Harmonic Analysis - Assignment 1

Matan Eilat

May 11, 2020

1. Verify that the Sierpinski triangle has Hausdorff dimension $\frac{\log 3}{\log 2}$.

Solution: Denote the Sierpinski triangle by T. Recall that T is obtained by repeated removal of triangular subsets from an equilateral triangle T_{1}. Denote the barycenter of T_{1} by x_{1}.
Suppose that $0<r<R$ are such that $B\left(x_{1}, r\right) \subset T_{1} \subset B\left(x_{1}, R\right)$, and set $\alpha=\frac{\log 3}{\log 2}=\log _{2} 3$.

Claim 1: $\mathcal{H}_{\alpha}(T)<\infty$
Proof: By the construction process of T described above, it is clear that for any $n \geq 0$

$$
T \subset \bigcup_{k=1}^{3^{n}} B\left(x_{k}, \frac{R}{2^{n}}\right)
$$

where $\left\{x_{k}\right\}_{k=1}^{\}^{n}}$ are the barycenters of the triangles at step n of the construction process. Therefore

$$
\mathcal{H}_{\alpha, \frac{R}{2^{n}}}(T) \leq C_{\alpha} \cdot 3^{n} \cdot\left(\frac{R}{2^{n}}\right)^{\alpha}=C_{\alpha} \cdot R^{\alpha}
$$

Hence $\mathcal{H}_{\alpha}(T) \leq C_{\alpha} \cdot R^{\alpha}<\infty$.

Claim 2: There exists a compactly-supported, finite, Borel measure μ on T such that

$$
\mu\left(B\left(x, \frac{r}{2^{n}}\right)\right) \leq C \cdot\left(2^{-n}\right)^{\alpha} \quad \text { for all } x \in T, n \geq 1
$$

Proof: For any Borel subset $A \subset T$ define

$$
\mu(A)=\mathbb{P}(X \in A)
$$

where X is a random variable obtained in the following way:
Notice that a point in T is completely determined by the sequence of choices made in the construction process, i.e. at each step one has to choose one out of three possible sub-triangles to decend to.
Let $\left(x_{k}\right)_{k \geq 1}$ be the i.i.d. random variables representing these choices, giving equal probability, which is $1 / 3$, to each choice. Now we let the random variable X be the point obtained by the sequence of choices $\left(x_{k}\right)_{k \geq 1}$.
Using this, we see that for any $x \in T$ and $n \geq 1$

$$
\mu\left(B\left(x, \frac{r}{2^{n}}\right)\right) \leq C \cdot 3^{-n}=C \cdot\left(2^{-n}\right)^{\alpha}
$$

By Claim (1) we see that

$$
\operatorname{dim}_{\mathcal{H}}(T)=\sup \left\{\beta \geq 0: \mathcal{H}_{\beta}(T)=+\infty\right\} \leq \alpha
$$

By Claim (2), Frostman's Lemma and a proposition from class, we see that

$$
\operatorname{dim}_{\mathcal{H}}(T)=\sup \left\{s ; \exists 0 \neq \mu \in \mathcal{M}(T), I_{s}(\mu)<\infty\right\} \geq \alpha
$$

Hence $\operatorname{dim}_{\mathcal{H}}(T)=\alpha$.
2. Let X_{1}, X_{2}, \ldots be independent, identically distributed random variables with

$$
\mathbb{P}\left(X_{k}=0\right)=\mathbb{P}\left(X_{k}=2\right)=\frac{1}{2}
$$

Prove that for any Borel subset A of the Cantor set $C \subset[0,1]$

$$
\mathbb{P}\left(\sum_{k=1}^{\infty} \frac{X_{k}}{3^{k}} \in A\right)=c \cdot \mathcal{H}_{\alpha}(A)
$$

for $\alpha=\log 2 / \log 3$ and some constant $c>0$.
$\underline{\text { Solution: }}$ Since $\operatorname{dim}_{\mathcal{H}}(C)=\alpha$, there exists some contant $c>0$ such that

$$
\mathcal{H}_{\alpha}(C)=\frac{1}{c}
$$

In order words,

$$
\mathbb{P}\left(\sum_{k=1}^{\infty} \frac{X_{k}}{3^{k}} \in C\right)=1=c \cdot \mathcal{H}_{\alpha}(C)
$$

