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1. Verify that the Sierpinski triangle has Hausdorff dimension log 3
log 2 .

Solution: Denote the Sierpinski triangle by T . Recall that T is obtained by repeated removal of triangular subsets
from an equilateral triangle T1. Denote the barycenter of T1 by x1.

Suppose that 0 < r < R are such that B(x1, r) ⊂ T1 ⊂ B(x1, R), and set α = log 3
log 2 = log2 3.

Claim 1: Hα(T ) <∞

Proof: By the construction process of T described above, it is clear that for any n ≥ 0

T ⊂
3n⋃
k=1

B

(
xk,

R

2n

)
where {xk}3

n

k=1 are the barycenters of the triangles at step n of the construction process. Therefore

Hα, R2n (T ) ≤ Cα · 3n ·
(
R

2n

)α
= Cα ·Rα

Hence Hα(T ) ≤ Cα ·Rα <∞. �

Claim 2: There exists a compactly-supported, finite, Borel measure µ on T such that

µ

(
B

(
x,

r

2n

))
≤ C · (2−n)α for all x ∈ T, n ≥ 1

Proof: For any Borel subset A ⊂ T define
µ(A) = P(X ∈ A)

where X is a random variable obtained in the following way:

Notice that a point in T is completely determined by the sequence of choices made in the construction process, i.e.
at each step one has to choose one out of three possible sub-triangles to decend to.

Let (xk)k≥1 be the i.i.d. random variables representing these choices, giving equal probability, which is 1/3, to each
choice. Now we let the random variable X be the point obtained by the sequence of choices (xk)k≥1.

Using this, we see that for any x ∈ T and n ≥ 1

µ

(
B

(
x,

r

2n

))
≤ C · 3−n = C · (2−n)α

By Claim (1) we see that
dimH(T ) = sup{β ≥ 0 : Hβ(T ) = +∞} ≤ α

By Claim (2), Frostman’s Lemma and a proposition from class, we see that
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dimH(T ) = sup{s ; ∃0 6= µ ∈M(T ) , Is(µ) <∞} ≥ α

Hence dimH(T ) = α. �

2. Let X1, X2, ... be independent, identically distributed random variables with

P(Xk = 0) = P(Xk = 2) =
1

2

Prove that for any Borel subset A of the Cantor set C ⊂ [0, 1]

P
( ∞∑
k=1

Xk

3k
∈ A

)
= c · Hα(A)

for α = log 2/ log 3 and some constant c > 0.

Solution: Since dimH(C) = α, there exists some contant c > 0 such that

Hα(C) =
1

c

In order words,

P
( ∞∑
k=1

Xk

3k
∈ C

)
= 1 = c · Hα(C)

For any z ∈ C, write the ternary expansion of z by

z =

∞∑
k=1

zk
3k

= 0.z1z2...

where zk ∈ {0, 2}. Let P be the set of cylinder sets, i.e.

[a1a2....an] = {z =

∞∑
k=1

zk
3k
∈ C : zi = ai ∀1 ≤ i ≤ n}

The cylinders sets are:

• A basis of the topology of C.

• A π- system.

Claim 1: For any A = [a1....an] ∈ P we have

P
( ∞∑
k=1

Xk

3k
∈ A

)
= c · Hα(A)

Proof: It is clear from the recursive structure of C that

P
( ∞∑
k=1

Xk

3k
∈ A

)
=

1

2n
=
Hα(A)

Hα(C)
= c · Hα(A)

Now we use the following proposition from measure theory:
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Proposition 1: Let (Ω,Σ) be a measurable space, and let P be a π-system which generates Σ. Suppose that µ1

and µ2 are two measures on Σ with the property that µ1(Ω) = µ2(Ω) <∞ and

µ1(A) = µ2(A) for all A ∈ P

Then µ1 = µ2.

Since the cylinders sets form a countable basis of the topology, they generate the Borel σ-algebra.

Using Proposition (1) combined with Claim (1), we see that the equality holds. �

3. For any 0 < t < n, find a compactly-supported, finite Borel measure µ on Rn with a finite t-energy, i.e.,

It(µ) =

ˆ

Rn×Rn

|x− y|−tdµ(x)dµ(y) <∞

yet for any M > 1 there exist x ∈ Rn, r > 0 with

µ(B(x, r)) > Mrt

Solution: For k ≥ 1, let xk = 2−ke1, let rk = 2−(k+2) and let

Bk = B(xk, rk) = B(2−ke1, 2
−(k+2))

Let dµ = fdx where dx is the Lebesgue measure, f : Rn → R is given by

f(x) =

{
ck x ∈ Bk
0 Otherwise

and ck is given by
ck = k · rt−nk = k · 2(n−t)(k+2)

Notice that since
1

2k
− 1

2k+2
−
(

1

2k+1
+

1

2k+3

)
=

1

2k+3

we have that any B(x, 2−(k+3)) ∩Bl = ∅ for any x ∈ Bk and l 6= k.

