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Abstract

We discuss situations where perturbing a probability measure on R™ does not deteriorate
its Poincaré constant by much. A particular example is the symmetric exponential measure
in R™, even log-concave perturbations of which have Poincaré constants that grow at most
logarithmically with the dimension. This leads to estimates for the Poincaré constants of
(n/2)-dimensional sections of the unit ball of £} for 1 < p < 2, which are optimal up to
logarithmic factors. We also consider symmetry properties of the eigenspace of the Laplace-
type operator associated with a log-concave measure. Under symmetry assumptions we show
that the dimension of this space is exactly n, and we exhibit a certain interlacing between
the “odd” and “even” parts of the spectrum.

1 Introduction

This work was partly motivated by the study of a family of probability measures on R"
which naturally appear when considering statistical questions pertaining to sparse linear
modeling:

A" (z) = %e—nznl—czm d.

where @ is a nonnegative quadratic form, |z|l, = (3, |z:[?)/?, and Z = Z, ¢ is the
normalizing constant so that ™% is a probability measure. The latter is related to the
classical functional 0 — ||y — X0||3 + A||0||; that one minimizes in order to find the LASSO
estimator, see e.g. [10]. Here the quadratic term is supposed to ensure a good fit to data y,
while minimizing the L; norm favours a small support for the estimator 6.

For a probability measure p on R™, we denote by Cp(n) the Poincaré constant of p,
that is the least constant C' such that the following inequality holds for all locally Lipschitz
functions f : R" — R:

Var, (1) < € [ 9P 1)

Here Var,(f) = [(f — [ fdp)*dp if f € Lo(p), and +oo otherwize, denotes the variance of
f with respect to pu. Such Poincaré inequalities, when they hold, allow to quantify concen-
tration properties of u as well as relaxation properties of associated Langevin dynamics, see
e.g. [2].

A natural question, posed to us by S. Gadat, is whether the Poincaré constant of 1@
can be upper bounded independently of the quadratic form (). This seems plausible, as
the addition of @ only makes the measure more log-concave and more localized around the
origin. But making this intuition rigorous is far from obvious. A more demanding question
is whether C'p(v™?) is maximal when @ = 0. Observe that ™% = ™ is the n-fold product
of the Laplace distribution on R, dv(t) = exp(—|t|) dt/2. By the tensorization property of
Poincaré inequalities, we have Cp(v™) = Cp(v) = 4 (see Lemma 2.1 in [5] for Cp(v) < 4,
the converse inequality is checked with exponential test functions). A positive answer to
the latter question would imply that Cp(v™?) is upper bounded by 4, independently of
the dimension and of the nonnegative quadratic form ). We cannot establish this bound,
but we provide results in this direction which apply to more general settings, while putting
forward the relevent features of the problem as symmetry, log-concavity and appropriate
comparison with the Gaussian case. A sample result is stated next:
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Theorem 1. Let n > 2 and let F : R™ — R be an even, convex function and let 1 < p < 2.
Consider the probability measure i on R™ given by

1 ,
() = e I P

where Z is a normalizing constant. Then,

2-p

Cp(p) < C(logn) 7,

where C 1s a universal constant.

We do not know whether the logarithmic factor in Theorem [ is necessary. Up to this
logarithmic factor, this theorem provides a positive answer to the above question, since a
non-negative quadratic function @) is an even, convex function. Note that in the case where
p = 2, there is no logarithmic factor in Theorem [I yet in this case the Theorem is well-
known and it holds true without the assumption that F is an even function (see Corollary
[l below). The case where p € [1,2) is harder, and relies on techniques from the study
of log-concave measures. Using a result of Kolesnikov-Milman [22] that allows to compare
Poincaré constants of log-concave functions and their level sets, we obtain the following:

Corollary 2. Letn > 2 and p € [1,2]. Let E C R™ be a linear subspace, and set k =
dim(E)/n. Then,

2 0\°
Cp ()\Bng) < (k) .logz% (n)- sup / <z, —> d)\Bng(z),
0#£0€R™ JBrOE 10|

where c(k) depends solely on r € [0,1], where B) = {z € R"; Y, [x;[P < 1}, and where
)\Bng is the uniform probability measure on the section By N E.

This provides a partial confirmation, up to a logarithmic term, of a famous conjecture
of Kannan, Lovasz and Simonovits, which we recall in Section

In Section B.3] we present additional related results, and in particular a slightly more
general version of the above results, see Theorem 23l The proofs in Section B3] rely on ideas
from the recent Gaussian-mixtures analysis of Eskenazis, Nayar and Tkocz [13], and on the
fact going back to [21], that the first non-trivial eigenfunction is an odd function under
convexity and symmetry assumptions. This fact is revisited here, and in particular we prove
the following interlacing result for the spectrum of the Laplace-type operator associated
with an even, log-concave measure. A function f : R™ — [0,00) is log-concave if the set
where it is positive is convex, and — log f is a convex function on this set.

Theorem 3. Let pu be a finite measure with a log-concave density in R™. Assume that
w is even. Then in the definition (1)) it suffices to consider odd functions, i.e., denoting

Ap(u) =1/Cp(p) we have

f]Rn |Vf|2dl’[’

Ap(1) = Ap(p, “odd”) :=
p() = Ap(p, “odd”) FRNSR s odd Var,(f)

3

where the infimum runs over all locally-Lipschitz, odd functions f € L?(u) with f # 0.

Moreover, the even functions do not lag too far behind in the spectrum. Specifically, for
any (n + 1)-dimensional subspace E C L*(p) of locally-Lipschitz, odd functions we have

Jan IVfIQdu< X Jen IV fI2dp

A « ”Y .
P(M, even ) f:]R"'—)l]lIg is even Varu(f) - Oy—élflgE Varu(f)

)

where the infimum runs over all locally-Lipschitz, even functions f € L?(u) with f # Const.



It is well-known that there exists log-concave measures, such as the Laplace distribution
mentioned above, for which the infimum defining the Poincaré constant is not attained. Nev-
ertheless, under mild regularity assumptions on g it is known that an eigenspace E,, C L?(u)
corresponding to the eigenvalue Ap(p) does exist, and by elliptic regularity the eigenfunc-
tions are smooth. The eigenspace E,, consists of all locally-Lipschitz functions f € L?(u)
with [ fdu = 0 for which

Pdu=Coln)- | (V4P
R" R"

Given a measure g on R™ write O, (p) for the group of all linear isometries R : R™ — R"
with R.u = pu. As an example, if u has the symmetries of the cube [—1, 1]™, then the group
O, (1) has at least 2™ - n! elements, and it has no non-trivial invariant subspaces.

Theorem 4. Let p be a log-concave probability measure on R™ with E,, # {0}. Assume
that the group O, (u) has no non-trivial invariant subspace in R™. Moreover we make the
reqularity assumption that v has a C%-smooth, positive density e~% and that the Hessian
matriz of ¥ is non-singular at any point of R™. Then

dim E,, = n.
Moreover, for any f € E, \ {0},

E, =span{foR; R€ O,(n)}.

The proofs of the last two results appear in Section 2] where an extended discussion and
several other related results may be found.
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2 Poincaré constants for log-concave measures

2.1 Perturbation principles

We collect here several useful results on the Poincaré constants, dealing with various kinds
of perturbations of measures. We start with recalling the classical bounded perturbation
principle. It follows from the representation formula Var,(f) = infeer [(f — a)?dp.

Proposition 5. Let pu be a probability measures on R"™ and let v(dz) = " ®pu(dx) be
another probability measure. If the function V is bounded, then

Cp(v) < Cp(p) V),

where Osc(V) =supV —inf V is called the oscillation of V.
Denote Ry = [0,00). The following one-dimensional comparison result appears in [31]:

Proposition 6. Letb € (0,00] and V' be an even continuous function on R such that p(dz) =
1 by (J:)e_v(””)dx is a probability measure on R. Let p : R — RT be an even function
which is non-increasing on R™, such that v(dz) = p(x) p(dz) is a probability measure. Then
Cr(v) < Crlp).

The next statement is known as the Brascamp-Lieb variance inequality. A similar result
in the complex setting appeared earlier in Hérmander’s work.



Theorem 7 (Brascamp-Lieb [8]). Let V : R®™ — R be a C? function such that for all
x € R™, the Hessian matriz D>V (x) is positive definite. If pu(dx) := e~V ®)dx is a probability
measure, then for all locally Lipschitz functions f : R™ — R,

Var,(f) < /((DQV)’1Vf,Vf>du.

In particular, if D?V (z) > £7! for all x € R", where ¥ is a fixed positive-definite matrix,
then for all f,

Var,(f) < / (SVf,Vf)dp.

Observe that DV (z) > £~ means that 2 — V(z) — (X', z) is convex. This leads, by
approximation (or via a different proof, as in [7] where a stronger log-Sobolev inequality is

proved), to the following estimate for log-concave perturbations of Gaussian measures.

