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§1. Introduction

Let m,n > 1, and suppose we are given N points in R"*!. We regard m and n as fixed,
but N as arbitrarily large. Among all functions F': R” — R whose graphs pass through (or
near to) the given points, we would like to find one whose norm in C™(R") is of the smallest
possible order of magnitude. Also, we would like to know the order of magnitude of the C™
norm of such an F. In this paper and [20], we give algorithms to solve these problems, and

we estimate the resources required by an (idealized) computer to carry them out.

To state the above problems more precisely, we set up some notation. Let £ C R" be a

finite set of cardinality

and let f: £ — R and 0 : E — [0,00) be given functions on E. Then we write || f||cm(g,0)
to denote the infimum of all M > 0 for which there exists F' € C™(R™), such that

(1) |Fllemmny < M, and |F(z) — f(z)| < Mo(z) for all z € E.

The case ¢ = 0 is natural, as it corresponds to the problem of extending the function
f: E — R toa C™ function on the entire R", with C™ norm of the smallest possible
order of magnitude. Here, as usual, C™(R™) denotes the space of all m-times continuously
differentiable F' : R™ — R, for which the norm
| F|lem®ny = max sup }8ﬁF(x)‘
[B|I<m gern

is finite.

In this paper we solve

Problem 1: Compute the order of magnitude of || f||cm(z,0)-

By “order of magnitude” we mean the following: Two numbers X,Y > 0 determined by
E, f,0,m,n are said to have “the same order of magnitude” provided we have cX <Y < CX,
with constants ¢ and C' depending only on m and n. To “compute the order of magnitude

of X” is to compute some Y such that X and Y have the same order of magnitude.
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In [20] we will solve

Problem 2: Compute a function F € C™(R"™) that satisfies (1), with M having the same

order of magnitude as || f||cm(g,0) -

To “compute a function F” means the following: First, we enter the data E, f, o into
a computer. The computer works for a while, performing Ly machine operations. It then
signals that it is ready to accept further input. Whenever we enter a point x € R", the
computer responds by producing an mt degree polynomial P, on R", using L; machine
operations to make the computation. We say that our algorithm “computes the function F”
if, for each z € R™, the polynomial P, produced by that algorithm is precisely the mt™ order
Taylor polynomial of F' at x.

We call Ly the “one-time work” and L; the “work to answer a query”.

Our algorithms will run on an idealized computer with standard von Neumann architec-
ture (see, e.g., [32]), able to work with exact real numbers. Thus, we ignore here roundoff,
overflow and underflow errors, although our discussion could be easily modified to take ac-
count of these issues. We suppose that an exact real number can be stored at each memory
address, and that it takes one machine operation to add, subtract, multiply or divide two
given real numbers x and y, or to compare them (i.e., decide whether x < y,x > y or x = y).
We also ignore here issues of parallel computation, although we believe that our algorithms

are well-suited to parallelism (see Callahan-Kosaraju [11]).

The “work” or “running time” of an algorithm is the number of machine operations
needed to carry it out, and the “storage” of an algorithm is the number of random access

memory addresses required.

Our results for Problems 1 and 2 are as follows. Recall that N is the number of points
in F.

Theorem 1: The algorithm to be explained below computes the order of magnitude of
| fllem(e,e) using work at most CN log N and storage at most CN, where C depends only on

m and n.
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Theorem 2: The algorithm to be described in [20] computes a function F € C™(R"™) that
satisfies (1), with M having the same order of magnitude as || f||cmg,s). The one-time work
of our algorithm is at most C'N log N, the storage is at most CN, and the work to answer a

query is at most C'log N. Here, C' depends only on m and n.

Formally, the model of computation we work with in Theorem 2, is slightly different
from what was described above. We require, in addition to comparisons and arithmetic
operations on exact real numbers, the operations of logarithm, powers of two, and rounding
a real number to the closest integer. As will be explained in [20], we do not “abuse” these
operations, which are standard computer operations in any programming language known
to the authors. For instance, suppose we switch to the common digital computer model, and
consider an instance of Problem 2 in which the values of f and o, and the coordinates of the
points of E, are S-bit numbers. Then the algorithm announced in Theorem 2 returns the
answer to an accuracy of ¢S bits, and never uses numbers - neither integers nor reals - in an
accuracy that requires more than C'S bits, for ¢, C' depending only on m and n. Details are
in [20].

The proof of Theorem 1, and a key idea in the proof of Theorem 2, will be given here.
The full details of the proof of Theorem 2, including the description of the algorithm, will
appear in [20]. In [20] we also deal with some variants of Problem 2, which are related to the
fact that F' in Problem 2 is not uniquely determined. For instance, given x € R", consider
the set of all Taylor polynomials at z of functions that satisfy (1), with M of the same order
of magnitude as || f||¢m(g,0). We show in [20] that given 2 € R™, an approximation to this
set can be computed in C'log N operations, after one-time-work of C'N log N operations and

CN storage. We also consider initial data of a different kind from F, f, o as above.

A significant feature of our algorithms is that they work for arbitrary (finite) £ C R",
f:E—R,o:FE —[0,00). Under simplifying assumptions on the geometry of the set £, it
is easy to give fast algorithms for Problems 1 and 2. A delicate case is indicated in Figure 1,
where £ C R? lies near the curve {Q = 0} for a low-degree polynomial Q. We take o = 0,
and we take E to consist of the dots in Figure 1. To solve Problem 2, we must be able to
determine P,, the Taylor polynomial of our desired C"™ function F' at the point = in Fig. 1,
given the values of F' at the points of E. Since all points of E lie close to {Q = 0}, a crude
algorithm may fail to distinguish between the hypotheses P, = P and P, = P + @ for a
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given polynomial P. However, we can make progress by means of the following idea. The
line segment joining the two nearby points y and z in Fig. 1 meets {@ = 0} at a not-so-small

angle. We write v for the unit vector in the direction y — z, and we approximate v - VF(x)

F(y)=F(z)

by v - VF(z), which in turn is approximated by —%=

Hence, hopefully v- VF(z) is well-approximated by something we can calculate from the
values of F' at points in F. This allows us to distinguish between the two hypotheses P, = P
and P, = P + (). However, the same idea works less effectively at the point w in Fig. 1,
because w lies too far away from y and z. This gives some idea of the issues relevant to
Problems 1 and 2 in a delicate case. We invite the reader to trace what our algorithms do

in the example sketched above. We return now to the general case.

Figure 1

This paper is part of a literature on the problem of extending a given function f : £ — R,
defined on an arbitrary subset £ C R", to a function F' € C™(R"). The question goes back
to Whitney [34,35,36], with contributions by Glaeser [22], Brudnyi-Shvartsman [5,...,10 and
28,29,30], Zobin [37,38], Bierstone-Milman-Pawlucki [2,3], Fefferman [13,...,19] and A. and
Y. Brudnyi [4]. Here, we take F finite, and we pose the question from the viewpoint of

theoretical computer science.

The following result from [14] will play a crucial réle in our treatment of Problems 1
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and 2. (See also Brudnyi-Shvartsman [8], whose earlier results and conjectures overlap with

those of [14]). We write P for the vector space of real (m — 1)™t degree polynomials on R".

Theorem 3: Given m,n > 1, there exists k, depending only on m and n, for which the

following holds.

Let E C R™ be finite, let f : E — R and 0 : E — [0,00) be functions on E, and let
M € (0,00). Assume that, given any S C E with #(S) < k, there exists a map y — PY,
from S into P, such that:

(a) [0°PY(y)l < M for la] <m —1,y € S;
(b) [0%(PY = P¥)(y)| < My — y'|"" 1! for|a| <m —1,y,y’ € S; and

(c) [P¥(y) = fy)l < Mo(y) for ally € S.
Then || fllem(g,e) < CM, where C depends only on m and n.

The converse of Theorem 3 is obvious. Also, for fixed S, the order of magnitude of
the smallest M satisfying (a), (b), (¢) above may be easily computed by linear algebra.
Consequently, Theorem 3 gives rise to an obvious algorithm that solves Problem 1 with work
CNF. Since k is a large constant determined by m and n, the obvious algorithm does far
too much work. Nevertheless, ideas in the proof of Theorem 3 will play a crucial role here
and in [20].

