, leads to a new error term, which islinear in all
unknown parameters (6 H and 6d). We found in our experi-
mentsthat in addition to second order terms(e.g, 6 H6d), the
first order term d§H; is also negligible and can be ignored.

In the above implementations P was assumed to be a
parametric transformation. However, the presented frame-
work is more general, and is not restricted to parametric
transformationsalone. (u, v, w) can beequally expressedin
terms of 3D parameters (the epipole, the homography, and
the shape). See[1] for ahierarchy of possible spatial align-
ment models.

2.3 Spatio-Temporal Volumetric Pyramid

The estimation step described in section 2.1 is embedded
in an iterative-warp coarse-to-fine estimation framework.
This is implemented within a spatio-temporal volumetric
pyramid. Multi-scale analysis provides three main benefits:
(i) Larger misalignments can be handled, (ii) the conver-
gencerate is faster, and (iii) it avoids getting trapped in lo-
cal minima. These three benefitsare discussed in [1] for the
case of spatial (image) alignment. Herethey areextended to
the temporal domain as well.

The Gaussian? image pyramid [2] is generalized to a
Gaussian sequence (volumetric) pyramid. The highest res-
olution level is defined as the input sequence. Consecutive
lower resolution levels are obtained by low-pass filtering
(LPF) both in spaceand time, followed by sub-sampling by
afactor of 2 in all three dimensions x, y, and t. Thus, for
example, if oneresolution level of the volumetric sequence
pyramid contains a sequence of 64 frames of size 256 x 256
pixels, then the next resolution level contains a sequence of
32 frames of size 128 x 128, etc. A discussion of the trade-
offsbetween spatial and temporal low-pass-filtering may be
found in Appendix A.

2.4 Summary of the Algorithm

The iterative-warp coarse-to-fine estimation process is
schematically described in Fig 1, and is summarized below:
1. Construct two spatio-temporal volumetric pyramids,
one for each input sequence: (S, := S), S1,52..5, and
(S :=5"),5),5,..5;. Set P := P, (usualy the identity
transformation).

2. For every resolution level, | = L..0, do:

(8) Warp S; using the current parameter estimeate:

g; = warp(Sl’;];).

(b) Refine P accordi ng to the residual misalignment

between the reference S; and the warped §;

(see Section 2.1).

2A Laplacian pyramid can equally be used.
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(c) Repeat steps (a) and (b) until [|AP|| < e.
(©)] Propagate]3 to the next pyramid level I — 1, and repeat
the steps (a),(b),(c) for S;—, and S} ;.

The resulting P is the spatio-temporal  transformation,
and the resulting alignment is at sub-pixel spatial accuracy,
and sub-frame temporal accuracy. Results of applying this
algorithm to real image sequences are shown in Section 4.

3 Properties of Sequence-to-Sequence Align-
ment

This section studies several inherent properties of
sequence-to-sequence alignment. In particular it is shown
that sequence-to-sequence alignment is a generalization of
image-to-image alignment and of trajectory-to-trajectory
alignment approaches. It is shown how ambiguities in
spatial alignment can often be resolved by adding temporal
cues, and vice versa, how temporal ambiguities (reported
in [6, 3]) can be resolved by adding spatial cues. These
issues are discussed in Sections 3.1 and 3.2. We further
show that temporal information is not restricted to mov-
ing objects. Different types of temporal events, such as
changes in scene illumination, can contribute useful cues
(Section 3.3). These properties are illustrated by examples
from the algorithm presented in Section 2. However, the
properties are general, and are not limited to that particular
algorithm.

3.1 Sequence-to-Sequence vs.
Alignment

Image-to-lmage

This section shows that sequence-to-sequenceis agener-
alization of image-to-image alignment. We first show that
when there are no temporal changesin the scene, sequence-
to-sequence alignment reduces to image-to-image align-
ment, with animproved signal-to-noiseratio. In particular it
is shown that in such cases, the presented algorithm in Sec-
tion 2 reduces to the image alignment algorithm of [1].