Corollary 8. Let X be a symmetric, positive-definite n X n matriz. Let p : R® — RT be a
log-concave function, such that p(dx) := p(x) exp(—1 (S~ z, z))dz is a probability measure.
Then for all locally Lipschitz functions f : R™ — R:

Var,(f) < / (SVf,Vf)dp.

In the log-concave case, Proposition Bl may be improved substantially, as shown by E.
Milman. A probability measure in R is log-concave if it is supported in an affine subspace,
and admits a log-concave density in this subspace. The total variation distance between two
probability measures p and v is

drv(p,v) = sup [u(A) —v(A)|

where the supremum runs over all measurable sets A.

Theorem 9 (E. Milman, Section 5 in [27]). Let u1 and pe be two log-concave probability
measures on R™ and let ¢ > 0. If dpy (1, pe) < 1 —¢, then

Cp(pz2) < c(e) - Cp(m),

where c(g) depends only on e.

2.2 Background on the KLS conjecture

In the seminal paper [19], Kannan, Lovdsz and Simonovits (KLS for short) formulated a
conjecture on the Cheeger isoperimetric inequality for convex sets, which turned out to be of
fundamental importance for the understanding of volumetric properties of high dimensional
convex bodies. We refer to the books [I], [9] for an extensive presentation of the topic, and
focus on the material that is needed for the present work. The KLS conjecture has several
equivalent formulations. The one that fits to our purposes is expressed in spectral terms.
For a probability measure u on R™ with finite second moments, let Cp(u, “linear”) denote
the least number C such that for every linear function f : R® — R it holds Var,(f) <
C [|Vf|*dp. Plainly

Cp(p) < Cp(p, “linear™) = [|Cov(u)[op-

Here, Cov(u) = (Cyj)i,j=1,...,n is the covariance matrix of p, with entries

Cij = /Rn zizjdu(x) — /n xidu(x)/n zjdu(x),

and ||Cov(u)|lop is norm of Cov(u) considered as on operator on the Euclidean space R”,
which is equal to the largest eigenvalue of Cov(u).



The KLS conjecture predicts the existence of a universal constant x such that for every
dimension n and for every compact convex K C R™ with non-empty interior (convex body),

Cp(Ak) < kCp(Ak, “linear”),

where Ag denotes the uniform probability measure on K. The conjecture has been verified
for only a few families of convex bodies as the unit balls of £ [33] 24], simplices [4], bodies
of revolution [I8], some Orlicz balls [22]. The second named author proved in [21] that

Cp(Ak) < clog(l+ n)QCp()\K, “linear”),

with ¢ being a universal constant, holds for all convex bodies K C R™ which are invariant
by all coordinate changes of signs ((z1,...,2,) € K <= (|z1],...,|zxn|)). Such bodies are
called unconditional. See [3] for more general symmetries. Corollary [2 above gives another
instance of a weak confirmation of the conjecture up to logarithms.

The KLS conjecture can be formulated in the wider setting of log-concave probability
measures (it turns out to be equivalent to the initial formulation on convex bodies). Let ky,
denote the least number such that

Cp(p) < kn Cp(u, “linear”)

holds for all log-concave probability measures on R™. With this notation the KLS conjecture
predicts that supy kn, < +00. We will use known estimates on k,. A rather easy bound
was given by Bobkov [6], extending the original result of [19] for convex bodies: for all
log-concave probability measures on R”,

Cp (1) < ¢ Tr(Cov(p)), (2)

where c is a universal constant. This gives &, < ¢n. The best bound so far is due to Lee
and Vempala [25] after a breaktrough of Eldan [12]: there is a universal constant ¢ such that
for all log-concave probability measures on R

Cp(p) < el|Cov(p)||ms = ¢(Tr(Cov(u)* Cov(p))) "/

This implies that x, < cy/n.

2.3 Log-concave measures with symmetries

For a Borel measure p on R™ and a function f € Lo(u) we write

Nl = sup{ A fudp; u € L*(p) is locally-Lipschitz with /R |Vul|?du < 1} . (3)

The norm || f|| z7-1(,,) makes sense only when [ fdu = 0, as otherwise || f||g-1(,) = +oc0. By
duality, it follows from the definition of the Poincaré constant that for any f € L?(u) with

[ fdu =0,
1110 < o0 [ P ()

The following proposition is an extension of [2I] Lemma 1], from uniform measures on C'*
smooth convex bodies to finite log-concave measures. A proof is provided for completeness.

Proposition 10. Let i be a finite, log-concave measure on R™. Let f : R® — R be a
locally-Lipschitz function in L*(p) with 0;f € L*(n) and [ 0;fdu =0 for all i. Then,

Var, (f) <> 10 f 710 (5)
=1

where we recall that Var,(f) = [(f — E)*dp and E = [ fdu/p(R™).



We require the following lemma, whose proof appears in the Appendix below:

Lemma 11. It suffices to prove Proposition [I01 under the additional assumption that the
measure p has a C°°-smooth density in R™ which is everywhere positive.

Proof of Proposition[Id] Thanks to Lemmal[lll we may assume that u(dx) = exp(—¢(z))dz,
where 1 : R™ — R is smooth and convex. We may also add a constant to f and assume
that [ fdu = 0. Define the associated Laplace operator

Lu=Au— <V’U,, V’L/J) = Z &'iu - &u . &w

i=1

for a C?-smooth, compactly-supported u : R® — R. A virtue of this operator is the integra-
tion by parts

/n u(Lv)dp = — /R(Vu,Vv)d,u,

valid whenever v : R — R is C?-smooth and compactly-supported and  is locally-Lipschitz.
The Bochner formula states that for any C?-smooth, compactly-supported function u : R® —
R

)

/ (Lu)Qdu:Z/ |V8iu|2du+/ (V2)Vu - Vudp > Z/ |Voul?dp.
R i=1 /R" R i=1/R”

n

This Bochner formula is discussed in [I1], where it is also proven (see [I1, Lemma 3]) that
there exists a sequence of compactly-supported, C2-smooth functions uy : R® — R (k =
1,2,...) with
lim Lug = f in L?(u). (6)
k—o0

Now, for any k& > 1,

/f(Luk)du:—Z/R Oi f - Bupdp < Z/R Vourdp -\ | Y 031,
” i=1 YR™ i=1 YR™ i=1

< NLanlzagn - | SO 101 1 - (™)
i=1
By letting & tend to infinity we deduce (Bl from (@) and (@). O

Let us write Cp(u, “even”) for the smallest number C' > 0 for which
Var,(f) <C [ [Vf[Pdp
]R'n.

for all even, locally-Lipschitz functions f € L?(u). We write Cp(u, “odd”) for the analogous
quantity where u is assumed an odd function.

When 4 is an even measure and f € L?(u) is odd, we may restrict attention to odd
functions w in the definition @) of ||f|lz-1(,. Indeed, replacing u(xz) by its odd part
[u(z) — u(—x)]/2 cannot possibly increase [ |Vul?du or affect the integral [ fudp at all.
Consequently, in this case,

1710y < Cp(n, “odd”) - i f2d. 8)

Moreover, when g is an even measure in R™ we have

Cr () = max{Cp(u, “odd”), Cp(, “even”)}. (9)



This follows from the fact that any locally-Lipschitz f € L?(u) may be decomposed as
f = g+ h with g even and h odd, and [ ghdy = [(Vg-Vh)duy = 0. In the case where
the even measure p is additionally assumed log-concave, formula (@) may be improved. The
following corollary is an extension of |21, Corollary 2(ii)] from smooth convex bodies to finite
log-concave measures. This extension requires a modified argument, as the one in [21] was
based on eigenfunctions, which may not exist in general.

Corollary 12. Let u be a finite, log-concave measure on R™. Assume that p is even. Then

Cp(p) = Cp(u, “odd”).

Proof. In view of ([@), we need to prove that Cp(u, “cven”) < Cp(u, “odd”). Thus, let
f € L?(p) be an even, locally-Lipschitz function. Then &, f is an odd function for all 4. In
the case where 0;f € L?(u) for all 4, by Proposition [0 and by (8],

Var () < Y 10:f sy < Crlsodd)- - [ 107 Pdu = ol od) - [ (9 1P
=1

i=1

(10)
Note that ([I0) trivially holds when 0; f & L?(p) for some 4, as the right-hand side is infinite.
Now ([I0)) shows that Cp(u, “even”) < Cp(u, “odd”). O

Proof of Theorem[d. The first part of the theorem follows from Corollary As for the
second part, let E C L?(u) be an (n + 1)-dimensional subspace of locally-Lipschitz, odd
functions. Consider the linear map 6 : E — R"™ defined via

0(f) := /n Vfdp. (11)

Since F is (n + 1)-dimensional, there exists 0 # f € E with 6(f) = 0. Since f is odd,
the function 9;f is an even function for all i. In the case where d;f € L?(u1) for all i, by
Proposition [0 and (&),

Var, (1) £ 301031+ < Colps“even’) 3 [ 104 = Col seven) | 191
i=1 o1 JRn n

This inequality trivially holds if 8; f ¢ L?(u) for some i. We have thus found f € E with

1 Jon [V fPdps
A «“ 7Y = < =
p(p, “even”) Cp(u, “even”) = Var,(f) ’

completing the proof of the theorem. O

A measure y in R™ is unconditional if it is invariant under coordinate reflections, i.e., for
any test function ¢ and any choice of signs,

/n oz, ... tan)du(z) = / (a1, an)du(a).