The proof of Theorem 3 in [14] is based on the study of a certain family of convex sets
Ki(x,k, M) C P. The sets K¢(x, k,m) help greatly in understanding || f||cm(g,0), but they

are hard to compute.

Here, we will introduce another family of convex sets I'(x, ¢, M), just as useful as the
ICs(z, k, M), but much easier to compute. In this paper, we define I'(z, ¢, M), prove its basic
properties, show how to compute it, and use it to solve Problem 1 by quoting Theorem 3. In
[20] we will solve Problem 2, by adapting the proof of Theorem 3, with I'(z, ¢, M) in place
of Ks(x, k, M). We explain this idea further in Section 9.

Our results, here and in [20], imply a refinement of Theorem 3 that allows an alternate

computation of the order of magnitude of || f||cm(g.0).
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Theorem 4: Given m,n > 1, there exist k,C', depending only on m and n, for which the

following holds.

Let E C R™ be finite, and let 0 : E — [0,00). Suppose #(E) = N. Then there erists a

collection S, consisting of subsets S C E, with the following properties:

(A) Each S € S satisfies #(5) < k.
(B) The number of distinct S € S is at most CN.

(C) Let f : E — R, and let M > 0. Assume that for each S € S there exists a map
y — PY, from S into P, satisfying (a), (b), (¢) from Theorem 3.

Then HfHCm(E,U) S CM.

(D) Moreover, the collection S can be computed from E, o, using at most C'Nlog N work
and at most CN storage.

Thus, instead of examining all k-element subsets S C E as in Theorem 3, it is enough to
examine the O(N) subsets S that belong to S.

Consequently, we may compute the order of magnitude of || f||cm(g,0) as follows. Given
E and o, we perform O(N log N) one-time work to produce the collection S. Having found
S, we can compute the order of magnitude of || f||cm(g,) for any given f : E — R, with work
O(N). The total storage needed is O(N). The proof of Theorem 4 is given in [21].

In the special case m = 1,0 = 0, Problem 1 amounts to computing the order of magnitude
of the Lipschitz norm of a given function defined on a finite subset of R™. An essentially
optimal solution of this problem is contained in the work of Callahan and Kosaraju [11] and
Har-Peled and Mendel [23]. The paper [11] strongly influenced ours, as the reader will see
below. We would like to thank A. Naor for pointing us to the relevant computer science
literature, and to A. Razborov for useful discussions on models of computation, which we
will treat further in [20].

We are grateful also to Gerree Pecht for TEXing this article to ever-impeccable “Gerree

standards”.
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§2. The Plan

First, we present a “pedagogical algorithm” that solves Problem 1 with running time

C'N?; then we give a more sophisticated variant with running time C'N log N.

The idea behind our pedagogical algorithm starts with the following elementary remarks.
Suppose F € C™(R"). Let M > 0 be an upper bound for ||F||cmgn), and suppose that
|F(z) — f(x)] < Mo(x) for all z € E. Let x € E, and let P = J,F denote the (m — 1)t
degree Taylor polynomial of F' at the point . Then,

(1) |0°P(z)| < M for |a] < m —1; and |P(z) — f(z)| < Mo(x).

Moreover, suppose &’ € E is another point, and let P’ = J F, the (m — 1)=t degree Taylor

polynomial of F' at /. Then Taylor’s theorem gives
(2) |0(P — P')(z)| < CM|x —2'|™ 1 for |a] < m —1.

Here and below, C' denotes a constant depending only on m and n.

To exploit these remarks, recall that P was defined to be the vector space of all
(real-valued) (m —1)=t degree polynomials on R"; and we define a family of (possibly empty)

convex subsets X(x, ¢, M) C P by the following induction on ¢:

For (=12 € E, M € (0,00), we define
(3) X(z,1,M) = {PeP:|0*P(x)| < M for |o| <m—1, and |P(z) — f(z)| < Mo(z)}.

For ¢ > 1, suppose we have already defined the sets ¥ (z, ¢, M) for all x € F and M € (0,00).
Then, for any z € E and M € (0,00), we define

(4) YX(z, 0+ 1,M) = {P € P : For each 2’ € E, there exists P’ € X(2', ¢, M),
such that [0%(P — P')(z)| < M|z — 2/|™ 1 for |a| < m — 1}.

Then observations (1),(2), and an obvious induction on ¢, show that J,F € X(x, ¢, CM) for
each x € F, ¢ > 1. In particular,
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(5) Whenever M > C' - || fllcm(p.0), we have X(z, ¢, M) # ¢
for all ¢,x. (As usual, ¢ denotes the empty set.)

Conversely, for an ¢, > 1, depending only on m and n, the following holds:

(6) Let M > 0, and suppose that X(x, ., M) # ¢ for all x € E.
Then Hchm(Ep) S C-M.

We will prove (6) in Section 8 below, by reducing it to Theorem 3 from Section 1. From (5)
and (6), we see that

(7) I fllem (o) has the same order of magnitude as
inf {M > 0: X(z, L., M) # ¢ for each z € E}.

The idea of our pedagogical algorithm is to compute an approximation to the size and
shape of the convex sets X(z, (., M) by an adaptation of the induction (3), (4); and then
to read off the order of magnitude of || f||cm (g, from (7). In the next sections, we explain

more precisely what this means, and how to carry it out.

§3. The Data Structures

In this section, we define the basic data structures used to specify the “approximate size
and shape” of the convex sets Y (z, ¢, M) and of similar sets. Let V' be a finite-dimensional
(real) vector space. A “blob” in V' is a family K = (Kjs)n=0 of (possibly empty) convex
subsets Kj; C V, parametrized by M € (0,00), such that M < M’ implies Ky, C K.
The “onset” of a blob I = (K)o is defined as the infimum of all the M > 0 for which
Ky # ¢. (If all Ky, are empty, then onset K = 400.)

For fixed x € F, ¢ > 1, the family of sets (X(z, ¢, M)) o from the previous section forms
a blob in P, which we call X(z,¢). In the language of blobs, the fundamental result (7) from

the previous section becomes

(0) || fllcm(g,0) has the same order of magnitude as

max{onset 3(z,(,): x € E}.
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Suppose K = (Ky) =0 and K' = (K;)m=o0 are blobs in V, and let C' > 1 be a constant.
We say that I and K’ are “C-equivalent” if they satisfy Ky, C K, and K); C K¢y for all
M € (0,00). Note that, if  and K" are C-equivalent, and if K" and K" are Cs-equivalent,
then K and K" are C - Cy-equivalent. Note also that, if K and K" are C-equivalent, then

(1/C) - onset K < onset K" < C- onset K.

Rather than dealing with the exact blobs 3(z, /), we will be satisfied with having a
computerized representation of blobs which are Cy-equivalent to X(z, ¢), for a constant CY
that depends solely on ¢,m and n. There are several data structures that suit our needs.

Two of these, that are not necessarily optimal from practical aspects, are described here.

The first class of blobs we focus attention on, consists of those given by “Approximate
Linear Algebra Problems”, or “ALPs”. To define these, let Ay,..., Ay be (real) linear func-
tionals on V', let by, ..., by, be real numbers, let oy, ..., 0 be non-negative real numbers, and
let M, € [0,400]. We call

(1) A= [(/\1,...,)\L),(bl,...,bL),(O'l,...,O'L),M*]

an “ALP” in V. With A given by (1), we define a blob K(A) = (Kp(A))p=o in V, by
setting

(2) Kpy(A)={v eV |hw)—b| < M-o,for ¢ =1,...,L} for M > M,, and

(3) Kn(A) = ¢ for M < M,.
(Our definition (2) motivates the use of the phrase “approximate linear algebra problem”.)
We allow L =0 in (1), in which case (2) says simply that Ky (A) =V for M > M,.

An “ALP” is intermediate in generality between a linear algebra problem and a linear pro-
gramming problem. Unlike a general blob, an ALP is specified by finitely many (real)
parameters, and may therefore be manipulated by algorithms. ALPs will be of great use in

[20], where their implementation details will be discussed.