When thereare no temporal changesin the scene, all tem-
poral derivatives within the sequence are zero: S; = 0.
Therefore, for any voxel (z,y,t), the error term of Eq. (3)
reducesto:

Caca(2,9,;P) = 5" — 5+ [u,0][ o7 ] =
—_———

Y

seq-to-seq
1, =
:I’—I-i—[u,v][l | = €img(z,4; P).
y —
img-to-img

where, I(z,y) = S(z,y,t) is the image frame at time ¢.
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Figure 2. Spatial ambiguitiesin image-to-image alignment (a) and (b) display two sequences of a moving ball. (c) and

(d) show two corresponding frames from the two sequences. There are infinitely many valid image-to-image alignments between the

two frames, some of them shown in (e), but only one of then aligns the two trajectories.
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Figure 3. Spatio-temporal ambiguity in
trajectory-to-trajectory alignment This figure
shows a small airplane crossing a scene viewed by two
cameras. The airplane trajectory does not suffice to
uniquely determine the alignment parameters. Arbitrary
time shifts can be compensated by appropriate spatial
translation along the airplane motion direction. Sequence-
to-sequence alignment, on the other hand, can uniquely
resolves this ambiguity, as it uses both the scene dynamics
(the plane at different locations), and the scene appearance
(the static ground). Note that spatial information alone
does not suffice in this case either.

Therefore, the SSD function of Eqg. (2) reducesto:

ERRSEQ(ﬁ) = Zz7y7t(€($,y,t;ﬁ))2 =
=2 (Zw(e(w,y,t; 13))2) =3, ERR;py(P).

namely, the image-to-image alignment objective function,
averaged over al frames.

We next show that when the scene doescontain temporal
variations, sequence-to-sequenceuses moreinformation for
spatial alignment than image-to-imagealignment has access
to. In particular, there are ambiguous scenarios for image-
to-imagealignment, which sequence-to-sequencealignment
can uniquely resolve. Fig. 2 illustrates a case which is am-
biguous for image-to-image alignment. Consider auniform
background scene with amoving ball (Fig. 2.aand Fig. 2.b).
At any given frame (e.g., Fig. 2.c and Fig. 2.d) all the spa-
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tial gradients are concentrated in a very small image region
(the moving ball). In these cases, image-to-image align-
ment cannot uniquely determine the correct spatial transfor-
mation (see Fig. 2.€). Sequence-to-sequence alignment, on
the other hand, does not suffer from spatial ambiguitiesin
this case, as the spatial transformation must simultaneously
bringinto alignment all correspondingframesacrossthetwo
sequences, i.e., thetwo trajectories (depicted in Fig. 2.aand
Fig. 2.b) must bein alignment.

3.2 Sequence-to-Sequence vs.
Trajectory Alignment

Trajectory-to-

While “trajectory-to-trgjectory” alignment can also han-
dle the alignment problem in Fig. 2, there are often cases
where analysisof trajectories of temporal information alone
does not suffice to uniquely determine the spatio-temporal
transformation between the two sequences. Such is the
case in Fig. 3. When only the moving object information
is considered (i.e., the trajectory of the airplane), then for
any temporal shift, there exists a consistent spatia trans-
formation between the two sequences, which will bring
the two trajectories in Figs. 3.c and 3.d into alignment.
Namely, in this scenario, trgjectory-to-trajectory alignment
will find infinitely many valid spatio-temporal transforma-
tions. Stein[6] noted this spatio-temporal ambiguity, and re-
ported its occurrencein car-traffic scenes, where all the cars
move in the same direction with similar velocities. ([3] also
reported asimilar problem in their formulation).

While trgjectory-to-trajectory alignment will find in-
finitely many valid spatio-temporal transformations for the
scenario in Fig. 3, only one of those spatio-temporal trans-
formationswill a so be consistent withthe static background
(i.e., thetree and the horizon). Sequence-to-sequencealign-
ment will therefore uniquelyresolve the ambiguity in this
case, as it forces both spatial and temporal information to
be brought simultaneouslynto alignment acrossthe two se-
quences.

The direct method for sequence-to-sequence alignment
presented in Section 2 is only one possible algorithm for
solving this problem. The concept of sequence-to-sequence
alignment, however, is more general, and is not limited
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Figure 4. Scenewith moving objects. Rows (a) and (b) display five representative frames (0,100,200,300,400) from the refer-

ence and second sequences, respectively. The spatial misalignment is easily observed near image boundaries, where different static
objects are visible in each sequence. The temporal misalignment is observed by comparing the position of the gate in frames 400. In
the second sequence itis already open, while still closed in the reference sequence. Row (c) displays superposition of the representa-
tive framesbefore spatio-temporal alignment. The superposition composes the red and blue bands from reference sequence with the
green band from the second sequence. Row (d) displays superposition of correspondingtftierseatio-temporal alignment. The

dark pink boundaries in (d) correspond to scene regions observed only by the reference camera. The dark green boundaries in (d) cor-
respond to scene regions observed only by the second caRaréull color sequences see www.wisdom.weizmann.ac.il/Seq2Seq

to that particular algorithm. One could, for example, ex-
tend the feature-based trajectory-to-trajectory alignment al-
gorithm of [6] into a feature-basedequence-to-sequence
alignment algorithm, by adding static feature correspon-
dencesto the dynamic features.