The following corollary is similar to [21, Corollay 2(i)] but it does not involve any regularity
assumption:

Corollary 13. Let u be a finite, log-concave measure on R™. Assume that p is uncondi-
tional. Then
Cp(p) = Cp(u, “odd in at least one coordinate”),

i.e., in the definition of Cp(u) it suffices to consider functions f(x1,...,x,) for which there
is an index i such that f is odd with respect to x;.



Proof. For I C Q,, = {1,...,n} we say that f(z1,...,2,) is of type I if it is even with
respect to x; for i € I and odd with respect to z; for i ¢ I. Any f € L%*(u) may be
decomposed into a sum of 2" functions, each of a certain type I C €2,. Moreover, even
without the log-concavity assumption we have

Cp(p) = max Cp(p, “functions of type I”). (12)

All we need is to eliminate the case I = 2, from the maximum in (IZ). However, if f is of
type £, then each function 9;f is of type Q,, \ {i}. We may thus rerun the argument in
(I0) and complete the proof. O

2.4 The structure of the eigenspace

We move on to discuss properties of eigenfunctions of log-concave measures with symmetries,
following their investigation in [2I]. We will consider a log-concave probability measure
du(z) = e ¥®)dz such that 1 : R® — R is of class C? and D?(z) > 0 for all z. The
Poincaré inequality asserts that the non-zero eigenvalues of —L, where

L=A- <v’l/)7v>7

are at least 1/Cp(p). We assume here that A\, = Ap(u) = 1/Cp(p) is actually an eigenvalue
for L and study the structure of the corresponding eigenspace E, := {f € L?(u);Lf =
—A.f}. Note that elliptic regularity ensures that eigenfunctions are C%-smooth. First, we
put forward the key ingredient in [21]. We reproduce the proof, for completeness.

Lemma 14. Under the above assumptions, the linear map 0 : E,, — R" defined in (11)) is
injective. As a consequence dim E,, < n.

Proof. Assume Lf = —\,,f and [V fdu = 0. Then using integration by parts, the Poincaré
inequality for the zero average functions 0;f and the Bochner formula gives

M [ Fan= = [ sLran= [ 1V5Pdn =3 Var,0.5) < A—lu S [ Ivosan

—+ ( [z [1rvs, Vf>du) < [woran=a. [ P

Hence all the above inequalities are actually equalities. In particular [ (D*YV £,V f)du = 0,
from which we conclude that f is constant. Hence 0 = Lf = —A, f, and f = 0. O

Let O,, be the group of linear isometries of the Euclidean space R™. We consider the
subgroup of isometries which leave y invariant:

On(,u) = {Reon; RM:,U}: {Reon; 1/}OR:"/)}
Lemma 15. If f € E, and R € O,,(1) then fo R~ € E,, and
0(foR™") = RO(f).

Proof. The fact that f o R™! is still an eigenfunction is readily checked. Next
ook = [V(ro R Ndu= [RVS) 0 R dn =R [ V1 dy.

where we have used that R™! is also the adjoint of R, and the invariance of p. O

Remark. This result can be formulated in a more abstract way. The group O, (x) has a
natural representation as operators on R”, denoted by p. It has another one as operators
on E,, denoted by m and defined for R € O,,(n) and f € E, by n(R)f = fo R™'. The
statement of the lemma means that 0 : £, — R" intertwines 7w and p.



Remark. The arguments of the above two proofs were used in [21] to establish the existence
of antisymmetric eigenfunctions, more specifically of an odd eigenfunction when v is even,
and of an eigenfunction which is odd in one coordinate when v is unconditional. Note that
these results give Corollary and also Corollary [[3] below under strong assumptions on
the existence of eigenfunctions, which we could remove in the present paper. It was proven
in [3] that the existence of antisymmetric eigenfunctions extends as follows: if there exist
Ri,...,Rr € On(p) such that {x € R"; Vi, Rz = z} = {0} then for every f € E, \ {0}
there exists ¢ such that foR; — f € E,\ {0}. The proof of this is easy from the lemmas: it is
always true that foR;— f € E,,. Assume by contradiction that for all ¢, foR;— f = 0. Then
0(f) = 0(f o R;) = R;*0(f). So 0(f) € R" is a fixed point of all the R;’s. By hypothesis,
6(f) =0 hence f = 0.

The above two statements allow to derive some more structural properties of F,, when
the measure has enough symmetries.

Theorem 16. With the above notation, assume that O, (u) has no non-trivial invariant
subspace. Then the map 0 is bijective. In particular dimE,, = n. Moreover, for any

f € E# \ {0}7
E, = span{foR; Re On(u)}.

Proof. By the above lemma, the range of 6 is invariant by O,, (). By Lemma[I4] the map 6
is injective, so its range cannot be reduced to {0}. Therefore §(E,) = R", i.e 0 is surjective,
hence bijective.

Next consider S :=span{foR™!; R € O,(n)} C E,. Then, thanks to the latter lemma,
6(S) = span{RO(f); R € Op(p)} is Opn(p) invariant and non-zero. Therefore it is equal to
R™. Hence S = E,,. o

Theorem [ above follows from Theorem [I6] as it is well-known by spectral theory that
a locally-Lipschitz function f € L?(u) with [ fdu = 0 for which an equality in the Poincaré
inequality is attained, belongs to I,,.

Eventually, let us give an example in a specific case: assume that p has the symmetries
of the cube, or equivalently that ¢ (z) = 7,/1(|z0(1)|, ce |za(n)|) for all permutations o of
{1,...,n} and all x € R™. Then O, (1) has no non-trivial invariant subspace and the above
proposition applies. But one can give a more precise description of the n-dimensional space
E,, in this case.

Denote by (e;)?_; the canonical basis of R™, by S; the orthogonal symmetry with respect
to the hyperplane {z;x; = 0}, and T;;, ¢ # j the linear operator on R™ the action of which
on the canonical basis is to exchange e; and e;. Note that S; and T;; belong to O, (u) and
are involutive. Since 6 is bijective we define f; :== 071(e;), and obtain a basis (f;)7; of
E,,. The relationships between vectors of R” and isometries in O, (x) can be transfered to
eigenfunctions thanks to 6:

9(f1) e1 = —Sie1 = *Sle(fl) = 9(*f1 © 51)
9(f1) €1 = Siel = Szﬁ(fl) = 0(f1 (e} Sz)7 if 4 7& 1
0(f1) = e1 = Tijer = T30(f1) = 0(f10Tiy), ifi,j#1
imply that fi = —f1 051 and for ¢,5 # 1, fi = fioS; = f1 0T} ;. In other words for any

(x2,...,2n), the map x1 — f1(z1,...,2,) is odd and for any x1, the map (x2,...,x,) —
fi(z1,...,x,) is invariant by changes of signs and permutations of coordinates. Still for
1# 1,

0(fi) = ei = Trier = T1i0(f1) = 0(f1 0 Thi)
yields f; = f1 o Th;. In particular, f; is an odd function of z; and an unconditional and
permutation invariant function of (x;);z;. Consequently for i # j, [ fifjdu = 0 (the
integral against dz; is equal to zero since f; is odd in x; while f; and v are even in ;).
Summarizing, (f1, fi o Tha,..., fi 0 Th,) is an orthogonal basis of E,,.



3 Perturbed products

In this section we investigate Poincaré inequalities for multiplicative perturbations of product
measures.

3.1 Unconditional measures

We now describe a comparison result which may be viewed as the higher-dimensional analog
of Proposition [f] in the case of product measures. We write R = [0, 00)".

Theorem 17. For i = 1,...,n, let du;(t) = 1(,bi7bi)(t)e_vi(t) dt be an origin symmetric
probability measure on R, with b; € (0, 00] and V; continuous on R. Let p : R® — R be such
that dp™*(z) = p(z) [1i—, dwi(x;) is a probability measure. Assume that p is unconditional
(i.e. p(x1,...,20) = p(|z1],-..,|zn]) for all x € R™) and coordinatewise non-increasing on
R?. If in addition u™* is log-concave, then

Cp(u™?) < Cp(u™') = max Cp (p7)-

This holds in particular when the measures p; are even and log-concave and p is log-concave
and unconditionnal.