For any $z \in C$, write the ternary expansion of z by

$$
z=\sum_{k=1}^{\infty} \frac{z_{k}}{3^{k}}=0 . z_{1} z_{2} \ldots
$$

where $z_{k} \in\{0,2\}$. Let \mathcal{P} be the set of cylinder sets, i.e.

$$
\left[a_{1} a_{2} \ldots a_{n}\right]=\left\{z=\sum_{k=1}^{\infty} \frac{z_{k}}{3^{k}} \in C: z_{i}=a_{i} \forall 1 \leq i \leq n\right\}
$$

The cylinders sets are:

- A basis of the topology of C.
- A π - system.

Claim 1: For any $A=\left[a_{1} \ldots a_{n}\right] \in \mathcal{P}$ we have

$$
\mathbb{P}\left(\sum_{k=1}^{\infty} \frac{X_{k}}{3^{k}} \in A\right)=c \cdot \mathcal{H}_{\alpha}(A)
$$

Proof: It is clear from the recursive structure of C that

$$
\mathbb{P}\left(\sum_{k=1}^{\infty} \frac{X_{k}}{3^{k}} \in A\right)=\frac{1}{2^{n}}=\frac{\mathcal{H}_{\alpha}(A)}{\mathcal{H}_{\alpha}(C)}=c \cdot \mathcal{H}_{\alpha}(A)
$$

Now we use the following proposition from measure theory:

Proposition 1: Let (Ω, Σ) be a measurable space, and let \mathcal{P} be a π-system which generates Σ. Suppose that μ_{1} and μ_{2} are two measures on Σ with the property that $\mu_{1}(\Omega)=\mu_{2}(\Omega)<\infty$ and

$$
\mu_{1}(A)=\mu_{2}(A) \quad \text { for all } A \in \mathcal{P}
$$

Then $\mu_{1}=\mu_{2}$.

Since the cylinders sets form a countable basis of the topology, they generate the Borel σ-algebra. Using Proposition (1) combined with Claim (1), we see that the equality holds.
3. For any $0<t<n$, find a compactly-supported, finite Borel measure μ on \mathbb{R}^{n} with a finite t-energy, i.e.,

$$
I_{t}(\mu)=\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}|x-y|^{-t} d \mu(x) d \mu(y)<\infty
$$

yet for any $M>1$ there exist $x \in \mathbb{R}^{n}, r>0$ with

$$
\mu(B(x, r))>M r^{t}
$$

$$
B_{k}=B\left(x_{k}, r_{k}\right)=B\left(2^{-k} e_{1}, 2^{-(k+2)}\right)
$$

Let $d \mu=f d x$ where $d x$ is the Lebesgue measure, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is given by

$$
f(x)= \begin{cases}c_{k} & x \in B_{k} \\ 0 & \text { Otherwise }\end{cases}
$$

and c_{k} is given by

$$
c_{k}=k \cdot r_{k}^{t-n}=k \cdot 2^{(n-t)(k+2)}
$$

Notice that since

$$
\frac{1}{2^{k}}-\frac{1}{2^{k+2}}-\left(\frac{1}{2^{k+1}}+\frac{1}{2^{k+3}}\right)=\frac{1}{2^{k+3}}
$$

we have that any $B\left(x, 2^{-(k+3)}\right) \cap B_{l}=\emptyset$ for any $x \in B_{k}$ and $l \neq k$.
Write ω_{n} for the Lebesgue measure of the unit ball in \mathbb{R}^{n}.