While feature-based methods can theoretically account
for larger spatio-tempora misalignments, it is important to
note that the direct method suggested in Section 2 obtains
spatio-temporal alignment between the two sequences with-
out the need to explicitly separate and distinguish between
the two types of information — the spatial and the tempo-
ral. Moreover, it does notrequire any explicit detection and
tracking of moving objects, nor does it need to detect fea-
tures and explicitly establish their correspondences across
sequences.  Finally, because temporal variations need not
be explicitly modeled in the direct method, it can exploit
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other temporal variations in the scene, such as changesin
illumination. Such temporal variations are not captured by
trajectories of moving objects.

3.3 [Illumination Changesasa Cuefor Alignment

Temporal derivatives are not necessarily a result of in-
dependent object motion, but can also result from other
changesin the scenewhich occur over time, such aschanges
inillumination. Dimming or brightening of the light source
are often sufficient to determine the temporal alignment.
Furthermore, even homogeneous image regions contribute
temporal constraintsin this case. Thisistrue athough their
spatial derivatives are zero, since global changesin illumi-
nation produce prominent temporal derivatives.

For example, in the case of the algorithm presented in
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Figure 5. Scene with varying illumination.
Rows (a) and (b) display three representative frames

(200,250,300) from the reference and second sequences,
respectively. The temporal misalignment can be observed in

the upper left corner of frame 250, by small differences in il-
lumination. (c) displays superposition of the representative
framesbefore alignment (red and blue bands from reference

sequence and green band from the second sequence). (d)

displays superposition of corresponding frameier
spatio-temporal alignment. The accuracy of the temporal
alignment is evident from the hue in the upper left corner
of frame 250, which is pink before alignment (frame 250.c)
and white after temporal alignment (frame 250.d). The
dark pink boundaries in (d) correspond to scene regions
observed only by the reference camer&or full color
sequences see www.wisdom.weizmann.ac.il/Seq2Seq

Section 2, for avoxel in auniformregion (S, = S, = 0)
undergoing illumination variation (S; # 0), Eq. (3) pro-
vides the following constraint on the temporal alignment
parameters: e(z,y,t;P) = (S'(z,y,t) — S(z,y,t) +
w(z,y,t; P)Sy(z,y, t). Notethat, in general, changesin il-
lumination need not be global. For example, an outdoor
scene on a partly cloudy day, or an indoor scene with spot-
lights, can be exposedtolocal changesinillumination. Such
local changes provide additional constraints on the spatial
alignment parameters. An example of applying our algo-
rithm to sequences with only changes in illumination is
shownin Fig. 5.
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4 Experiments

In our experiments, two different interlaced CCD cam-
eras (mounted on tripods) were used for sequence acquisi-
tion. Typical sequencelengthisseveral hundredsof frames.
Fig. 4 shows a scene with a car driving in a parking lot.
When the car reachesthe exit, the gateisraised. Thetwoin-
put sequences Figs. 4.a and 4.b were taken from a distance
(from two different windows of a tall building). Fig. 4.c
displays superposition of representative frames, generated
by mixing the red and blue bands from the reference se-
guence with the green band from the second sequence. This
demonstrates the initial misalignment between the two se-
guences, both in time (the sequences were out of synchro-
nization; note the different timing of the gate being lifted
in the two sequences), as well as in space (note the mis-
alignment in static scene parts, such as in the other parked
cars or at the bushes). Fig. 4.d shows the superposition
of frames after applying spatio-temporal alignment. The
second sequence was spatio-temporally warped towards the
reference segquence according to the computed parameters.
The recovered temporal shift was 46.5 frames, and was ver-
ified against the ground truth, obtained by auxiliary equip-
ment. The recovered spatial affine transformation indicated
atrandation on the order of a1/5 of theimage size, asmall
rotation, a small scaling, and a small skew (due to differ-
ent aspect ratios of the two cameras). Note the good qual-
ity of alignment despitethe overall differencein chromaand
brightness between the two input sequences.