Proof. Since p™? is log-concave and unconditional, we know by Corollary[I3]that it is enough
to prove the Poincaré inequality for functions which are odd with respect to one coordinate.
Let f: R™ — R be locally Lipschitz, and assume that it is odd in the first variable (other
variables are dealt with in the same way). Then by symmetry f fdu™? =0, so that

Varo (1) = [ Pae = [ ( [ Pt )Hduz ).

i>2

In the sense of pa®- - - ® iy, for almost every T := (za, .. fR p(x)duy (x1) < +oo.

Thus way may consider the probability measure p(xl,f)dul (xl) /Z It is a perturbation of
an even probability measure on R, by the even unimodal function 1 — p(x1,T)/Zz. Hence
by Proposition [ its Poincaré constant is at most Cp(u1). Since z1 — f(x1,T) is odd, it
has a zero average for the later measure and we get

/f2 dul(m) < Cp(ul)/R(<91f($))2p(x)dmZi(;1)~

Cancelling Zz and plugging in the former equality, we get

Varno(f) < [ (Opom [ @@ ot )Hduz 2 < maxCp(u) [ [V Pdu".

i>2

O

Remark. The hypothesis of unconditionality on the perturbation p cannot be dropped,
as the following example shows. Denote by U([a,b]) the uniform probability measure on
[a,b]. Classically, Cp(U([a,b])) = (b — a)?/=%. We choose p; = U([f%,%]) Then the
measure ™! is uniform on the unit cube C), := [-1,1] C R", and Cp(p™?!) = 72, Let
e € (0,1) and consider an orthogonal parallelotope P included in the cube C, and of
maximal side length (1 — ¢)y/n (such parallelotopes are easily constructed. When & tends
to zero they collapse to the main diagonal of the cube, the length of which is v/n). Then
define p. = 1p,/Vol(P:). Clearly p™?< is the uniform measure on P., which is a product
measure. So by the tensorisation property Cp(u™<) = L ((1 —¢)y/n)%

Remark. The product hypothesis is also important. Consider the uniform measure U (y/nBY)
on the Euclidean Ball of radius y/n in R", for n > 2. It is well-known that sup,, Cp(U(y/nB%)) <
+o00. For € € (0,1), define the unconditional parallelotope

Q- = {z €ER™ |z1] < vVn—ecandVi> 2, |z;| < 1/%} C /nB%.

10



Since it is a product set, Cp(U(Q.)) = Cp(U([-v/n—¢,v/n—¢])) = (n —¢)/mx*. Hence
U(Q:) is an unconditional and log-concave perturbation of U(y/nB%), which is itself log-
concave and unconditional. Nevertheless the former has a much larger Poincaré constant
than the latter when the dimension grows. See also Section 3.3 below.

3.2 The general case

The above examples show that a dimension dependence is sometimes needed, of order n for
the covariances and Poincaré constants. We show next that this is as bad as it gets, and
that such a control of the covariance can be obtained independently of the even log-concave
perturbation.

Theorem 18. Let p1,...,un be even log-concave probability measures on R, and let p :
R™ — R be an even log-concave function such that

dpp(z H dpi(x;), = eR"

is a probability measure. Then, covariance matrices can be compared:
Cov(u™*) < nCov(u™').
Moreover,

n
Cp(p™?) < cZVar(,ui) < cnmaxCp(p;) = cnCp(u™'),
1
i=1
where ¢ 1s a universal constant.

Proof. We start with the covariance inequality. Set o? = Var(u;). Let g be an even log-
concave function on R. Then since g is non-increasing on R,

[ faano < ([ eau) ([ s duo).

Indeed, by symmetry this follows from the basic fact that 2cov,,(f,g) = [, (Ry)?

FW)(g(x)—g(y)) dm(xz)dm(y) < 0if m is a probability measure on RT, f is non- decreasmg
and g is non-increasing. The above inequality, sometimes referred to as Chebyshev’s sum
inequality, can be restated in terms of the peaked ordering as t2du;(t) < o?p;. Such an
inequality is preserved by taking on both side the tensor product with an even log-concave
measure (e.g. Kanter [20, Corollary 3.2]). Hence, tensorizing with ®;-; 1,

xfdul(xl) ol () < aful R ® -

This means that the left-hand side measure has smaller integral against even log-concave
functions. Applying this with p gives

/x?du"’p(x) <ol (13)

This is enough to upper bound the covariance matrix. Indeed, for 8 € R",

Var,n.» ((-,0)) :/<x 0)2dpu™ " ( Z/xwﬂ@ du™?(z)

<SS ioiio ([ sarew) (f sipets))’

2
< 2049 01031 = <Z |9z'|0i>

=1

< n20292 =nVary, o..ou, ((,0)). O

11



Eventually, since p™* is log concave, we may apply Inequality (2])

Col?) < eTe(Con(u) = ¢ Y [ atduo(a)
i=1
We conclude thanks to ([I3)).

3.3 Gaussian mixtures

In this section, we consider n probability measures on R which are absolutely continuous
Gaussian miztures. This means that u,;(dt) = @;(t)dt for i = 1,...,n with

2

%(t):/R € 27 dmi(o), tER (14)

Lo 2

where m; is a probability measure and R* = (0, 00). In other words if R; is a random variable
with law m; and is independent of a standard Gaussian variable Z, then the product R;Z
is distributed according to u;. These measures were considered by Eskenazis, Nayar and
Tkocz [13], who showed that several geometric and entropic properties of Gaussian measures
extend to Gaussian mixtures.

3.3.1 Using the covariance

For log-concave probability measures, it is known that the Poincaré constant is related to the
operator norm of the covariance matrix of the measure. In order to estimate the covariance,
we use an extension by Eskenazis, Nayar and Tkocz of the Gaussian correlation inequality
due to Royen [32]. A function f is quasi-concave if its upper level sets {z; f(x) > t} are
convex for all t.

Theorem 19 ([13]). Let p1,...,un be probability measures on R which all are Gaussian
miztures. Let f,g: R™ — R be even and quasi-concave, then for p = p1 @ -+ ® fin,

o= () (J )

Remark. The inequality is actually valid for the more general class of even and unimodal
functions (i.e. increasing limits of positive combinations of indicators of origin symmetric
convex sets).

For our purpose we rather need a weaker version of Theorem Let ¢: R™ — R be an
even convex function, and g be even and log-concave; for € > 0, consider the log-concave
function f = exp(—eg). Then the above theorem gives [e~*°gdu > ([e~=¢du) ([ gdu).
There is equality for ¢ = 0, so comparing derivatives at ¢ = 0 yields that an even convex
and an even log-concave function are negatively correlated for p:

foss(Jo5) (f25).

In the case of centered Gaussian measures, this negative correlation property between even
convex and even log-concave functions was established first by Hargé [16].

Proposition 20. Let ui,...,u, be Gaussian miztures, and let p : R® — RT be an even
log-concave function such that the measure dp™*(x) = p(x) i, dui(x;) is a probability
measure on R™. Then

Cov (™) < Cov(u™")

If in addition pu™* is log-concave (which is true if the measures pu; and the function p are
log-concave), then

)

Cp(p™?) < cn? max Var(p;) < ¢n? max Cp(pi) = cn%C’p(M"’l)
2 2

where ¢ 1s a universal constant.

12



Proof. Let § € R™. Since z + (x,0)? is even and convex, the correlation inequality (5]

ields
i /<$a9>2p($)Hdui($i) < (/<$a9>2Hdﬂi($i)) /P(@Hdﬂi(%)-

Since the measures are centered, this can be rewritten as
Varn, ((-,0)) < Var,na((-,0)), 6¢cR"

Hence the covariance inequality is proved. For the second part of the statement, we apply the
best general result towards the Kannan-Lovasz-Simonovits conjecture, recalled in Section
for every log-concave probability measure n on R™, Cp(n) < e¢n'/2||Cov(n)| op- O

Remark. The KLS conjecture predicts that for some universal constant x and for all log-
concave probability measures 1, Cp(n) < k||Cov(n)|lop. If it were confirmed, then the
conclusion of the above theorem could be improved to Cp(u™?) < k Cp(u™?1).

Remark. The correlation inequality proves that p™? = u™! for the peaked ordering on
measures: g > v means u(K) > v(K) for all origin-symmetric convex sets, and imples
[ fdp > [ fdv for all (even) unimodal functions. Also, the weaker correlation inequality
(@3 implies that p™? is dominated by p™! in the Choquet ordering (integrating against
convex functions).

3.3.2 Direct approach

1/2

Working directly on the Poincaré inequality, we will improve the n'/= to log(n) in Proposition

1201

Lemma 21. Let j1,...,u, be Gaussian miztures as in (I4), and let p : R* — R* be an
even log-concave function such that

du™"( H dui(z;), zeR"

s a probability measure. Then for every odd and locally Lipschitz function f : R™ — R, it
holds

Varyns (f) < / 3 el (0uf ) P ),

where
t2

1 e 27 I
a;(t) == D) /10 Nor dm;(o) = D) /|t upi(u)du, teR.