Claim 1: Let $k \geq 1$. Then:
(a) $\mu\left(B_{k}\right)=k \omega_{n} r_{k}^{t}$
(b) For any $x \in B_{k}$ and $0<r<2^{-(k+3)}$ we have that $\mu(B(x, r)) \leq c_{k} \omega_{n} r^{n}$

Proof: We have that

$$
\mu\left(B_{k}\right)=\int_{B_{k}} f d x=c_{k} \cdot \operatorname{Leb}\left(B_{k}\right)=c_{k} \omega_{n} r_{k}^{n}=k \omega_{n} r_{k}^{t}
$$

and

$$
\mu(B(x, r))=\int_{B(x, r)} f d x \leq c_{k} \cdot \operatorname{Leb}(B(x, r))=c_{k} \omega_{n} r^{n}
$$

Claim 2: For any $m \geq 1$ we have $\sum_{k=1}^{\infty} k^{m} 2^{-t k}<\infty$.

Proof: Let $z=2^{t}>1$. Then

$$
\sum_{k=1}^{\infty} k^{m} 2^{-t k}=\sum_{k=1}^{\infty} \frac{k^{m}}{z^{k}}
$$

Letting $a_{k}=\frac{k^{m}}{z^{k}}$ we see that

$$
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\lim _{k \rightarrow \infty} \frac{(k+1)^{m}}{z^{k+1}} \cdot \frac{z^{k}}{k^{m}}=\lim _{k \rightarrow \infty}\left(\frac{k+1}{k}\right)^{m} \cdot \frac{1}{z}=\frac{1}{z}<1
$$

and by the ratio test the series converges.

Corollary 1: $\mu\left(\mathbb{R}^{n}\right)<\infty$

Proof: Using the claim we see that

$$
\mu\left(\mathbb{R}^{n}\right)=\sum_{k=1}^{\infty} \mu\left(B_{k}\right)=2^{-2 t} \omega_{n} \cdot \sum_{k=1}^{\infty} k 2^{-t k}<\infty
$$

Claim 3: Let

$$
f(x)=\int_{\mathbb{R}^{n}}|x-y|^{-t} d \mu(y)
$$

Then for any $x \in B_{k}$ we have

$$
f(x) \leq C_{1} k+C_{2}
$$

Proof: We split the integral into two:

$$
f(x)=\int_{\mathbb{R}^{n}}|x-y|^{-t} d \mu(y)=\underbrace{\int_{B\left(x, 2^{-(k+3)}\right)}|x-y|^{-t} d \mu(y)}_{I}+\underbrace{\int_{\mathbb{R}^{n} \backslash B\left(x, 2^{-(k+3)}\right)}|x-y|^{-t} d \mu(y)}_{I I}
$$

We bound the second part as follows:

$$
I I \leq 2^{-t(k+3)} \cdot \mu\left(\mathbb{R}^{n}\right)<\mu\left(\mathbb{R}^{n}\right)=: C_{2}
$$

Moreover,

$$
I=\int_{\mathbb{R}^{n}}|x-y|^{-t} \cdot \mathbb{1}_{B\left(x, 2^{-(k+3)}\right)}(y) d \mu(y)=\int_{0}^{\infty} \mu\left(\left\{y:|x-y|^{-t} \cdot \mathbb{1}_{B\left(x, 2^{-(k+3)}\right)}(y)>u\right\}\right) d u
$$

Noticing that

$$
\left\{y:|x-y|^{-t} \cdot \mathbb{1}_{B\left(x, 2^{-(k+3)}\right)}(y) \geq u\right\}=B\left(x, u^{-\frac{1}{t}}\right) \cap B\left(x, 2^{-(k+3)}\right)= \begin{cases}B\left(x, u^{-\frac{1}{t}}\right) & u \geq 2^{t(k+3)} \\ B\left(x, 2^{-(k+3)}\right) & u<2^{t(k+3)}\end{cases}
$$

we have that

$$
I=\underbrace{\int_{0}^{2^{t(k+3)}} \mu\left(B\left(x, 2^{-(k+3)}\right)\right) d u}_{A}+\underbrace{\int_{t^{t(k+3)}}^{\infty} \mu\left(B\left(x, u^{-\frac{1}{t}}\right)\right) d u}_{B}
$$