In this paper, we will mostly work with the “Ellipsoidal Blobs”, which are blobs defined

by certain linear and quadratic constraints. For our purposes, there is no difference at all
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between ALPs and ellipsoidal blobs - except for the fact that the implementation of ellipsoidal
blobs requires the operation of a square-root of a positive real number, while ALPs need only
addition, subtraction, multiplication and division. The algorithms presented here may be
easily converted to ALPs (as is in fact described in [20]), and our results here are valid also
in the restricted model of computation, without square-roots. The reasons we discuss here
ellipsoidal blobs, are that the basic operations on them are easier to describe, that they are
perhaps more useful from a practical viewpoint, and that the competing, elementary, ALPs
will be discussed in [20].

To define ellipsoidal blobs, let 0 < L < dimV be an integer, A1,..., A\r be (real) linear
functionals on V| b, by, ..., by non-negative numbers, xo € V and let ¢ : V — [0,00) be a

non-negative quadratic form. We call a blob of the form I = (K)o for
(4) Ky ={veV:qv—mx9)+b< M N(v)=byfor £ =1,...., L}

an ellipsoidal blob in V. Note that possibly K, = V for all M > 0, and possibly Ky; = ¢
for all M > 0. An ellipsoidal blob is specified by no more than 2(D + 1)? real parameters,
with D = dim V; thus the amount of storage it consumes is just a constant depending on
D. Computing the onset of an ellipsoidal blob is a standard linear-algebra task, that may

be performed in C'D? operations.

To “compute the approximate size and shape” of the ¥(x, ¢, M), and of other convex sets,
we will exhibit ellipsoidal blobs, which are Cy-equivalent to the blobs induced by those sets,
for a constant Cy depending only on ¢, m and n. We will construct such ellipsoidal blobs in
Section 4 and Section 6. Here, we prepare the way by discussing two elementary operations

on blobs in general, and on ellipsoidal blobs in particular, that will be used in the algorithm.

First, suppose that ¥ = (K¥%,)um=0 is a blob in V|, for each v = 1,2,..., N. Then we
define the intersection ! N --- N KV by setting

Kro--nkKY = (Ky NN Ky aso-

If each K% is an ellipsoidal blob, then the intersection need not be an ellipsoidal blob. Recall
that D = dim V. In this section, C, C’, etc. denote constants that depend only on D, whose
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value is not necessarily equal in different appearances. Next, we will describe an algorithm

for computing, in CN operations, an ellipsoidal blob which is 8 D-equivalent to K!'N---NKCY.

Assume that the ellipsoidal blob K" is specified by 0 < L, < D, linear functionals
Al, ..., A7, real numbers b”, b7, ..., b7 , a vector xy € V and a non-negative quadratic form ¢”.
By Gauss elimination, we can compute in C'N computer operations, an integer 0 < L < D,

linear functionals Ay, ..., Az, and non-negative real numbers by, ..., by, such that
(4) Kyn..nK, ={v eV : max,—1__n¢" (v—a8)+b" < M? X\ (v) = by, ..., \p(v) = br}.

We fix some nondegenerate scalar product (-, -) in V. For each v, we find vectors e}, ..., e%, € V
such that
Vv eV, ¢’ (v) =2 (v, €f)%.

This may be done, using standard linear algebra in CN operations. Note that some of the

e/ may be zero. Then, for any v € V and v =1,..., N,

)2 < ¢’(v—1a¥) < Dmax;—;,_p{v—zf,e’)?.

14
7

(5) max;—1__p(v—af,e

Let K' = (K};)m>o0 be defined so that K, = 0) for M < max,—;__n Vb”, and

=1,...,

Ky, = {UEV D max (v —ag,el)| < M, )\1(0)2517---7&(“):%}

for M > max,—; N Vb¥. Then by (4), (5) and easy algebra, the blob K’ is 2v/D-equivalent to
Kn...nKN. Next, we will use Megiddo’s linear programming algorithm [27] to compute the
minimal M such that K, # (), to be denoted by M*. Using the same linear programming
algorithm, we may also compute a point xq € V such that xy € K},;.. The number of
operations required is CN. Let K" = (K};) =0 be the blob such that K, = () for M < M*,
while for M > M*,

Ky = {“e Vs max, (o= a0, £ M. M) = b, A(0) :bL}

(we replaced xf with xg). It is easy to verify that K" is 2-equivalent to X' and hence K" is
4v/D-equivalent to K' n ... N KY. Let T C V denote the convex hull of
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{xe?; v=1,..,N, i=1,...,D}. Next, we will compute the Léwner-John ellipsoid of T,
which is the ellipsoid of minimal volume that contains 7". In [12] an algorithm for that pur-
pose is described, based on Megiddo’s algorithm [27]. Denote by W the subspace spanned by
the vectors e/ (v =1,...,N, i =1,...,D), and let my : V' — W be the orthogonal projection
onto W, to be computed within C'N operations. The algorithm in [12] finds in C'N opera-
tions, the unique positive definite operator A : W — W that maximizes det(A) under the
linear constraints {(Ae,e¥) <1:i=1,..,D,v =1,..,N}. We now define a non-negative

quadratic form ¢ : V' — [0, 00) by setting q(v) = (A~ 'myv,v). According to a well-known
theorem of John [24], for any v € V|

(6) maxi=1,..0 (v,€e!)? < ¢(v) < Dmaxi=1,...o (v, e’ )%
N N

v=1,..., v=1,...,
We now define the ellipsoidal blob IC = (Kj/) =0, by setting
KM: {UEV : q(U—ZE0)+b§M2, Al(U):bl,...,)\L(U):bL}

where b is chosen so that onset K = M*. By (6), the ellipsoidal blob K is 2v/D-equivalent to
K", and hence K is 8 D-equivalent to K'N---NKY. Thus, we have described an algorithm that
computes, in C'N operations, an ellipsoidal blob K which is 8 D-equivalent to X' N --- NN,

The second operation we need is the computation of the Minkowski sum. Recall that for
A, B C V, the Minkowski sum of A and B is defined as

A+B ={a+b:a€ Abec B}.
Suppose that K¥ = (K¥;)mso is a blob in V| for v = 1,2. We define the Minkowski sum
K+ K? as
]Cl + ]C2 — (KJI\/I + KJ2\/I)M>0 .
Suppose now that !, K? are ellipsoidal blobs in V. The ellipsoidal blob KV is specified by

0 < L, < D, linear functionals A7, ..., A7 , real numbers b”, b7, ...,b7, a vector x5 € V and a

non-negative quadratic form ¢”. Then,
Ky + K3 = {vi+va : vy,0 €V, max{q' (v; — x5) + b', ¢*(vy — 23) + b*} < M?,

A (v,)=b forv=1,2and 1 <i<L,}.
We define a blob K' = (K;) =0 by
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(1) Ky = {vi + v vi,ve € Vog (o — ap) + ¢*(va — ag) + 01 + 0 < M2
N(v,)=0bforv=1,2and 1 <i<L,},

i.e. we replace the maximum with a sum. The blob K’ is v/2-equivalent to ' + 2.
Furthermore, K’ is actually an ellipsoidal blob, although (7) is not its standard description
as an ellipsoidal blob. The linear functionals, real parameters and non-negative quadratic
form needed for the standard representation of X' as an ellipsoidal blob, may be computed

in C' operations using straightforward linear algebra. We omit the details.

This completes our discussion on the implementation of ellipsoidal blobs. Note that the
above operations on blobs behave well with respect to C-equivalence. In fact, assume that
K1, ...,y are blobs in V' which are C-equivalent to K/, ..., Ky, respectively. Then trivially
Kin---N Ky is C-equivalent to K| N---N Ky and Ky + Ky is C-equivalent to K + K.

84. A pedagogical algorithm

In this section we will sketch a simpler, non-optimal, algorithm for computing || f||cm(z,0),
that arises from the induction (3), (4) in Section 2. We start with reformulating (3), (4)
from Section 2 in the language of blobs. Denote D = dim(P). For x € E, the blob ¥(z,1)
is v/D + 1-equivalent to the blob A, = (A 1/) a0, defined by

A;c,l,M = {P ep: Z‘a|§m_1|8aP(x)|2+ (M)Q < M2}

o(z) N
in the case o(x) # 0, and
Ay = {P cP: Z‘agm_l\@ap(x)ﬁ < M? P(z)= f(a:)}

in the case o(z) = 0. In both cases, the blob A | is clearly an ellipsoidal blob in P.