Proof. Since f is odd and p™” has an even density,

Var n. (f 2d”p*/ 2 /idm-o- dx
Iz /f H f( ]1;[1 ®: 05 o i(o5)

- 2 _%Zj ?
/( - ( o [ (@)p(x)e (2r) n/2H UJ) Hde ;)

For each (0;); we estimate the inner integral from above thanks to the Brascamp-Lieb
inequality, applied to the probability measure

1 -i3, 3 dx
Zg 2m)/2 1], 0;

13



Since M, is log-concave with respect to the Gaussian measure x — exp(—1 (Diag(c)?z, z)),
the Brascamp-Lieb inequality in the form of Corollary [} gives

Varyy, (f) < /<Diag(o)2Vf, Vf) dM,(z).

Since f is odd and M, is an even measure, we obtain that [ f2dM, < [(3°02(9;f)?) dM,
Observe that in this formulation, the normalizing constant Z, appears on both sides and
therefore cancels. This leads to

xs

Var,, (f) S/ . </n (;af(&f(:c))Q)p(x)e‘ézf e o "/21_[ 0]> 1 dmi(e;)

®;

2
J

n

J

J#i
fZ/n (9:F () e () dpa™ ().

It remains to check the validity of the second expression of «;. This is obvious from the
definition of ¢; after interchanging integrals as follows:

+oo +oo +oo 2 dms +oo 42 1
/ u%‘(u)duz/ / ue” 202 du mi(0) :/ o%e 207 dm;(o).
It] 0 It| ovV2m 0 oV2m

Lemma 22. Let ¢ : R — R be an even and log-concave function such that [ ¢ =1. Then
for allt € R,

O

ST wpwydu g L
o(t) T 20(0)  4p(0)?

There is equality when for some A > 0 and for all u, o(u) = Aexp(—A|ul)/2.

Proof. It is enough to deal with all ¢ > 0. For such a fixed ¢, set for all v > 0, ¥ (v) := @(t+v).
Then changing variables by u =t 4+ v

ft+oo up(u)du _ O+°O(t + v)Y(v)dv _ tf+oo P f0+oo vip(v)dv
¢(t) $(0) $(0) ¥(0)

Since 1 is log-concave, the Berwald-Borell inequality implies that the function

1 oo
P(O)I(p) Jo
is non-increasing (see [28] or e.g. Theorem 2.2.3 in [9]). The inequality G(1) > G(2) allows

us to deduce that )
—+oo —+oo —+oo
Jy " we(wdu _fg w+<f0 w) |

p>00 G(p) = ( w(u)upldu)é

() — (0) ¥(0)
vO) _ e®) _ dy
s e o)

14
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Since ¢ is log-concave, the Prékopa-Leindler inequality ensures that the tail function t —

log ( f;roo <p) is concave, and thus has a non-increasing derivative. It follows that for ¢ > 0,

—+o0 —+o0 —+o0
Jo _ Jy e < Jo ¥ _
$(0) pt) — »0)  2¢(0)
This leads to the claimed inequality. The case of equality is checked by direct calculations.

O

Remark. Better estimates depending on ¢ are easily established. If the even probability
density is given by ¢ = e~V where V is differentiable, even and convex, then for ¢ > 0,

G (—%) =te " (1 + g ﬁ) 2t (1 - tv}@)) |

Integrating, we obtain that for ¢ > 0 such that tV'(¢) > 2,

+o0 t
| wetdu <2700, (16)

since in this case also sV'(s) > 2 for all s > 1.

Theorem 23. For i = 1,...,n, let u;(dt) = ;(t)dt be a Gaussian mizture on R which
is log-concave. Let p : R® — RT be an even log-concave function such that du™*(x) =
p(x) T, dui(xi) is a probability measure on R™. Then

Cp(u™?) < (1+ Clogn) Cp(u™') = (14 Clogn) max Cp(u),

where C 1s a universal constant.

Proof. The case n = 1 is a direct application of Proposition[6l Next we focus on n > 2. We
follow the truncation strategy from [2I]. Let X; be a random variable of law p;. Since the
latter is symmetric and log-concave, classical results due to Borell and Hensley (see [28] or
Chapter 2 in [9]) give

[X1lly, < el Xill2 <

c
- V20i(0)’
where the Orlicz norm involves 11 (t) = ell —1 and ¢ > 0 is explicit and universal. Choose
¢ :=+/2/c. The later inequality implies E exp (e0i(0)|X;]) < 2.

By the correlation inequality (I3, and then Jensen’s inequality
exp (& [ o (flis(0) () ) < exp (= [ (ailoi0) o o))
< [[exp (= max (il 0))) ™ (a) < [ 3 exp (elaale0)) du™ @)
i=1

:Z/ exp (5|$i|90i(0)) dpi(z;) < 2n.

R

Therefore
[ m (jzlien(0)) du? @) < clog(2n)

Consequently, the set

ilpi(0
A= {x eR™; max% < clog(2n)},
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verifies pu™*P(A) > %, thanks to Markov’s inequality. This implies that the probability

measure

(. A 1
np _ WPCOA) 14
WA= ety ey P S a)
obtained by conditioning u™* to the set A is close to u'™* in total variation distance:
1
dov ("’ uii") < 5.
Since A is convex and symmetric, we can write A P = u™P where p = ,}TAW p is still

log-concave and even. Since both measures are log-concave, Theorem [ ensures that for
some universal constant

Cp(u™*) < K Cp(u™”). (17)

We can apply Lemma 2] to u™” with the advantage that this measure is supported on A.
We obtain, using also Lemma 22] that for every odd and locally Lipschitz function f,

Vars (1) < [ Z(Qg'jl 1(0)2)<aif<x>>2dwﬁ<x>
o ) (1
<mox—s [ (mgx(mﬂ;o))ﬁ) IV £ @) P ()

1 _
<m _ log(2 2du™P.
S max 0:(0)2 (4 + clog( n)) /|Vf| dp

Since ™7 is log-concave and even, Corollary[[Zensures that checking the Poincaré inequality
for odd functions, as we just did, is enough to conclude that

< maX

04 1) @spParsw

_ 1 1
Py < — | - log(2 .
o) < mps i (54 coson)

Combining this estimate with (7)) gives a universal constant C' such that

1
Cp(p™”) < Clog(n) max .
(1™7) (n) m: 0]
Eventually, for the even log-concave probability measures p;(dt) = ;(t) dt on the real line
it is known that £¢;(0)™2 < Cp (i) < ¢i(0)72, see [6]. O

3.3.3 Examples
As explained in [13], for p € (0, 2] the probability measures on R defined by

dvp(t) = exp(—|t|P) dt/Z,

are Gaussian mixtures. When p € [1,2] they are in addition log-concave, and Theorem
ensures that for every even log-concave perturbation p,

Cp(vy?) < (14 Clogn) Cy(vp). (18)

for some universal constant C. We point out that inf e[y 2) Cp(vp) > 0 and sup,¢(y,9) Cp(vp) <
+00, which is easily verified e.g. with the Muckenhoupt criterion [29]. This completes the
proof of Theorem [l in the case p = 1.

When p = 1, Theorem [Il almost answers the motivating question that we mentioned in
the introduction: we unfortunately have a weak dependence in the dimension, but we allow
more general perturbations.

16



When 1 < p < 2, using the remark after Lemma 22] we obtain from (I8) that for the
measure v, the coefficients «;(t) of Lemma 1] verify

o;(t) < c(1+t777), teR,

where ¢ is a universal constant. This improves on Lemma 22 and can be used in the
argument of the proof of Theorem 23] Since there exists a universal € > 0 such that for all

pe (1’ 2),
/eXp (€(|t|2_p)p/(2_p))dup(t) <2

we arrive by the same method at

2-p

Cp(vy*) < (14 C(logn) Pp) Cp(vp).
As sup,epp o) Cp(vp) < +00, we have proven the following:

Theorem 24. Let 1 < p < 2. Let p: R® — RT be an even log-concave function such that
dvp?(x) = p(x) [Ti2, dvp(x;) is a probability measure on R™. Then

2-p

Cr() < (1+ Clogn) 7", (19)

where C is a universal constant.

Theorem [24] implies Theorem [[I Note that the bound (I9) improves on ([I8), and is
independent of the dimension for p = 2 (as expected for log-concave perturbations of the
standard Gaussian measure).

All the above results deal with even log-concave perturbations of the measures v, and
their products v, p € [1,2]. The spectral gap of such perturbed measures is controlled
uniformly in the perturbation (for any given dimension). When p € [1,2) this is not true
for arbitrary log-concave perturbations (i.e. non necessarily even). To see this, it is enough
to consider the probability measures v, on R, and their exponential tilts

1 P
dvya(t) = —e 1"t

p,a

where a in an arbitrary real number if p > 1, and a € (—1,1) when p = 1. Gentil and
Roberto [I5] have proved that for p € [1,2),

sup Cp(Vp,a) = +00.
a

For p = 2, the Brascamp-Lieb inequality ensures that the Poincaré constant of any log-
concave perturbations of the standard Gaussian measure is dominated by 1.