Clearly

$$
\mu\left(B\left(x, 2^{-(k+3)}\right)\right) \leq \mu\left(B\left(x_{k}, 2^{-(k+3)}\right)\right) \leq \mu\left(B_{k}\right)=k \omega_{n} r_{k}^{t}=k \omega_{n} 2^{-t(k+2)}
$$

and so we obtain the following bound for A

$$
A \leq 2^{t(k+3)} k \omega_{n} 2^{-t(k+2)}=k \omega_{n} 2^{t}
$$

For B we have that

$$
\begin{gathered}
B=\left[r=u^{-\frac{1}{t}} ; \frac{d u}{d r}=-\frac{t}{r^{t+1}}\right]=\int_{0}^{2^{-(k+3)}} \frac{t}{r^{t+1}} \mu(B(x, r)) d r \leq \\
\leq c_{k} \omega_{n} \cdot t \int_{0}^{2^{-(k+3)}} r^{n-t-1} d r=\frac{\omega_{n} t}{n-t} \cdot c_{k} \cdot\left(\left.r^{n-t}\right|_{0} ^{2^{-(k+3)}}\right)=\frac{\omega_{n} t}{n-t} \cdot c_{k} \cdot 2^{-(n-t)(k+3)}=\frac{\omega_{n} t}{(n-t) 2^{n-t}} \cdot k
\end{gathered}
$$

In total we obtain

$$
I=A+B \leq k \cdot \omega_{n}\left(2^{t}+\frac{t}{(n-t) 2^{n-t}}\right)=: C_{1} k
$$

and the claim is proved.

Corollary 2: We have that $I_{t}(\mu)<\infty$.

Proof:

$$
\begin{gathered}
I_{t}(\mu)=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}|x-y|^{-t} d \mu(y) d \mu(x)=\int_{\mathbb{R}^{n}} f(x) d \mu(x)=\sum_{k=1}^{\infty} \int_{B_{k}} f(x) d \mu(x) \leq \\
\leq \sum_{k=1}^{\infty}\left(C_{1} k+C_{2}\right) \cdot \mu\left(B_{k}\right)=\sum_{k=1}^{\infty}\left(C_{1} k+C_{2}\right) \cdot \mu\left(B_{k}\right)=\sum_{k=1}^{\infty}\left(C_{1} k+C_{2}\right) \cdot k \omega_{m} 2^{-t(k+2)}= \\
=2^{-2 t} \omega_{n}\left[C_{1} \sum_{k=1}^{\infty} k^{2} 2^{-t k}+C_{2} \sum_{k=1}^{\infty} k 2^{-t k}\right]<\infty
\end{gathered}
$$

All in all, μ is a compactly-supported, finite Borel measure on \mathbb{R}^{n} with finite t-energy.
However, for any $M>1$ we may choose k such that $k>\frac{M}{\omega_{n}}$, and we obtain that

$$
\mu\left(B_{k}\right)=\mu\left(B\left(x_{k}, r_{k}\right)\right)=k \omega_{n} r_{k}^{t}>M r_{k}^{t}
$$

and we are done.
4. Write \mathcal{S} for the space of Schwartz functions in \mathbb{R}^{n}. Let $T: \mathcal{S} \rightarrow \mathcal{S}$ be a continuous, translation invariant linear operator. Prove that $\mathcal{F}^{-1} \circ T \circ \mathcal{F}$ is a multiplication operator, where \mathcal{F} is the Fourier transform.

Claim 1: For any $\Phi \in \mathcal{S}$ we have that

$$
\Phi * T \varphi=\left(\overline{T^{*}(\bar{\Phi})}\right) * \varphi
$$

where T^{*} is the adjoint operator of T.
Proof:

$$
\begin{gathered}
(\Phi * T \varphi)(x)=\int_{\mathbb{R}^{n}} \Phi(y) \cdot(T \varphi)(x-y) d y=\int_{\mathbb{R}^{n}} \Phi(y) \cdot(T \varphi)_{x}(-y) d y=\int_{\mathbb{R}^{n}} \bar{\Phi}(y) \cdot\left(T \varphi_{x}\right)(y) d y=\left\langle\bar{\Phi}, T \varphi_{x}\right\rangle= \\
=\left\langle T^{*}(\bar{\Phi}), \varphi_{x}\right\rangle=\int_{\mathbb{R}^{n}}\left(T^{*}(\bar{\Phi})\right)(y) \cdot \varphi_{x}(y) d y=\int_{\mathbb{R}^{n}}\left(\overline{T^{*}(\bar{\Phi})}\right)(y) \cdot \varphi_{x}(-y) d y= \\
=\int_{\mathbb{R}^{n}}\left(\overline{T^{*}(\bar{\Phi})}\right)(y) \cdot \varphi(x-y) d y=\left(\left(\overline{T^{*}(\bar{\Phi})}\right) * \varphi\right)(x)
\end{gathered}
$$

Let $\Phi \in \mathcal{S}$ such that $\mathcal{F}^{-1}(\Phi)>0$. Using the claim we have that

$$
\mathcal{F}^{-1}(\Phi) \cdot \mathcal{F}^{-1}(T \varphi)=\mathcal{F}^{-1}(\Phi * T \varphi)=\mathcal{F}^{-1}\left(\overline{T^{*}(\bar{\Phi})} * \varphi\right)=\mathcal{F}^{-1}\left(\overline{T^{*}(\bar{\Phi})}\right) \cdot \mathcal{F}^{-1}(\varphi)
$$

Thus

$$
\mathcal{F}^{-1}(T \varphi)=\frac{\mathcal{F}^{-1}\left(\overline{T^{*}(\bar{\Phi})}\right)}{\mathcal{F}^{-1}(\Phi)} \cdot \mathcal{F}^{-1}(\varphi)
$$

Defining $a \in \mathcal{S}$ to be $a=\mathcal{F}^{-1}\left(\overline{T^{*}(\bar{\Phi})}\right) / \mathcal{F}^{-1}(\Phi)$ we have that

$$
\left(\mathcal{F}^{-1} \circ T \circ \mathcal{F}^{-1}\right)(\varphi)=\mathcal{F}^{-1}\left(T\left(\mathcal{F}^{-1}(\varphi)\right)\right)=a \cdot \mathcal{F}^{-1}(\mathcal{F}(\varphi))=a \cdot \varphi
$$

and we are done.
5. Prove that for any $\varepsilon>0$, the function $f(\xi)=\left(1+|\xi|^{2}\right)^{-\varepsilon}$ on \mathbb{R} is the Fourier transform of an L^{1} - function g.

Solution: Notice that

$$
\mathcal{F}\left(e^{-\frac{x^{2}}{4 t}}\right)=\sqrt{4 \pi t} e^{-\xi^{2} t}
$$

where \mathcal{F} denotes the Fourier transform. Define

$$
g(x)=\int_{0}^{\infty} e^{-\frac{x^{2}}{4 t}} \varphi(t) d t
$$

where $\varphi(t)=\frac{e^{-t} t^{\alpha}}{\sqrt{4 \pi} \Gamma(\varepsilon)}$ and $\alpha=-\frac{3}{2}+\varepsilon$. Notice that

$$
\varphi(t) \cdot \sqrt{4 \pi t}=\frac{e^{-t} t^{\varepsilon-1}}{\Gamma(\varepsilon)}
$$