We will make frequent use of the following blobs: For any x € R", 6 > 0 we set
B(Jj‘,5) = (B(xa(sa M))M>Oa where

(1) B(z,6, M) ={P e P:|0°P(z)| < Ms™ Il for |a| <m —1}.

We will approximate B(z,d) with an ellipsoidal blob B'(z,d) = (B'(z,, M))y>o, defined as
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o 2
(2) B'(x,6,M) = {P €P: Saj<m-1 ('ﬁ;ﬁﬁ:?') < MQ} .
(If 5 = 0, then we just set B'(z,d, M) = {0}; this yields an ellipsoidal blob.) The ellipsoidal
blob B'(z,6) is v D-equivalent to B(x,d), for 2 € R",§ > 0. Recall the definition (4) from
Section 2; according to which, P € X(z, ¢+ 1, M) if and only if P € ¥(z,¢, M), and for each
y € B~ {z}, there is P' € ¥(y,¢, M) with P — P’ € B(x, |z — y|, M). Therefore, relation

(4) from Section 2 translates to

(3) Xz, 0+ 1) =%(x, )0 () [Z(y, )+ B(z, |z —yl])].

yeE~{z}

We will show by induction on ¢, that it is possible to compute for each x € E, an ellipsoidal
blob A , that is Cy-equivalent to %(x, ), for some constant Cy depending only on ¢, m and
n. This holds for £ = 1. Assume validity for ¢, and let us prove it for / + 1. Fix x € F.
Using the operations on ellipsoidal blobs discussed in Section 3, we may compute, in CN

operations, an ellipsoidal blob A’ ,,, that is 8v/2D-equivalent to

4 A0 N [A+ B |z —yl)].

yeE~{z}

Indeed, (4) involves the computation of N — 1 Minkowski sums and the computation of an
intersection of N ellipsoidal blobs. This requires C'N operations, and creates an ellipsoidal
blob that is 84/2 D-equivalent to the blob (4). Recall that D = dim(P) depends solely on
m and n. By (3) and the induction hypothesis, the ellipsoidal blob A, ,,; is Cy41-equivalent
to the blob X(xz, ¢ 4 1), for some constant Cy;; depending only on ¢, m and n.

The computation of A’ ,,, for a single x € E requires C'N operations. Given {A;yé}xe B
the computation of {A’M +1)zep thus requires a total of CN 2 operations. We conclude that
the total amount of work needed to compute the ellipsoidal blobs A;,e* for all x € FE, is
bounded by C'N?, where C'is a constant that depends solely on m and n. (Recall that £, is
the constant, depending on m and n, from (6) of Section 2.) By computing max{onset A’ , :
x € E}, in CN operations, we obtain a number that has the same order of magnitude as
max{onset X(z,/,) : x € E} which in turn, by (6) of Section 2, has the same order of

magnitude as || f||¢m(gs). This gives an inefficient algorithm, that computes the order of
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magnitude of || f|lcm(k,0); we have obtained an algorithm that requires C'N? operations,
rather than C'N log N.

Let us carefully examine the algorithm just described. After the ¢** iteration, for each
x € FE we have computed an approximation to the blob ¥(z, ), which represents candidate
Taylor polynomials of the desired C™ function at x. At the next iteration we go over all other
Y (y,¥), for y # x, and eliminate from X(x,¢) the Taylor polynomials which are inconsistent
with any of the ¥(y, £). There is some redundancy here: Suppose that y,z € E are close
points that are far away from z. Suppose also that the blob X(y, ) is already consistent
with 3(z, ¢), as sometimes happens. Then the information we collect from X(y, ¢), and the
information from ¥(z, ¢) regarding Taylor polynomials at z, are roughly the same. Therefore,
it is useless to compare X(x,¢) both with X(y, ¢) and with ¥(z, £); it is enough to consider
only one of them. Savings may arise if we group the points in some geometric way, and
compare only some of the pairs of the ¥’s rather than all pairs. This idea will enable us to

reduce the running time of the algorithm from CN? to CNlog N.

The basic technique we employ for grouping the points in clusters is the Callahan-
Kosaraju decomposition from computer science (see [11]). In the next section we summarize

the results of Callahan and Kosaraju.

§5. Callahan-Kosaraju decomposition

Some notation is needed. For A, B C R™ and x > 0, we say that A and B are “k-
separated” if
max {diameter(A), diameter(B)} < x distance (A, B)

where, of course, diameter(A) = sup, ,c4 |7 — y| and distance(A, B) = inf,ca yep |2 — y|.

A “proper box” in R" is a Cartesian product of intervals Q = I; x --- x I, C R™
Here, each I; may be open, closed, half-open, or a single point, but it must be bounded and
non-empty. For each of the I; of non-zero length, we may “bisect” @) into two proper boxes
Qr and Qg in an obvious way, by bisecting I; into a left half I7" and a right half I*. (To
avoid ambiguity, we place the midpoint of ; in [ JR) We say that {Qp, Qr} forms a “proper

bisection” of (). There are at most n proper bisections of a given proper box in R".
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A “cell” will be a subset of E of the form
A=FEnNQ

for some proper box () C R™. Recall that E is our set of input points. If A is a cell, then
we denote by Q(A) the smallest proper box that contains A, i.e., the intersection of all the

proper boxes that contain A.

Let 7 be a collection of subsets of F¥. For A C 7 we write

UA:UA:{x:xEAforsomeAEA}.

AeA

Let £ be a list of pairs (Ay, Ay) where A, Ay are families of subsets of E that belong to 7,
e, Ay, Ay C 7. For k > 0, we say that (7, L) is a “Callahan-Kosaraju decomposition of £

with constant k7, or a “k-CK decomposition” for short, if the following hold:

(1) Uy agec(UA1) X (UA2) = {(z,y) : 2,y € E,z # y}.

(2) If (A1, A2) and (A, A}) are distinct pairs in £, then

[(UA1) x (UA2)] N [(UAY) x (UAS)] = 0.

(3) UA; and UA, are k-separated for any (Aq, Ay) € L.

(4) #(7) < CN and #(L) < CN where C'is a constant depending solely on x and n.

In the computer science literature a CK decomposition is called a “Well-Separated Pairs
Decomposition” or “WSPD”. A k-CK decomposition as defined above is a pure mathematical
object. A k-CK decomposition (7, L) will be implemented in the computer, using a data
structure that satisfies the following properties (in these properties the letter C' stands for a

constant depending only on n and k):

(5) The amount of storage needed to hold the data structure is bounded by C'N.
(6) The following tasks require C'N log N operations and C'N storage:

(6a) Go over all A € T, and for each A produce the list of elements of A.
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(6b) Go over all (A1, A2) € L, and for each (A1, Ay) produce the elements (in 7') of Ay
and of As.

(6¢c) Go over all A € T, and for each A produce the list of all (A1, Ay) € £ such that
Ae .

(6d) Go over all z € E, and for each « € E produce the list of A € 7 such that z € A.

Producing a list of elements in £,7 or E, means outputting a list of indices or pointers
to the corresponding elements. The algorithms in (6) will have the following interface: The
first time we invoke one of them, say (6a), the output will be some node A € 7 together
with a list of its elements. The next time we call (6a), the output will be another A" € T,
together with the elements of A’, and so on, until the algorithm in (6a) signals that the entire
collection 7 was exhausted. We are guaranteed that the algorithm will go over all 7, and
exactly once over each A € 7. The total amount of time that the algorithm in (6a) requires,
to go over the whole collection 7, is C'N log N. The amount of storage that the algorithm
requires does not exceed C'N at any given moment, i.e. when computing the elements of a

set A € 7, we do not need more than C'N storage.

The algorithms in (6) use no more than C'N log N computer operations. This includes,

of course, the time needed to prepare the output. In particular, it follows from (6) that

(7) 2 asamer (FH(A1) +#(A2)) <CNlogN, 3,7 #(A) <CNlogN.