Fig. 5 illustrates that temporal alignment is not limited
to motion information alone. A light source was brightened
and then dimmed down, resulting in observableillumination
variations in the scene. The cameras were imaging a pic-
ture on awall from significantly different viewing angles,
inducing a significant perspective distortion. Fig. 5.a and
5.b show a few representative frames from two sequences
of several hundred frames each. The effects of illumina-
tion are particularly evident in the upper left corner of the
image. Fig. 5.c shows a superposition of the representative
frames from both sequences before spatio-temporal align-
ment. Fig. 5.d showssuperposition of corresponding frames
after spatio-temporal alignment. The recovered temporal
offset (21.3 frames) was verified against the ground truth.
The accuracy of the temporal alignment is evident from the
hue in the upper left corner of frame 250, which is pink be-
forealignment (frame 250.c) and white after temporal align-
ment (frame 250.d). The reader is encouraged to view full
color sequences at www.wisdom.weizmann.ac.il/Seq2Seq

5 Conclusion and Future Work

In this paper we have introduced a new approach to
sequence-to-sequence alignment, which simultaneously



uses al available spatial and temporal information within
the video sequences. We showed that our approach com-
bines the benefits of image-to-image alignment with the
benefits of trajectory-to-trgjectory alignment, and is a
generalization of both approaches. Furthermore, it resolves
many of the inherent ambiguities associated with each of
these two classes of methods.

The current discussion and implementation were re-
stricted to stationary cameras, and henceused only two types
of information cues for alignment - the scene dynamicand
the scene appearancéle are currently extending our ap-
proach to handle moving cameras. Thisadds athird type of
information cuefor alignment, which isinherent to the scene
and is common to the two segquences - the scene geometry

While the approach is general, we have aso presented
a specific algorithm for sequence-to-segquence alignment,
which recovers the spatio-temporal aignment parameters
directly from spatial and tempora brightness variations
within the sequence. However, the paradigm of sequence-
to-sequence alignment extends beyond this particular algo-
rithm and beyond direct methods. It can equally employ
feature-based matching across sequences, or other type of
match measures (e.g., mutual information).
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Appendix A: Spatio-Temporal Aliasing

This appendix discusses the tradeoff between temporal
aliasing and spatia resolution. The intensity values at a
given pixel (zy,yo) aong timeinducesa 1-D temporal sig-
nal: 8(z,y0)(t) = S(zo,v0,t). Due to the object motion,
afixed pixel samplesamoving object at different locations,
denoted by the “trace of pixel (zo, yo)". Thustemporal vari-
ations at pixel (zo,yo) are equal to the gray level variations
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Figure 6. Induced temporal frequencies. Three
frames 0,1,2 of a car moving up right with velocityare
presented above. A fixed pixealy, yo) is marked on each
frame. (a) displays the trace of the pixel. (b) displays the
gray level values along this trace.

along the trace (See Fig. 6). Denote by Atrace the spatial
step size along the trace. For an object moving at velocity
v: Atrace = vAt, where At is the time difference be-
tween two successive frames. To avoid tempora aliasing,
Atrace must satisfy the Shannon-Whittaker sampling theo-
rem: Atrace <= %, where w is the upper bound on the
spatial frequencies. Applying this rule to our case, yields
the following constraint: vAt = Atrace <= 5. This
equation characterizes the temporalsampling rate which is
required to avoid temporal aliasing. In practice, video se-
guences of scenes with fast moving objects often contain
temporal aliasing. We cannot control the frame rate (3;)
nor object’smotion (v). We can, however, decrease the spa-
tial frequency upper bound w by reducing the spatial resolu-
tion of each frame(i.e., apply aspatial low-pass-filter). This
impliesthat for video sequenceswhich inherently have high
temporal aliasing, it may be necessary to compromisein spa-
tial resolution of alignment in order to obtain correct tempo-
ral alignment. Therefore, the LPF (low pass filters) in our
spatio-temporal pyramid construction (Section 2.3) should
be adaptively selected in space and in time, in accordance
with the rate of temporal changes. This method, however,
is not applicable when the displacement of the moving ob-
jectislarger thanits own size.
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