Write ωn for the Lebesgue measure of the unit ball in Rn.

Claim 1: Let k ≥ 1. Then:

(a) µ(Bk) = kωnr
t
k

(b) For any x ∈ Bk and 0 < r < 2−(k+3) we have that µ(B(x, r)) ≤ ckωnrn

Proof: We have that

µ(Bk) =

ˆ

Bk

fdx = ck · Leb(Bk) = ckωnr
n
k = kωnr

t
k

and
µ(B(x, r)) =

ˆ

B(x,r)

fdx ≤ ck · Leb(B(x, r)) = ckωnr
n

Claim 2: For any m ≥ 1 we have
∑∞
k=1 k

m2−tk <∞.
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Proof: Let z = 2t > 1. Then
∞∑
k=1

km2−tk =

∞∑
k=1

km

zk

Letting ak = km

zk
we see that

lim
k→∞

ak+1

ak
= lim
k→∞

(k + 1)m

zk+1
· z

k

km
= lim
k→∞

(
k + 1

k

)m
· 1

z
=

1

z
< 1

and by the ratio test the series converges. �

Corollary 1: µ(Rn) <∞

Proof: Using the claim we see that

µ(Rn) =

∞∑
k=1

µ(Bk) = 2−2tωn ·
∞∑
k=1

k2−tk <∞

Claim 3: Let

f(x) =

ˆ

Rn

|x− y|−tdµ(y)

Then for any x ∈ Bk we have
f(x) ≤ C1k + C2

Proof: We split the integral into two:

f(x) =

ˆ

Rn

|x− y|−tdµ(y) =

ˆ

B(x,2−(k+3))

|x− y|−tdµ(y)

︸ ︷︷ ︸
I

+

ˆ

Rn\B(x,2−(k+3))

|x− y|−tdµ(y)

︸ ︷︷ ︸
II

We bound the second part as follows:

II ≤ 2−t(k+3) · µ(Rn) < µ(Rn) =: C2

Moreover,

I =

ˆ

Rn

|x− y|−t · 1B(x,2−(k+3))(y)dµ(y) =

∞̂

0

µ({y : |x− y|−t · 1B(x,2−(k+3))(y) > u})du

Noticing that

{y : |x− y|−t · 1B(x,2−(k+3))(y) ≥ u} = B(x, u−
1
t ) ∩B(x, 2−(k+3)) =

{
B(x, u−

1
t ) u ≥ 2t(k+3)

B(x, 2−(k+3)) u < 2t(k+3)

we have that

I =

2t(k+3)ˆ

0

µ(B(x, 2−(k+3)))du

︸ ︷︷ ︸
A

+

∞̂

2t(k+3)

µ(B(x, u−
1
t ))du

︸ ︷︷ ︸
B
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Clearly
µ(B(x, 2−(k+3))) ≤ µ(B(xk, 2

−(k+3))) ≤ µ(Bk) = kωnr
t
k = kωn2−t(k+2)

and so we obtain the following bound for A

A ≤ 2t(k+3)kωn2−t(k+2) = kωn2t

For B we have that

B =

[
r = u−

1
t ;

du

dr
= − t

rt+1

]
=

2−(k+3)ˆ

0

t

rt+1
µ(B(x, r))dr ≤

≤ ckωn · t
2−(k+3)ˆ

0

rn−t−1dr =
ωnt

n− t
· ck ·

(
rn−t

∣∣∣∣2−(k+3)

0

)
=

ωnt

n− t
· ck · 2−(n−t)(k+3) =

ωnt

(n− t)2n−t
· k

In total we obtain
I = A+B ≤ k · ωn

(
2t +

t

(n− t)2n−t

)
=: C1k

and the claim is proved. �

Corollary 2: We have that It(µ) <∞.

Proof:

It(µ) =

ˆ

Rn

ˆ

Rn

|x− y|−tdµ(y)dµ(x) =

ˆ

Rn

f(x)dµ(x) =

∞∑
k=1

ˆ

Bk

f(x)dµ(x) ≤

≤
∞∑
k=1

(C1k + C2) · µ(Bk) =

∞∑
k=1

(C1k + C2) · µ(Bk) =

∞∑
k=1

(C1k + C2) · kωm2−t(k+2) =

= 2−2tωn

[
C1

∞∑
k=1

k22−tk + C2

∞∑
k=1

k2−tk
]
<∞

All in all, µ is a compactly-supported, finite Borel measure on Rn with finite t-energy.

However, for any M > 1 we may choose k such that k > M
ωn

, and we obtain that

µ(Bk) = µ(B(xk, rk)) = kωnr
t
k > Mrtk

and we are done. �

4. Write S for the space of Schwartz functions in Rn. Let T : S → S be a continuous, translation invariant linear
operator. Prove that F−1 ◦ T ◦ F is a multiplication operator, where F is the Fourier transform.

Solution: For a function f ∈ S, write f ∈ S for the function given by f(x) = f(−x).