For a subset A C R", set

diamao(A) = v/n sup max |x; — vy,
z,yeA 1Sisn

the (o -diameter of A. (Here of course, z; and y; denote the i*" coordinates of x and v,
respectively.) Note that diam.(A) > diameter(A) > mmj\/‘}j(m for any A C R". We will
implement the data structure that holds the CK-decomposition of F such that,

(8) Given A € T we can compute diams,(A) within C' operations.
Given (A1, Ay) we compute diam.,(UA;) and diamy(UAs) in C operations.
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The following theorem is an adaptation of [11, Theorem 4.2], and is basically an expansion
of the remark after Theorem 5.3 in [11].

Theorem 5: There exists an algorithm, whose inputs are a parameter k > 0 and a subset
E C R™ with #(FE) = N, and that outputs a k-CK decomposition (T,L) of E such that
conditions (1),...,(8) are fulfilled. The algorithm performs no more than C'Nlog N opera-
tions and uses no more than C'N storage, where C' is a constant that depends solely on the

dimension n and on the parameter k.

Theorem 5 follows from the considerations in [11], together with some elementary com-
puter programming tricks. We devote the rest of this section to the proof of Theorem 5,

along the lines of [11].

Theorem 3.1 in [11] is the following result, which one might view as a Calderén-Zygmund

type decomposition of E.

Lemma 1: There exists an algorithm, whose input consists of the set E C R"™, and that

outputs a tree T with the following properties:

(a) The tree T is a binary tree. A node in T has either two children (“an internal node”)

or no children at all (“a leaf”).

(b) Each node of T' corresponds to a cell. We do not distinguish here between a node of T
and the cell A C E to which it corresponds.

(¢) The leaves of T are cells which are singletons. For each x € E there is a unique leaf
in T which is the cell {x}.

(d) The root of T is the entire set E.

(e) Let A be an internal node. Then there ezists a proper bisection of Q(A), to be denoted
{Qr,Qr}, such that the children of A are

AL:EQQL and AR:EQQR

The running time of the algorithm is no more than C'Nlog N, and the storage is no more

than C'N, where C' depends only on the dimension n.
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The proof of Lemma 1 appears in [11]. Note that the tree constructed in Lemma 1 is
not balanced, i.e. it might have branches whose length is much larger than log V. Next, we

quote the remarkable Theorem 4.2 from [11].
Theorem 6: Given a set E C R™ with #(E) = N, a parameter k > 0, and a tree T' that

satisfies (a)-(e), there is an algorithm that constructs a set L with the following properties:

(1) The elements of L are pairs (A, B) where A, B are nodes of T.

(2) Uuper AxB={(z,y) 2,y € E,x # y}.

(3") If (A1, By) and (As, B) are distinct elements of L then (A; x By) N (As x By) = 0.
(4") A and B are k-separated for any (A, B) € L.

(5") #(L) < CN where C depends solely on n and k.

The algorithm terminates after no more than C'N operations, where C depends only on the
dimension n and the parameter k. Obuviously, the storage needed is just C'N.

Proof of Theorem 5: Let T" be the tree computed in Lemma 1. Assume that for any internal
node A of T', the two children of A are labeled. One of them, denoted by Ay, is the left child,
and the other, Ag, is the right child. Recall that the leaves of T" are the N singletons {x}
for z € E. The tree T induces an order relation, called “inorder”, on the leaves (e.g. [25,

Section 2.3.1]). Let us describe it briefly.

Given z,y € E,x # vy, consider the node A in the tree which is the least common
ancestor of the leaves {z} and {y} in the tree. If {z} is a descendant of A, (and then {y}
is a descendant of Ag), we say that

T <y.
Otherwise, y < . Then < is an order relation. We order the N points of E according to
<, and denote the resulting permutation by y; < y2 < ... < yy. This permutation may be
computed in no more than C'N operations and storage (e.g. [25, Section 2.3.1]). We will

store the permutation in memory, i.e.,

e In the data structure for holding the CK-decomposition of E, we will store an ordered

list 41, ..., yn of the elements of F.
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Observe that any node in T is a cell of the form {y,, yut1, ...,y } for p < v. Let T denote
the set of nodes of a completely balanced binary tree on {yi, ..., yn}, defined recursively as

follows:

(i) The root of 7 is the set {y1,...,yn}.

(ii) For any node A = {vy,, Yu+1, ..., Yo}, if p = v then A will be a leaf. If i < v, then the
children of A are

AL = {yua 734%]} 7AR = {yL%J_Ha "'7y1/} .

Then #(7) < 2N — 1. Our data structure for holding the CK-decomposition of E will

store in memory the following items.

e The tree 7.

e For each node A = {y,, Y41, ..., ¥} of T, we will store the indices p and v.

For each A € 7 and 1 < i < n, we will calculate the numbers

m;(A) = rxneiglxi, M;(A) = max i,

that may be computed in C'N operations in a standard, recursive manner. The computation
of 7 requires no more than C'N storage and operations, excluding the work needed for the
creation of T'. Note also that the height of 7 is no greater than [log, N| + 1, and that for
any = € F, there are at most [log, N |+ 1 nodes of 7 that contain z. The implementation of
the task (6a) is very easy, and to implement (6d) we simply climb down the tree. We omit
the details.

The next observation, is that any interval I = {y,,¥y,+1, ..., ¥} may be expressed as the
union of at most 2 ([log, N 4 1) nodes of 7: These are exactly the nodes B € 7 such that
B is contained in the interval I, but the parent of B is not contained in the interval I. Given
indices 1 < v, such a union may be computed in less than C'log N operations, as follows:
Compute A, the least common ancestor of {y,} and {y,} in 7 (in C'log N operations). If
A=1={y,, ...y, } then we are done. Otherwise, go over the path from {y,} to A in 7,
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starting from {y,} and excluding A. Let A’ be the first node in the path which is not a left
child of another node in the path. Note that A" C I = {y,,...,y,}, but the parent of A" is

not contained in /. We mark the node A’.

Figure 2

Next, we go over the path from A’ to A, excluding A" and A. For each node B in the
path, if its right child By is not in the path, mark the child Bgr. Note that the marked
nodes are contained in /, yet their parents are not contained in /. Similarly, we go over the
path from {y,} to A, and mark A”, the first node in the path which is not a right child of
another node in the path. We then go over the nodes in the path from A” to A excluding
A" and A, and for each node, we mark its left child if the left child is not in the path. It is
straightforward to verify that I = {y,, y,+1, ..., ¥ } is the disjoint union of the marked nodes;

see Figure 2.

We invoke now the algorithm from Theorem 6, with the set E, the tree T" and x as
inputs. The outputted list is denoted by L. We will construct a modified list £ as follows:
For every (A, B) € L, we let A; and Ay be the subsets of 7 whose unions equal A and B
respectively, that were described in the previous paragraph. The list of all pairs (A;, Ay) we
obtain that way is the desired set £. Thus #(L£) < CN and #(A1),#(As) < C'log N for
any (A1, Ay) € L. Note that properties (1), ..., (4) follow from the corresponding properties

of L. We will represent £ in the data structure by storing the following items:
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e Two lists of the elements of L, one sorted according to the left endpoint of the interval

UA;, and one sorted according to the right endpoint of the interval UA;.

e For each (A1, Ay) € £ we store the indices of the endpoints of the intervals UA;, UAs.

Given (Ay, A2) € £, we may compute in C'log N time, the actual nodes of 7 that correspond
to Ay, A, and also the numbers diam,(UA;), diamy (UAs) (using m;(A), M;(A) that were
computed before). This completes the implementation of (6b). We will also store in our data
structure implementing the CK-decomposition the following data, to be computed within

CN log N operations:

e For each (A1, As) € L, we store diamq,(UA;), diam.(UAs). For each A € T we store
diamey(A).

Thus, the task (8) is easily implemented. Clearly, our data structure uses C'N storage and
(5) is satisfied. Thus, it only remains to implement (6¢). To that end, we go over all A € 7T,
except for the root (which is not contained in any A;). Fix A € 7 other than the root.
Say A is the child of the node B € 7. Without loss of generality, we may suppose that
A = Bp, the right child of B. We will use also By, the left child of B. We want to list all
the (A1, Ay) € £ such that A € A;.