3.4 Light tails

Since Gaussian mixtures have heavier tails than the Gaussian measure, we now investigate
some measures with lighter tails.

A special and simple case is when the measures dy;(t) = e~V dt have strictly uniformly
convex potentials. More specifically, if there exists € > 0 such that for all ¢ and all ¢t € R,
Vi” (t) > e, then without assuming any symmetry if p is log-concave, the probability measure
u™* also has a potential which is uniformly strictly convex and therefore

M | =

Cp(p™r) <
Nevertheless, strict convexity in the large is not sufficient to yield such uniform results.

The behaviour of u; around 0 is important as the next examples show: let p > 2 and for all
i, dpi(t) = exp(—|t|P)dt/Z,. For x € R", let us denote by T = (}_, x;)/n its empirical mean
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and Q(z) = Y_,(z; — T)?/n its empirical variance. As a nonnegative quadratic form, @ is

convex. Also note that )

)

Q(x)=n

where u, = (1/y/n,...,1/y/n) € R" is a unit vector on the main diagonal line and P, is
the orthogonal projection onto the othogonal complement of this line

ur = {z e R™; in:()}.

Let us define pg : R® — RT as the indicator function of the convex origin-symmetric set
{z € R"; Q(x) < 1/k}, properly normalized so that p™”* is a probability measure (another
possible choice would be pr, = exp(—kQ)/Z;). Then when k tends to +oo the measure
Hn,p, tends to the measure obtained by conditioning py ® - - - py, = 1™ to the diagonal line
Ru,,. With our choice of du;(t) = exp(—|t|P)dt/Z,, this limiting measure is, after isometric
identification of Ru,, and R,

n
t P\ dt t
e (=2 | =) g = (-]
2|5z, e

This measure is the law of n? ~»Y where Y is distributed according to py. Therefore its

Pu#l'

p) dt
Znp

variance is nlf%Var(Y) and its Poincaré constant is n' = Cp (Py). For p > 2 this tends to
infinity with the dimension. This growth of the variance in some directions is related to the
counterexample in Remark after Theorem [[7, which in a sense corresponds to p = +00. The
behaviour is very different if we start from Gaussian mixtures, as explained in Theorem

Remark. When the functions V; are strictly uniformly convex in the large, one can obtain
Poincaré inequalities for small perturbations thanks to a method developped by Helffer, see
e.g. [I7]. His approach can be thought of as a variant of the Brascamp-Lieb inequalities
where strict convexity is replaced by uniform spectral gap for restrictions to coordinate
lines. More precisely, if du(z) = e~ (®)dz, consider for x € R™ and i € {1,...,n}, the one
dimensional probability measure
dp|p1re, (1) = 7 XD ( —V(z1,.. ., @io1,t, g1, - - ,xn)) dt,
()51
where (e;)7; is the canonical basis of R”. Then for each z € R", define the matrix K (x)
by
K(:L') e 1/CP(,U/\:£+R6-;) wheni = ja
“ szV(x) wheni # 7.
If for all , K(x) is positive definite then for all smooth functions f, it holds Var,(f) <
J(K='Vf,V f)du. In particular, if for all z, K (2) > eld then Cp(p) < L.
In our setting of the measures p™*, the restrictions to coordinate lines are simple (for
notational simplicity we present only what happens for z + Rey):

dt
Z(%')JZZ

If Vi = Uy + Bi, where U; is strictly uniformly convex (U1”(t) > 1/¢; > 0) and By is
bounded, then (™), ke, can be viewed as a bounded perturbation (by By) of the strictly
—U;

A" ey (t) = €V Dp(t, 9, )

uniformly convex measure e Up(-, xo,...,2,)/Z (this is where the log-concavity of p is
used. Note that no symmetry assumption is needed). It follows from the Brascamp-Lieb
inequality and Proposition [ that for all z,

Cp(Mztre,) < 19581,

This type of uniform bound allows to get Poincaré inequalities for u™* provided the non-
diagonal terms of the Hessian of — log p are small enough, thanks to Helffer’s result. This is
especially simple to achieve when p = e~® where Q is a small quadratic form. We refer to
Theorem 4.1 in [15] for weaker hypotheses on B allowing similar results.
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4 Application to convex sets

Given a non-empty compact convex set K C R%, we denote by Mg the uniform probability
measure on K (which we may consider in the natural dimension of the affine span of K).
Also let B) := {z € RY; [|z[|, < 1} be the unit ball of £,. Recall from Section 2.2 that
Cp(u, “linear”) = ||Cov ()| op denotes the smallest constant so that the Poincaré inequality
is satisfied for all linear functions with respect to the measure p.

Theorem 25. Letn >d > 2 andp € [1,2]. Let E be any linear subspace of R™ of dimension
d, then

2_1
Cp(AgrnEe) <c (g) ’ log(n)2/pCP(/\BgﬂEa “linear”),

where ¢ is a universal constant. In particular, if d > n/2 then for some universal constant
d, Cp ()\BS,QE) < log(d)*Cp ()\BS,QE, “linear”).

This result will be deduced from the ones of the previous sections, thanks to a result of
Kolesnikov and Milman [22], which allows to transfer Poincaré inequalities from log-concave
measures to some of their level sets. The next statement is a combination of Theorem 2.5
and Proposition 2.3 in [22].

Theorem 26 ([22]). Let du(z) = exp(=V(z))dx be a log-concave probability measure on
RY, with minV = 0. Then there exists t > 0 such that the set K := {z € R4V (z) < t}
verifies

1. Cp(Ag) < C-Cp(p) -log (e + Cp(u)\/a),

2. Cp(Ak, “linear”) > ¢ >0,

where C, ¢ are universal constants.

We shall also need a stability result of the Poincaré constant under convergence of mea-
sures. For ¢ : R™ — Rwrite ||¢||Lip = sup,, [¢(x)—¢(y)|/|z—y| for its Lipschitz seminorm.
According to E. Milman [27], for any log-concave probability measure p on R™,

c1/Cp(p) < sup /l@_Eu,ga|dN§02\/CP(M)

lellzipst
where ¢1,Cy > 0 are universal constants and E,, , = [ odpu.

Proof of Theorem[24. For i = 1,...,n we set du;(t) = dvp(t) = exp(—|apt|’)dt, where
a, = 2I(1+ 1/p) € [/7,2]. These measures are even and log-concave, and their density at
0 is equal to 1. By Theorem [24] for any even log-concave (and normalized) perturbation p,

2-p

Cp(u™*) < Clogn) 5" (20)

where C' is a universal constant. Indeed, since the scaling coefficient oy, has the order of
magnitude of a universal constant, it may be absorbed in the universal constant C'. We
apply (20) when p = p. is the normalized indicator of an e-neighborhood of the subspace
E. The family of measures p™ < tends weakly, as € — 0, to the measure ji on the Euclidean
space E (that we identify to R?) with density exp(—|lapz||h)/ZE, where

Z :/ exp(—|a,z;|P)dF z 21
B Eg (—lapzi[”) (21)

is the integral over E of the density of (v,)". We claim that

2

Cp(ji) < 2C(logn) 7. (22)
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Indeed, otherwise there exists a smooth ¢ : E — R with Varz(¢) > 2Clog(n) - [ [Ve|?df.
By multiplying ¢ with a slowly-varying cutoff function, we may assume that ¢ is compactly-
supported in F (the argument is standard, see Section Bl below for details). We set f(z) =
©(Pgx), where Pg is the orthogonal projection onto £ in R”™. Then as ¢ — 0T,

Varys () — Varg(p) and [ [97Pdumo — [ VP

in contradiction to (20). This completes the proof of (22). In order to apply Theorem [26]
we need to rescale fi. Let Y a random vector on E with law i, then for A > 0 the random
vector \Y has a distribution of density on F given by

exp < Hapr —log(Zg) dlog()\)> .

This suggests to set A\g := Zgl/d.

exp(—|lopx/Ag|E)dE on E verifies

For this choice, the probability measure u(dx) =

Op(i) = \5Cp () < A5C(logn) 7 = CZ5 % (logn) 7.