Then by Fubini we have that

$$
\begin{gathered}
\hat{g}(\xi)=\int_{\mathbb{R}} e^{-i \xi x} g(x) d x=\int_{\mathbb{R}} e^{-i \xi x}\left(\int_{0}^{\infty} e^{-\frac{x^{2}}{4 t}} \varphi(t) d t\right) d x=\int_{0}^{\infty} \varphi(t)\left(\int_{\mathbb{R}} e^{-i \xi x} e^{-\frac{x^{2}}{4 t}} d x\right) d t= \\
=\int_{0}^{\infty} \varphi(t) \mathcal{F}\left(e^{-\frac{x^{2}}{4 t}}\right) d t=\int_{0}^{\infty} \varphi(t) \sqrt{4 \pi t} e^{-\xi^{2} t} d t=\int_{0}^{\infty} \frac{e^{-t} t^{\varepsilon-1}}{\Gamma(\varepsilon)} e^{-\xi^{2} t} d t=\frac{1}{\Gamma(\varepsilon)} \int_{0}^{\infty} t^{\varepsilon-1} e^{-t\left(1+\xi^{2}\right)} d t= \\
=\left[s=\left(1+\xi^{2}\right) t\right]=\frac{\left(1+\xi^{2}\right)^{-\varepsilon}}{\Gamma(\varepsilon)} \int_{0}^{\infty} s^{\varepsilon-1} e^{-s} d s=\left(1+\xi^{2}\right)^{-\varepsilon}
\end{gathered}
$$

6. Prove that if $f \in L^{1}$ is continuous, bounded and with a non-negative Fourier transform, then $\hat{f} \in L^{1}$.

$$
\theta_{R}(x):=\theta(x / R)=e^{-\frac{|x|^{2}}{R^{2}}}
$$

Claim 1: $\left\|\theta_{R} \cdot \hat{f}\right\|_{1} \leq(2 \pi)^{n}\|f\|_{\infty}$.
Proof: The Fourier transform of θ_{R} is given by

$$
\hat{\theta}_{R}(x)=R^{n} \pi^{\frac{n}{2}} e^{-\frac{|\xi|^{2} R^{2}}{4}}
$$

Since

$$
\int_{\mathbb{R}^{n}} e^{-\frac{|x|^{2} R^{2}}{4}} d x=\frac{2^{n}}{R^{n}} \int_{\mathbb{R}^{n}} e^{-\frac{|x|^{2} R^{2}}{4}} \cdot \frac{R^{n}}{2^{n}} d x=\left[y=\frac{R}{2} x\right]=\frac{2^{n}}{R^{n}} \int_{\mathbb{R}^{n}} e^{-|y|^{2}} d y=\frac{2^{n}}{R^{n}} \pi^{\frac{n}{2}}
$$

we obtain that

$$
\left\|\hat{\theta}_{R}\right\|_{1}=R^{n} \pi^{\frac{n}{2}} \int_{\mathbb{R}^{n}} e^{-\frac{|\xi|^{2} R^{2}}{4}} d \xi=(2 \pi)^{n}
$$

By Fubini, we have that

$$
\begin{aligned}
& \left\|\theta_{R} \cdot \hat{f}\right\|_{1}=[\hat{f} \geq 0]=\int_{\mathbb{R}^{n}} \theta_{R}(\xi) \cdot \hat{f}(\xi) d \xi=\int_{\mathbb{R}^{n}} e^{-\frac{|\xi|^{2}}{R^{2}}} \cdot\left(\int_{\mathbb{R}^{n}} e^{-i\langle\xi, x\rangle} f(x) d x\right) d \xi= \\
= & \int_{\mathbb{R}^{n}} f(x)\left(\int_{\mathbb{R}^{n}} e^{-\frac{|\xi|^{2}}{R^{2}}} e^{-i\langle\xi, x\rangle} d \xi\right) d x=\int_{\mathbb{R}^{n}} f(x) \hat{\theta}_{R}(x) d x \leq\|f\|_{\infty}\left\|\hat{\theta}_{R}\right\|_{1}=(2 \pi)^{n}\|f\|_{\infty}
\end{aligned}
$$

For any $x \in \mathbb{R}^{n}$ we have that $R \mapsto \theta_{R}(x)$ is non-decreasing, and that

$$
\lim _{R \rightarrow \infty} \theta_{R}(x)=1
$$

Thus the monotone convergence theorem implies that

$$
\|\hat{f}\|_{1}=\lim _{R \rightarrow \infty}\left\|\theta_{R} \cdot \hat{f}\right\|_{1} \leq(2 \pi)^{n}\|f\|_{\infty}<\infty
$$

which means that $\hat{f} \in L^{1}$.