Let (A1, As) € L be given. Recall that A, By and UA; are all identified with intervals.
Call these intervals [y, y4], [y, v5, | and [yy ,yx, ], respectively. Then it is straightforward
to check that A € Ay if and only if

(i) [ya,vAl C s, vx,), and

(ii) ¥z, < ¥y, in the order defined above

(because (i) and (ii) are equivalent to (i) A C UA; and (ii") B ¢ UA;). Therefore, we may
proceed as follows: Using binary search, we find all (A1, Ag) € 7 such that y, € (yz,,¥4]-
Among all these (A1, Ay), we output only the (A, Ay) € T such that yy is greater or equal
to y4. Note that the (Aj,Ay) € £ we output, are precisely those that satisfy (i) and (ii).
Hence we produced all (A, Ay) € L such that A € A;. The algorithm repeats this procedure
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for all nodes A € 7 other than the root. Each (A1, As) € £ was accessed at most C'log, N
times in the algorithm, as the number of nodes B € 7 such that y, € B or yj[l € Bis
at most 2([logy N| + 1). Including the binary searches, the total amount of work of the
algorithm for (6¢) is C'N log N, and the storage is C'N. This completes the proof. O

§6. The Algorithm

In this section we describe the algorithm promised in Theorem 1. We are given a set
E C R"™ of size N, and functions f : £ — R, 0 : E — [0,00). We start by applying

the algorithm from Theorem 5 to the set E with constant k = % The resulting x-CK

decomposition is denoted by (7, £). For each node A € 7 we pick a representative, a point
x4 € A. We also select, for each (A1, Ay) € L, points x5, € UAy, xp, € UAy. This is done
within C'N operations.

Rather than computing the blobs ¥(z, ¢), we will work with apriori different blobs, to be
denoted by I'(x,£) = (I'(x, £, M)) ;- For £ =1 we set

D(x,1,M) = X(z,1, M)
={PeP:|0°P(x)] < M for |o| <m —1, and |P(x) — f(x)] < Mo(x)}
for x € E and M > 0. Recall the definition of the blob B(x,d) defined in (1) of Section 4.
Having defined {T'(z,¢)},cp, we will now define I'(z, £ + 1) in five simple steps.
Step 1: For any node A € 7 we form the blob

D(A ) = (DAL M)ys0 = () [D(x,0) + Bz, diama(A))] .

€A
Step 2:  For any (A1, As) € L,i = 1,2 we form the blob

Di(Ai ) = (Ty(Ai, &, M) ars0 = [ D(A ) + B(aa, diame (UA;))] .
Ael;

Step 3:  For any (A, As) € L, we form the blob

f(AhAng) = (F(A17A27€7 M))M>0 = Fl(Alug)m[PQ(A%é) +B(‘r/\17 |x/\1 - ‘rA2|)] .
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Step 4. For any node A € 7 we form the blob

T'(AC+1) = (A L+ 1,M)ys0 = [ T(A1 Az 0).

A€y
(Ap,A0)EL

Step 5:  For any z € E, we set

T(x,0+1) = D@, 0+ 1,M))yso = Tz, 0)n () T'(A L+ 1),

€A
AeT

This finishes the mathematical definition of the blobs I'(x, ¢), for x € E ¢ > 1. The five
steps above suggest an obvious algorithm for the computation of ellipsoidal blobs A, , that
approximate I'(z,(); i.e. for any x € E,¢ > 1, the ellipsoidal blob A, , is Cy-equivalent to
['(x,£), where Cy is a constant that depends solely on ¢,m and n. Indeed, the blobs I'(z, 1)
and B(z,0) are C-equivalent to easily computed ellipsoidal blobs, as was described in Section
4, for C depending only on m and n. Assume ¢ > 1, and that we have already computed
ellipsoidal blobs A, for x € E, which are Cy-equivalent to the corresponding I'(x,¢). We
will follow the five steps above, using the operations on ellipsoidal blobs discussed in Section
3 (in an analogous way to the pedagogical algorithm from Section 4), and the operations on
the CK decomposition described in (6) and (8) of Section 5. Thus in five steps we compute
from the ellipsoidal blobs {A, ¢}.er the new ellipsoidal blobs {A; ¢+1}zer. The ellipsoidal
blobs {A; ¢41}zer are Cyii-equivalent to {I'(z, +1)},¢cp, for Cppy = C'- C; depending solely

on /,m and n.

Our algorithm computes the ellipsoidal blobs {A, ¢}.ep for £ = 1,...,¢,, for the same
number ¢, as in Section 2, which is a constant that depends solely on m and n. The

algorithm returns the number
(2) max{onset A, :x € E}

which may be easily computed, as was explained in Section 3, and that has the same order of

magnitude as max{onset I'(z,¢,) : € E'}. This completes the description of our algorithm.

How many computer operations are involved in the computation of {A; s41}zep from

{A.}zer? Recall that calculating the Minkowski sum of two ellipsoidal blobs requires C



Fitting a C™-Smooth Function to Data 25

operations, while computing the intersection of k ellipsoidal blobs takes C'k operations, for
C depending only on m and n. The amount of work in step 1 and in step 5 is thus bounded
by

> #(A) < CNlogN

AeT

by (7) from Section 5, where C' depends only on m and n. We also used property (6) from
Section 5, to produce the elements of all A € 7 in Step 1, and to find for all z € E the
set of A € T such that x € A. Step 2 requires no more than C'N log N operations, by (7)
from Section 5, where again we also use (6) of Section 5 to produce the nodes that belong to
Ay, Ay for all (Aq, Ay) € L. Step 3 takes C'N operations. For step 4, we need no more than

D #{(MA) €L A€ M}) <CNlogN

AeT
operations, by (6) and (7) of Section 5. In total, the number of operations for each iteration
is no more than C'N log N, where C' depends solely on m and n. The algorithm performs ¢,
iterations, each taking C'Nlog N operations, and then computes onset A(x,(,) for z € E,
a task for which C'N operations suffice. Thus the algorithm terminates after no more than

C'N log N operations, where C" depends solely on m and n. The amount of storage needed
is bounded by C'N.

It remains to prove (6) of Section 2, and also to show that max{onset I'(z,¢,) : x € E}
has the same order of magnitude as max{onset X(z,/,) : z € E}. Once we have established
that, Theorem 1 will follow from (7) of Section 2. The relation between the ¥’s and the I'’s

is the subject of the next section.

§7. Equivalence of algorithms

The first lemma describes simple properties of the blob B(x,d).

Lemma 1: Let x,y € R™. Then, for any a, M >0 and d > 0,

(1) B(z,6,M) C B(y,é + |z —y|,CM),

(2) B(z,a0, M) C B(z,d, max{a™, a}M).

for some constant C' > 0 that depends solely on m and n.
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Proof: Let P € B(z,d, M) be a polynomial. Then, for any || < m —1,
10°P(z)| < Ms™1ol,

By Taylor’s theorem

orre)l=| S Ty -0 <0 My <OM e — gl
|B|<m—1—|al B
and (1) is proven. (2) is immediate from the definition of B(z, ). O

Our next lemma shows that || f||cm(ge) is not smaller by an order of magnitude than
max{onset I'(z,/,) : x € E}.

Lemma 2: Let ' : R" — R be a function with ||F|cm@ny < M, and such that
|F(z) — f(x)] < Mo(z) for x € E. Then for any integer £ > 0 and x € E,

(1) J,F €T(x,0,CoM).

where C, depends solely on £, m and n.