In order to bound the latter quantity from above, we need a lower bound for Zg, as defined
in (2I). This can be done by general results on sections of isotropic measures. More precise
bounds were obtained by Meyer and Pajor [26] in their investigation of extremal volumes
of sections of By (they observe that Zp = Vola(BJy N E)/Volg(Bg)). For our purpose, a
simple bound based on the inradius of B is the most effective: since p < 2, for any = € R”,

|||, < 77~ % |z, thus

Zp = / exp ( — [lagpz||B) dfz > / exp (— Hn%_%apzﬂg) dfz.
E E

The later integral takes the same value for all d-dimensional vector spaces F. Therefore

Zo > [ exp (= n¥bayalf) do
Rd

+OO 1 1
= Voly(BY) / dri=texp (— (n¥ 2 apr)P)dr
0

+00de 1eXp(*Sp)dS Nz dF(1+Z)
iVOId(BQ) T 1 a = 1 I‘(1+ d)
(n?Fay) nta,

For z large, I'(1 + )% ~ x/e, we get that for some numerical constants ¢, ¢,

2, 21 d 2
_2 a-ne = ny\ 1
zph < M _h o (n)
T (i); d
pe

This leads to 2_q
<o (M) ogm .
Cr() <€’ (5)" (togn)

Applying Theorem 28] to p provides t > 0 so that the set K := {z € E; [|apz/Ap|lh <t} =
agl)\Et% (Bg N E) verifies
2_

2 71 2_
Cp(Ak,) < CC (g) *" (logn)3log (e el (g) (logn)? WE) Cp(Ap, “linear”)

2_1 5
<c” (g) " log(n)?Cp(Aky, “linear”).
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Since the constants Cp(-) and Cp(-, “linear) are both 2-homogeneous with respect to dila-
tions of the underlying measure, we get the claim

2

1 n\» 1 2 “iz Ch)
CP()\B}T?LQE) <C (E) 1og(n)PCp()\Bng, linear™).

Corollary [ of the introduction clearly follows from Theorem

5 Appendix: approximation results

5.1 Density of test functions

Let p be a log-concave measure on R™. We assume that the support of p is not contained
in an affine subspace of lower dimension, as otherwise, we may just work in the lower
dimensional subspace. Hence p is of the form p(x)dz where p is a log-concave function. Let
Q be the interior of the support of u. It is convex and non-empty (assuming that u is not the
zero measure). The function p is positive on Q and vanishes outside of 2. Write C2°(Q) for
the space of smooth functions, compactly-supported in . By definition, H* (2, u) = H* (1)
is the set of (equivalence classes of) functions f in L2(u), for which there exist functions
gi € L?(u) such that for all 1 <4 <n and for all p € C°(Q),

[ os@rsta)is = - [ ooy da.

Classically, g; is called a weak partial derivative of f (viewed as a function on ). The weak
gradient (g;); is simply denoted by V f and

17y = \/ | e [ vsian (23

The following basic result will be useful:

Proposition 27. Let u be a log-concave measure on R™. Then the set C°(R™) is dense in
H ().

Several textbooks are dedicated to the study of density of smooth functions in weighted
Sobolev spaces (see e.g Kufner [23]), and they consider more difficult situations. Neverthe-
less, we found it hard to spot a reasonably self-contained justification of the above propo-
sition. This is why we include an ad-hoc proof, which relies only on very basic facts about
density of smooth functions in H} (2, dz) (see e.g. [I4, Chapter 5]). Local approximation
in any compact subset of € is easy, since on such a subset p is upper bounded, and bounded
away from 0, hence the result for the Lebesgue measure applies. To derive approximation
up to the boundary, one usually approximates f by functions which are defined somewhat
outside of €2, on which local approximation applies up to the boundary. To build such func-
tions, when the boundary of 2 is regular enough, one usually proceeds by local translations
of f. In our case, since (2 is convex, a single global dilation does the job.

Proof of Proposition [27 Let us set some more notation. Our problem is invariant by trans-
lation. Hence we may assume that the origin 0 € 2. The latter being open, there exists
r > 0 such that B(0,7) C Q. Let f be an arbitrary function in H!(x). Our goal is to build
compactly-supported smooth functions which are arbitrarily close to f in the H'(x) norm.

We first reduce matters to functions f with compact support in R™. Indeed, given a
general f € H'(p), consider a bump function 6 : R™ — [0, 1] which is infinitely differentiable
and such that 6(z) =1 if x € B(0,1), while 6(z) = 0 if = ¢ B(0,2). For any integer n > 1,
define

f|n($) = H(x/n)f(x), z e R™
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It is supported in B(0,2n) and belongs to L*(x) since | f|,,| < |f|. By dominated convergence

1= Fnlogo = [ £ = 6Go/m)Pduta)
tends to 0 when n — +o0. Since 8; f,, = 0(-/n)0; f + L8,6(-/n) f,

1
10:f = Oifinll L2y < ~IFOOC/ P2y + 10:f = @i inl T2

also tends to 0 when n grows. Indeed, the functions 0;0 are uniformly bounded, and we may
apply the latter convergence of truncated functions to d; f € L?().

Lemma 28. The set C°(Q) is dense in L?(u).

Proof. By the above truncation argument, it is enough to approximate functions with com-
pact support in R™. Let h € L?(u) be with support in the open ball B(0, R) for some R.
By dominated convergence,

lim (fl(lfg)g - f)Qd,u =0.

e—0t

For £ > 0, the set Q= (1 —¢e)Q N B(0,R) is relatively compact in €, hence there exists
¢ > 0 such that ¢ < p(z) < 1 for all z € Q. Hence fl_.o € L*(u) also belongs to
the unweighted Lebesgue space LQ(Q, dz), in which it is classical that compactly supported
smooth functions are dense. Therefore there is a sequence g, € C2°(2) which converges to
J1(1—e)q for the L?(92, dx)-topology. Since p < % on 2, and all functions are supported in
2 the convergence also holds in the topology of L?(u). O

For f € L*(p) and a parameter § € (0,1) we introduce the dilated function fs5 defined
by

1
fg(l') = f((l — 5)$), RS mQ o Q.

These functions are defined outside of 2 but provide a fair approximation of f for small §:

Lemma 29. Let f € L?(p), with bounded support. Then for all § € (0,%), fs € L*(u) and
when & tends to 0, fs converges to f in the topology of L?(u).
If in addition, f € H'(u) then the convergence holds in the topology of H*(u).

Proof of Lemma[28 Assume that f is supported in B(0, R). Let us compute the squared
L? norm of fs:

/Qf((1 —)z) pla)de = (1 - 6)™" /(1_6)9 f(y)Qp(%)dy-

1-68
The log-concavity of p yields p(y) > p(lyfa) p(0)?. Rearranging gives

5
y ) - P\’
p(l —5) =, <p(0) -
Since p is upper-bounded on the compact support of f (see e.g., [9, Lemma 2.2.1]), there

exists a constant Cg such that for all y, f(y)Qp(%) < Crf(y)*p(y). Thus || fs]r2¢) <

2"Cr| fllr2w)-
For any € > 0, Lemma [2§] provides g € C2°(€Q2) (supported also inside B(0, R) as the
proof of the lemma shows) such that | f — g||z2¢,) <e. Then

If = fsllezqwy < If = gllzzgy + 19 = gsll 22w + lgs — Fsllz2(0)-
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By the above norm estimate |gs — fs]|z2(n) < 2"CRrllg — fllz2()- Moreover since g is
uniformly continuous, and gs as well as ¢ vanish outside of B(0,2R),

2
195 = 9172 = / |9(x) — g((1 = 6)z)|"du(z) < u(B(0,2R))wy(2R)?,
B(0,2R)
where wy denotes the modulus of continuity of g. Combining the above estimates gives
limsup || f — fs]lz2¢n) < (1 +2"Cr)e,
§—0t

for every € > 0. This proves the convergence of f5 to f.
Eventually, if f € H*(u), observe that

10 f = 0i(fs)ll L2y = 196f — (1 = 6)(0if)sll L2y < 010 f L2y + (1 = )N f — (Bif)sll 2wy
tends to 0 when & does, by the result that we just proved, applied to d;f € L?(u). O

We are now ready to complete the proof Proposition 271 As already explained, it is
enough to approximate an arbitrary f € H'(u) whose support is contained in B(0, R) for
some R. For § € (0,3), we consider the dilated function fs defined on (1 — §)~'Q. The
last ingredient is regularization by convolution: let n : R® — R™ be a standard mollifier,
meaning 7 is of class C*°, n(z) = 0 if |z| > 1 and [n(z)dx = 1. For ¢ € (0,1), consider n°

defined for x € R™ by
T

() = 6’"n(g),
and the convolution fs*n°. Observe that fs € HY ((1—6)7'Q, dz). Indeed for any compact

Kc (-4,
25 (1_ s\-7n 2 2 2
/ng(z) de = (1-19) /(1—5)Kf(z) dzx < CK/(1—5)Kf pSCK/f dp < +o0,

where we have used that p attains a positive minimum on the compact set (1 — §)K C Q.
The same argument applies to the partial derivatives of f. Thus, according to [14, Theorem
1 of Section 5.3], fs * n° is well defined and infinitely differentiable on the set

U.i={w e (1-0)7'0; dist(z, ((1-9)7'Q)°) > £}.

Moreover when ¢ tends to 0, f5*7° tends to f5 in HL_((1—6)7'Q,dz).
As QN B(0,2R + 1) cC (1 —6)7'Q, we can deduce that when ¢ tends to 0, fs * n°
tends to fs in H* (Q N B(0,2R+ 1), dz). Taking into account the fact that fs and f5 *n®
vanish outside of B(0,2R + 1) and that the log-concave function p is bounded from above

in QN B(0,2R + 1), we can conclude that lim._,o+ || f5 * 7° — f5]/m,(u) = 0.
To approximate the orginal function f up to accuracy a > 0, we simply write

Ifs % n° — flla g < 1fs*n° = follarq + I1fs — flla ),

use Lemma 29 to find a J for which the last term is at most /2. Then we let € tend to zero.