Claim 1: For any Φ ∈ S we have that
Φ ∗ Tϕ = (T ∗(Φ)) ∗ ϕ

where T ∗ is the adjoint operator of T .

Proof:
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(Φ ∗ Tϕ)(x) =

ˆ

Rn

Φ(y) · (Tϕ)(x− y)dy =

ˆ

Rn

Φ(y) · (Tϕ)x(−y)dy =

ˆ

Rn

Φ(y) · (Tϕx)(y)dy = 〈Φ, Tϕx〉 =

= 〈T ∗(Φ), ϕx〉 =

ˆ

Rn

(T ∗(Φ))(y) · ϕx(y)dy =

ˆ

Rn

(T ∗(Φ))(y) · ϕx(−y)dy =

=

ˆ

Rn

(T ∗(Φ))(y) · ϕ(x− y)dy = ((T ∗(Φ)) ∗ ϕ)(x)

Let Φ ∈ S such that F−1(Φ) > 0. Using the claim we have that

F−1(Φ) · F−1(Tϕ) = F−1(Φ ∗ Tϕ) = F−1(T ∗(Φ) ∗ ϕ) = F−1(T ∗(Φ)) · F−1(ϕ)

Thus

F−1(Tϕ) =
F−1(T ∗(Φ))

F−1(Φ)
· F−1(ϕ)

Defining a ∈ S to be a = F−1(T ∗(Φ))/F−1(Φ) we have that

(F−1 ◦ T ◦ F−1)(ϕ) = F−1(T (F−1(ϕ))) = a · F−1(F(ϕ)) = a · ϕ

and we are done. �

5. Prove that for any ε > 0, the function f(ξ) = (1 + |ξ|2)−ε on R is the Fourier transform of an L1- function g.

Solution: Notice that

F(e−
x2

4t ) =
√

4πte−ξ
2t

where F denotes the Fourier transform. Define

g(x) =

∞̂

0

e−
x2

4t ϕ(t)dt

where ϕ(t) = e−ttα√
4πΓ(ε)

and α = − 3
2 + ε. Notice that

ϕ(t) ·
√

4πt =
e−ttε−1

Γ(ε)

Then by Fubini we have that

ĝ(ξ) =

ˆ

R

e−iξxg(x)dx =

ˆ

R

e−iξx
( ∞̂

0

e−
x2

4t ϕ(t)dt

)
dx =

∞̂

0

ϕ(t)

(ˆ
R

e−iξxe−
x2

4t dx

)
dt =

=

∞̂

0

ϕ(t)F(e−
x2

4t )dt =

∞̂

0

ϕ(t)
√

4πte−ξ
2tdt =

∞̂

0

e−ttε−1

Γ(ε)
e−ξ

2tdt =
1

Γ(ε)

∞̂

0

tε−1e−t(1+ξ2)dt =

=

[
s = (1 + ξ2)t

]
=

(1 + ξ2)−ε

Γ(ε)

∞̂

0

sε−1e−sds = (1 + ξ2)−ε
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6. Prove that if f ∈ L1 is continuous, bounded and with a non-negative Fourier transform, then f̂ ∈ L1.

Solution: Let θ(x) = e−|x|
2

and for R > 0 define θR to be

θR(x) := θ(x/R) = e−
|x|2

R2

Claim 1: ‖θR · f̂‖1 ≤ (2π)n‖f‖∞.

Proof: The Fourier transform of θR is given by

θ̂R(x) = Rnπ
n
2 e−

|ξ|2R2

4

Since ˆ

Rn

e−
|x|2R2

4 dx =
2n

Rn

ˆ

Rn

e−
|x|2R2

4 · R
n

2n
dx =

[
y =

R

2
x

]
=

2n

Rn

ˆ

Rn

e−|y|
2

dy =
2n

Rn
π
n
2

we obtain that
‖θ̂R‖1 = Rnπ

n
2

ˆ

Rn

e−
|ξ|2R2

4 dξ = (2π)n

By Fubini, we have that

‖θR · f̂‖1 =

[
f̂ ≥ 0

]
=

ˆ

Rn

θR(ξ) · f̂(ξ)dξ =

ˆ

Rn

e−
|ξ|2

R2 ·
(ˆ
Rn

e−i〈ξ,x〉f(x)dx

)
dξ =

=

ˆ

Rn

f(x)

(ˆ
Rn

e−
|ξ|2

R2 e−i〈ξ,x〉dξ

)
dx =

ˆ

Rn

f(x)θ̂R(x)dx ≤ ‖f‖∞‖θ̂R‖1 = (2π)n‖f‖∞

For any x ∈ Rn we have that R 7→ θR(x) is non-decreasing, and that

lim
R→∞

θR(x) = 1

Thus the monotone convergence theorem implies that

‖f̂‖1 = lim
R→∞

‖θR · f̂‖1 ≤ (2π)n‖f‖∞ <∞

which means that f̂ ∈ L1. �
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