Proof: By induction. For ¢ = 1 we trivially have that J,F' € I'(z,1,CM). For the inductive
step, suppose Lemma 2 holds for a given ¢. We will prove Lemma 2 with ¢ + 1 instead of /.
Note that || F||cm@n)y < M implies that for any z,y € R”,

for some constant C' that depends solely on m and n. Let x € E, and let A € 7 be such
that © € A. For any y € A we have that |z —y| < diams(A). By (2),

J.F € J,F + B(y,diams(A),CM) C I'(y, ¢, C;M) + B(y, diamu(A), CM)

because J,F' € I'(y, ¢, CyM) by the induction hypothesis. According to Step 1 in our algo-

rithm,

(3) J.F € I'(A, ¢, max{C,Cy} M)
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for all x € E,A € T such that + € A. Move now to Step 2. Let x € E, and let
(A1,As) € L,i=1,2 be such that x € UA;. For any A € A;, according to (2),

JoF — Jp (F) € B(xa,|x —xal,CM) C B(za,diamy(UA;), CM).
By (3) we have that J,,(F) € I'(A, ¢, max{C, Cy} M). Hence
JoF € Jp (F)+B(xa, diame(UA;),CM) C I'(A, £, max{C, Cy} M)+ B(z 4, diam (UA;), CM),

and consequently
(4) JIF € Fz(Aza g, maX{C, Cg}M)

whenever © € UA;. Next is Step 3. Let (A1, Ay) € £ and x € UA;,y € UA,. Since (7, L) is
a +-CK decomposition, we have that 3|z —y| < |z, — za,| and that |z —zx,| < |2zs, — Tp,|-

Therefore
J.F — J,F € B(xz,|v —y|,CM) C B(x, |zp, — 2p,],2"CM) C B(xa,,|Ta, — Tay|, C'M)

for some constant C’ depending only on m and n, where we used Lemma 1. By (4) we have
that J,F € I'y(As, £, max{C, C;} M), hence

JoF € Ty(Ag, £, max{C,Cy} M) + B(x,, |Tp, — 2p,|,C'M).
Comparing this result and (4) with Step 3, we see that
J;EF c F(Al, AQ, é, IHELX{C,, CE}M)

for any « € UA;. Suppose that A € 7,2 € A. If for (A1, Ay) € £ we have A € Ay, then
x € UA;. In this case, Step 4 entails that

JLF € U(A 0+ 1, max{C",C}M) = () T(Ay, Ay, ¢, max{C’, C(}M).

AcAq
(A1,A0)€EL

This, in turn, gives

J.F €T(x,(,CM)N (] T(A L+ 1, max{C’, C;}M) C T'(w, £ + 1, max{C’, C,} M) .
r€AET
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The induction step follows, with Cy,; = max{C’, C;}, and the lemma is proven. Note that

actually we may select Cy in (1) to depend only on m and n, and not on /. 0
Lemma 3: Let x € E and let £ > 0 be an integer, M > 0. Then,
[z, 0, M) C X(z,¢,CM)
where C'is a constant that depends solely on m and n.
Proof: By induction. The case ¢ =1 is easy, as
Y(z, 1, M) =T(z,1,M).

For the inductive step, suppose Lemma 3 holds for a given ¢, with some constant C' that will
be specified later. We will prove Lemma 3 with £ + 1 in place of ¢. Let P € I'(x,¢ + 1, M)
be a polynomial. Then also P € I'(x, ¢, M) C X(x,¢,CM) by the induction hypothesis. Let
x # 1’ € E. By (4) of Section 2, it is enough to show that there exists P’ € X(z/,¢,CM)
such that

(5) P— P € B(z,|x —2'|,CM)

Since (7,L) is a %—CK decomposition, there exists (Aj, Ag) € L such that x € UAj, 2" €

UAy. As P € T'(z,¢ 4+ 1, M), inspection of Steps 4 and 5 in the algorithm shows that
P € T(Ay, Ay, £, M). By inspection of Step 3, there exists a polynomial P € P such that

(6) P — P € B(xy,, s, — a,|, M) and P € Ty(Ag, £, M).
Let A € Ay be such that 2’ € A. Clearly |2/ — x4] < diamo(UAy). Recalling Step 2, we see
that
P e Ty(Ay, 0, M) C T(A, £, M) + B(xa, diamas(UAy), M)
C (A, 0, M) + B(2', 2diams(UAs), C"'M)
by Lemma 1, for C’ depending only on m and n. Recalling Step 1, we conclude that
P e (a0, M)+ B(z, 3diamss (UAy), C" M)

for a constant C” that depends only on m and n. Let P’ € I'(z/, ¢, M) be such that
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(7) P — P' € B(«', 3diamse(UAy), C" M)

for a constant C" depending only on m and n. By the induction hypothesis, P’ € ¥(a', ¢, CM).
Recall that, as (T, £) is a 3-CK decomposition, |zx, —zy,| < 2|z—2'| and also diam..(UAs) <
Vnl|za, — xp,|. Lemma 1, together with (6) and (7), implies that

(8) P—P' € B(z, |z — '|,CM)

for C' depending only on m and n. Note that C is a constant depending on m and n, which
is independent of ¢ and of the constant - that was not specified yet - from the induction

hypothesis. Hence we may select C' = C. Now (8) gives (5), and the lemma is proven. [

Using (6) of Section 2, we conclude from Lemma 3 that if T'(x, £,, M) # () for all x € E,
then || f||em(g,0) < CM for some constant C' that depends solely on m and n. Together with

Lemma 2, this shows that
(9) max{onset I'(z,¢,) : x € E}

has the same order of magnitude as || f||cm(z,0) (and also has the same order of magnitude as
max{onset X(x,¢,) : © € E}). The order of magnitude of the quantity (9) was computed by
the algorithm from Section 6, using C'N log N operations and C'N storage. This completes
the proof of Theorem 1, up to the proof of (6) from Section 2. This proof will be presented

in the next section.

§8. Proof of a key estimate

In this section, we complete the proof of Theorem 1 by establishing the key estimate (6)
from Section 2. We will reduce matters to Theorem 3 (from Section 1), which is one of the

main results in [14]. We will also use an elementary “clustering lemma” from [15].

Lemma 1: Let ¢ > 1, and let S C R™, with #(S) = {4+ 1. Then we can partition S into
subsets Sy, S1,...,S such that

» ~Vmax’

(a) #(S,) < ¢ for each v, and
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(b) distance (S,,S,) > c- diameter (S) for p # v, with ¢ depending only on (.

By induction on ¢ > 1, we will establish the following result.

Lemma 2: Suppose yo € E, £ > 1, M > 0, and P € X(yo,{, M). Then, for any S C E,
with yo € S and #(S) < {, there ezists a map y — PY from S into P, such that:

(A) PP = P;

(B) [0°P¥(y)| < CM for|af <m—1,y€S;

(C) [9*(PY — PV)(y)| < CM]y —y'["1* for || <m —1, y,y' € S; and

(D) [PY(y) — f(y)] < CMo(y) for ally € S.

Here, C' depends only on m,n, L.

Proof: For ¢ =1, we have S = {yo}. We take P¥ = P. Thus, (A) holds by definition, (B)
and (D) hold since P € ¥(yo,1, M), and (C) holds since y = 3 = y for y,y’ € S. This

proves Lemma 2 for ¢ = 1.

For the inductive step, suppose Lemma 2 holds for a given ¢. We will prove Lemma 2
with (¢ + 1) in place of ¢.

Thus, suppose P € X(yo, £ + 1, M), and let S C E, with yo € S and #(S5) <+ 1. We
must produce a map y +— PV satisfying (A),..., (D). If #(S) < ¢, then the desired map
exists, thanks to our induction hypothesis. Hence, we may suppose that #(S) = ¢ + 1. Let

d= diameter (S) > 0. We write ¢, C,C’, etc., to denote constants depending only on m,n,
and /.

By Lemma 1, we may partition S into non-empty subsets S, (0 < v < vyay), with the

following properties.

(1) #(S,) < ¢ for each v.

(2) yo € So.
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(3) distance (S,,S,) > cdif v # V.

For each v (1 < v < vyayx), pick y, € S,. Since P € ¥(yo, ¢ + 1, M), we know that, for each
v (including v = 0), there exists P, € X(y,, ¢, M) with

(4) [0°(P, = P)(yo)| < My, — yo|™ 1! for [a] <m —1.

In particular, for v = 0 we necessarily have
(5) Py =P.
For each v, we may apply our induction hypothesis to the point y,, the set S,, and the
polynomial P,, thanks to (1). Hence, there is a map y +— PY from S, into P, satisfying:
(6) P% = P,;
(7) |[0“PY(y)| < CM for |o| <m —1,y €95,
(8) [0%(PY = PY)(y)] < CM|y —y'|"* for |a| <m — 1,9,y € S,; and
9) |PY(y) — f(y)| < CMo(y) for ally € S,,.
Combining the above maps on the S, into a single map y +— PY from S into P, we obtain
the following results from (5),...,(9).
o PV =PF,=P;
o |0°PY(y)| < CM for o <m—1,y €S,
o |PY(y) — f(y)| < CMo(y) forall y € S.
Thus, our map y — PY, from S into P, satisfies properties (A), (B), (D) from the statement

of Lemma 2. Also, (8) shows that property (C) holds, provided y and y’ belong to the same
S,.