Since B(0,r) C Q, the set U contains ((1—6)~'—£)Q when e < r(1—4§)~!. Consequently,
if ¢ < 6%(r(1 —8))~! then (14 6)Q C U.. So the above approximations of f are C°° on
a larger set than Q. Since they also vanish outside of B(0,2R + 1), we may modify them
outside of 2 in order to obtain functions in C'2°(R™). O

5.2 Proof of Lemma [I1]

This section is devoted to the proof of Lemma [[TI We may assume that the support of u
is not contained in an affine subspace of lower dimension, as otherwise, we may just work
in the lower dimensional subspace. Proposition is proven above under the additional
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assumption that p has a smooth density that is positive everywhere in R™. Our goal here is
to prove the inequality

Var, (f) <3 110if 171 (24)
i=1

in the case of a general, log-concave, finite measure p in R™, and a general function f € L?(u)
whose weak partial derivatives 9' f, ..., 9" f belong to L?(u) and satisfy [0 fdu = 0. Recall
the definition (23] of the H'(u)-norm, and that H'(u) is the space of f € L%(u) with
| fllz1(uy < oo. Recall from Proposition that the collection of all smooth, bounded,
Lipschitz functions u : R™ — R is dense in H!(u).

Next, we claim that both the left-hand side and the right-hand side of ([24]) depend
continuously on the function f with respect to the H(u)-topology, as long as we keep the
constraint [ 8; fdu = 0 for all i. Indeed, the H'(y)-norm is stronger than the L?(u)-norm,
and hence Var,(f) is continuous in f with respect to the H'!(u)-norm. As for the right-hand
side of ([24)), by inequality (@) above,

105f = Bif 1) < Cow10if = i fll 2y < Coplw)If = Fllerr -

It therefore suffices to prove (24]) under the additional assumption that f is a smooth func-
tion, bounded in R™ together with its first partial derivatives, such that [ fdu = 0 and also
JOifdp=0fori=1,...,n.

Lemma 30. Let p be a finite measure on R™ whose density p is log-concave. Then there
exists a sequence of functions (pr)k>1 with the following properties:
(i) For any k, the function pi : R™ — (0,00) is a smooth, everywhere-positive, integrable,
log-concave function on R™ such that p < pi pointwise.

(ii) Write S C R™ for the interior of the support of u, which is an open, convex set of a
Sfull p-measure. Then pr — p locally uniformly in S.

(iii) For any measurable function ¢ : R™ — R that grows at most polynomially at infinity,

k—o0
/ Ppr — Pp-
n RTL

Lemma[30 will be proven shortly. We apply the lemma to x and denote by j; the measure
whose density is pi. Let 0 € R™ and ai € R be such that fi(z) = f(x) + (O, x) + ax
satisfies

fkdﬂk = 0, and alfkd,u,k =0 (Z = 1, ceey TL)
RrR™ R™
We deduce from Item (iii) of Lemma B0 that 6 and «y tend to zero as k — oo. It also
follows that
Var,, (fr) "= Var,(f).

All that remains in order to complete the proof of Lemma[ITlis to prove that fori =1,...,n
and g = 0'f,
lim sup 19 = Ex (@l a1 (u) < 9 = B[ -1)- (25)
— 00

where Ey(9) = [gn 9dpe/px(R™) and E(g) = [ gdp/p(R™). We will actually prove (25) for
any bounded function g : R™ — R. Normalizing, we may assume that sup |g| < 1. Let € > 0.
It suffices to prove that

HinsupHg_Ek(g)HH’l(uk)SHg_E(g)||H*1(u)+25' Cp(u)+sngP(uk) - (26)
—00

Indeed, sup, Cp(ur) < oo (see [6]). Let T C S be a compact, convex set with

p(R™\ T) < 2 /4.
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Then there exists ko such that ug(R™\ T) < £2/4 for all k > k. Define h = g - 1 where 17
is the characteristic function of T', which equals one in T and vanishes elsewhere. Then for
all k > ko,

lg — E(g) = h+ E(h)||z2(,) <& and also |lg— Ex(g9) — h+ Ex(h)|| 120, < €.

In view of (@) above, we see that (28] would follow once we prove that
i 50p [ = B0 -3y < = B -3 (27)
—00

However, h is supported in the compact set T C S, where S is an open set in which p is
positive. The convergence of py to the density p is uniform in 7. For &k > 1 let uy : R — R
be a locally-Lipschitz function in L?(ug) with [5, [Vug|*dpy, <1 and [urdpr = 0 and

1
||h — Ek(h>HH*1(,uk) < E +/]R hukduk.

Since pi > p, necessarily [ |[Vuy|?du < 1. Therefore,

Hh*E(h)”Hfl(#) 2/ hukdu:/hukdukJr/huk(pfpk)
n T

1 supp|pe —p|
> ||h7Ek(h)||H*1(Mk) - k/’ lflfT Dk |uk|d/’Lk (28>

Note that supy |pr — p| tends to zero with &, while infr pj, is bounded away from zero for a

sufficiently large k. Moreover, ([, |uk|duk)2 < pk(R™) [on uidpe < supy, p(R™)Cp (i) <
oo. By letting k tend to infinity, we thus obtain ([27) from (28). This completes the proof
of Lemma [T1]

Proof of Lemmal30. Set ip(x) = —logp(z) for x € S and ¢(x) = +oo for © ¢ S. The
function v is convex in R™, and the integrability of e~% implies that there exists A € (0,1)
and B > 0 such that

Y(x) > Alz| — B for all z € R"™. (29)

See, e.g., [9) Lemma 2.2.1] for a quick proof. For k > 1 denote

Yr(z) = Inf [ (y) + K|z —yl] for z € R™. (30)

The function z/;k is a Lipschitz function in R™, being the infimum of a family of k-Lipschitz
functions. It is also convex, since it is the infimum-convolution of two convex functions (see,
e.g., Rockafellar [30, Section 5]). Clearly 9 < ¢. From (29) and (B0), for any k¥ > 1 and
r € R™,

di(a) > inf [Aly| + klz —y| - B] > inf [Aly| + Ale —y| - B] > Ajz| - B.  (31)
yeSs yeS
Fix a smooth probability density 6 : R® — R supported in the unit ball B(0,1). Write

Oc(z) = e "0(x/e) and define }
’lﬂk = ’lﬂk * 91/k2 — 1//{3

The function vy, is still k-Lipschitz and convex, since a convolution preserves this properties.
We claim that ~ ~
Y — 1k < < b < pointwise in R". (32)

Indeed, since 1/3;C is convex and 62 is a probability density, by Jensen’s inequality,

U+ 1/k = * 0152 > Dr,
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which implies the left-hand side inequality in ([B2]). On the other hand, since Uy, is k-Lipschitz
and 6 2 is supported in the ball of radius 1/ k? centered at the origin in R,

Vi + 1/k = p 0142 < Uy + k/K* = Py + 1/k,

implying the inequality in the middle in ([B2]). This completes the proof of ([B2), as we have
already seen the right-hand side inequality in (32).

Let us now set pr, = exp(—1). Since ¢y is a smooth, convex, Lipschitz function, the
function pg is smooth, everywhere-positive and log-concave. It satisfies pp > p thanks to
B2). The integrability of pj follows from BI) and [B2), completing the proof of (i).

The function 4 is locally-Lipschitz in S since it is convex. It thus follows from (B0]) that
Uy, tends to ¢ pointwise in S, as k — 0o. According to [30, Theorem 10.8], the convergence
is locally-uniform in S. Since 1/3;C tends to ¢ locally uniformly in S, we learn from (32) that
also ¥y, tends to ¥ locally uniformly in S. Consequently, pr — p locally uniformly in S, as
stated in (ii). It remains to prove (iii). From (29), BI)) and 32),

pr(x) < ePH=AllL forall k> 1,2 € R™.
Hence the function |¢(x)|eBT1=41#] is an integrable majorant for the sequence of functions
(ppr)k>1 in R™. In view of Lebesgue’s dominated convergence theorem, all that remains in
order to prove (iii) is to show that pr, — p almost everywhere in R™. We already know that
pr — pin S. Since S is a convex set, its boundary has a zero Lebesgue measure. Thus, it
suffices to fix a point x € R™ which is not in the closure of S, and prove that

pr(x) 2. (33)

There exists € > 0 such that the ball B(z,¢) is disjoint from S. It follows from (23) and (30)
that ¢y (x) > ke — B for all k. From ([32) we thus learn that ¢y(z) > ke — B —1/k — 0

as k — oo. This implies [B3)), completing the proof of the lemma. O
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