Hence, to complete the proof of Lemma 2, it is enough to prove (C) in the case y € S,,
y' €Sy, v#V. Inview of (3) (with § = diameter S), this means that
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(10) [0%(PY — PY)(y)| < CMs™ 1o for |a| <m —1,y €S,y € Sy, v # V.

Thus, the proof of Lemma 2 is reduced to (10). Let y € S, ¥’ € S,/, with v # /. From (6)
and (8), we have
(11) |0*(PY — B)(y)| < CM|y — y,|™ 1ol < CM 6™ 1el for |a] < m — 1, and

(12) [0%(PY — P,)(y)| < CM |y — y,|™" 1ol < OM §™~1el for |a| < m — 1.
Also, (4) shows that

(13) [0*(Py = Po)(yo)| < Mly, — yol™ 1 + My, — yo| "1l < CM g™ 1 for |af < m — 1.
By Lemma 1 from Section 7, the estimates (12) and (13) imply

(14) |0*(PY — P,)(y)| < CM §™ 1ol for |a| < m — 1,

and

(15) [0%(P, — P,)(y)| < CM §™~ 1ol for |a| < m — 1.

From (11), (14), (15), we obtain the desired estimate (10), and the proof of Lemma 2 is
complete. O

We now prove estimate (6) from Section 2. We take ¢, = k as in Theorem 3. Thus, ¢,

depends only on m and n. Let M > 0 satisfy the hypothesis of (6), namely
(16) X(x,l., M) # ¢ for each x € E.

We will show that the hypothesis of Theorem 3 holds, for the set F, the functions f and
o, and the constant C'M, for a large enough C' depending only on m and n. To see this, let
S C E, with #(S) < k. If S is empty, there is nothing to prove. If S is non-empty, then
we pick yo € S and then pick P € ¥(yo, lx, M). (We can find such a P, thanks to (16).)
Applying Lemma 2, with ¢ = ¢, = k, we obtain a map y — PY from S into P, satisfying
P¥% = P and

(17) |0°PY(y)| < CM for || <m —1,y € S;
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(18) [0(PY — P¥)(y)] < CM]y — y'|" 1" for [a| <m —1, y,y' € S; and

(19) |PY(y) — f(y)] < CMo(y) for all y € S.

In (17), (18), (19), the constant C' depends only on m,n and ¢,. Since ¢, depends only on m
and n, it follows that C' depends only on m and n. The existence of a map y — PY satisfying
(17), (18), (19) is precisely the hypothesis of Theorem 3.

Applying Theorem 3, we conclude that || f||cmgs < CM, with C depending only on m

and n.
This is precisely the conclusion of (6) from Section 2.

The proof of (6) from Section 2 is complete, and with it, the proof of Theorem 1. O

89. On the proof of Theorem 2

In this section, we explain a key idea in the proof of Theorem 2. Recall that we have
defined convex sets I'(z, ¢, M), starting from a finite set £ C R™ and functions f : £ — R
and o : E — [0,00). If we keep F and ¢ unchanged, but replace f by zero, then in place of
[(x, ¢, M), we obtain by the same construction a new family of convex sets I'g(x, ¢, M). An
easy induction on ¢ shows that this new family has the form I'g(z, ¢, M) = Mo(x,{) for a
convex, symmetric set o(z,¢) C P. The convex sets o(x, ) play a basic role along with the
D(x, 0, M).

We prepare to state the main properties of the I'’s and the ¢’s, to be used in the proof of
Theorem 2. We write ¢, C' to denote constants depending only on m, n; and we write C} to
denote constants depending only on m,n and ¢. For x € R” and P,(Q € P, we write P ®, @)
to denote the unique S € P such that, for any smooth F' and G, J,(F) = P and J,(G) = Q
imply J.(FG) = S.

For convex sets A,B C P, we write A — B for the Minkowski difference
{P—P :PecAP € B}

The basic properties of the I'’'s and ¢’s are as follows.

(0) Suppose F' € C™(R™) and M > 0 with ||[F|lcm@n) < M and |F(z) — f(z)| < Mo(x)
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for all x € E. Then
Jo(F)el(x, ,CeM)

forallz € £, 0> 1.

(1) For x € E, the blob I'(z,1) is C-equivalent to the blob K = (K /) yso defined as

Ky ={PecP:|0°P(x)] <M for |3| <m —1,|P(z) — f(z)] < Mo(x)}.

(2) For any z,y € E, M >0,
P(ZE,€+1,M) - F(yungfM) +B(y,|l'—y|,OgM)

Similarly,
O-(l‘7£ + 1) C C’ga(y,ﬁ) + B(y7 |ZE - y|7 OZ)

(3) I'(z, ¢, M) + Mo(x,¢) C I'(x,¢,C;M), and T'(z, ¢, M) — I'(z,¢, M) C CyMo(x,{), for
any v € E 0 > 1.

(4) Suppose P € o(x,£),Q € P and 0 < § < 1. Assume that |0°P(x)] < 6™ 1% and
10°Q(x)] < 61 for |B| <m — 1. Then P ®, Q € Cyo(x,l).

In fact, we have already proven (0) and (2) in Section 7 (see (8) in the proof of Lemma
3 in Section 7); and (1), (3) are easy consequences of the definitions. We will prove (4) in
[20]; it is an instance of “Whitney w-convexity” (see [17]). Our proof of Theorem 2 will be
based on the above properties of the I'’s and ¢’s. The convex sets 3(x, ¢, M) and appropriate
o(xz,0) also satisfy (0),...,(4). On the other hand, the proof of Theorem 3 is based on the
study of convex sets ICs(z, k, M) defined as follows.

(5) A given P € P belongs to K¢(x, k, M) if, for any S C E of cardinality at most k, there
exists F'¥ € C™(R") with
(a) [[F¥]lom@n) < M;
(b) |F(z) — f(z)| < Mo(z) for all x € S; and
(c) Jo(F)=P.
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(See [14,17].) Suppose we write Tyq(x, £, M) := Ks(z, (D + 1), M), with D = dim P. Then
the I'ya(x, £, M), together with appropriate o,4(z, ), also satisfy (0),...,(4). In particular,
(2) follows by applying Helly’s theorem [33] on convex sets (see Lemma 10.2 in [14]). Thus,
properties (0),...,(4) hold for more than one family of ['’s and o’s.

The proof of Theorem 3, as given in [14], makes little use of the exact definition (5).
Instead, it relies almost entirely on properties (0),...,(4) for the families I',4, 05q. Hence, it
is natural to guess that there is a version of Theorem 3 valid for any I'’s and ¢’s that satisfy

(0),...,(4). More precisely, we assert the following:

(6) Let I'(z, ¢, M) C P be convex sets, defined for x € E,¢ > 1, M > 0 (and increasing in
M); and let o(z,¢) C P be symmetric convex sets, defined for z € E ¢ > 1. Assume
that the I's and o’s satisfy (0),...,(4). Let My > 0 and suppose that I'(x, ., My) is

non-empty for each x € E, where /, is a large constant determined by m and n.

Then, there exists F € C™(R"), such that |F|cmmy < CM,, and
|F(z) — f(x)] < CMyo(x) for all x € E.

In fact, a sharper version of (6) follows at once from our work in Sections 7 and 8. We
have only to observe that our proof that || f||cm (g, is comparable to max,cp onset 3(x, £)
used only properties (0), (1), (2) of the X(z,¢, M). Hence, (6) holds without the need to

assume (3) or (4). The main step here is to quote Theorem 3.

However, if we assume all the key properties (0),...,(4), then we can do better. By
adapting the proof of Theorem 3 rather than quoting the result, one can construct an F
as in (6) rather than merely proving its existence. This leads to an algorithm to solve
Problem 2. To make the algorithm run efficiently, we have to decide, with log N work, which
cube from a relevant Calderén-Zygmund decomposition contains a given point x € R”. We
achieve this by bringing in the work of Arya, Mount, Netanyahu, Silverman and Wu [1],
associating a balanced tree to a given finite set £/ C R". We also make further use of the
Callahan-Kosaraju decomposition. Thus, we are led to the proof of Theorem 2. Full details

will appear in [20].
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