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1. Verify that the Sierpinski triangle has Hausdorff dimension

Solution: Denote the Sierpinski triangle by T'. Recall that T' is obtained by repeated removal of triangular subsets
from an equilateral triangle T;. Denote the barycenter of 17 by x7.

Suppose that 0 < r < R are such that B(zy,7) C Ty C B(z1, R), and set a = %Zgg = log, 3.

Claim 1: H,(T) < oo

Proof: By the construction process of T' described above, it is clear that for any n > 0

3" R
T C U B <l’k, 2’”)
k=1
where {xk}%ll are the barycenters of the triangles at step n of the construction process. Therefore

Mo (1)< o' (51) =Cor®

Hence Ho(T) < Cp - R* < 0.

Claim 2: There exists a compactly-supported, finite, Borel measure p on 7" such that

M<B<x,;>>§0~(2_")°‘ foralz e T\n>1

Proof: For any Borel subset A C T define
o H(A) = P(X € 4)
where X is a random variable obtained in the following way:

Notice that a point in 7" is completely determined by the sequence of choices made in the construction process, i.e.
at each step one has to choose one out of three possible sub-triangles to decend to.

Let (x)k>1 be the i.i.d. random variables representing these choices, giving equal probability, which is 1/3, to each
choice. Now we let the random variable X be the point obtained by the sequence of choices (z)r>1.

Using this, we see that for any z € T and n > 1

By Claim (1) we see that
dimy(T) =sup{f >0 : Hpg(T) =400} < a

By Claim (2), Frostman’s Lemma and a proposition from class, we see that



dimy(T) = sup{s; 30 # p € M(T) , (1) < o} > a

Hence dimy (T) = a. g

. Let X1, X5, ... be independent, identically distributed random variables with

Prove that for any Borel subset A of the Cantor set C' C [0, 1]

P(i;{: eA) =c-Ha(A)

k=1

for « =log2/log3 and some constant ¢ > 0.

Solution: Since dimy(C') = a, there exists some contant ¢ > 0 such that

In order words,

P(i?eC) =1=c-Ha(O)

k=1

For any z € C, write the ternary expansion of z by

The cylinders sets are:

e A basis of the topology of C.

e A 7- system.

Claim 1: For any A = [a;....a,] € P we have

P(i);: eA) =c-Ha(A)

k=1

Proof: It is clear from the recursive structure of C' that

OoXk _ 1 _Ha(A)_
P(nge/o = 3 = H(O) = c-HaolA)

k=1

Now we use the following proposition from measure theory:



Proposition 1: Let (£2,X) be a measurable space, and let P be a m-system which generates 3. Suppose that p;
and e are two measures on ¥ with the property that ui(Q) = u2() < oo and

w1 (A) = pua(A) forall AeP

Then py = po.

Since the cylinders sets form a countable basis of the topology, they generate the Borel o-algebra.

Using Proposition (1) combined with Claim (1), we see that the equality holds. o
. For any 0 < t < n, find a compactly-supported, finite Borel measure p on R™ with a finite t-energy, i.e.,

Ii(p) = / |z =y dp(x)du(y) < oo
R7 xR

yet for any M > 1 there exist x € R", r > 0 with
p(B(x,r)) > Mrt
Solution: For k > 1, let x, = 2 %eq, let rj, = 2= (k+2) and let

By, = B(ay, 1) = B(27%eq, 27" 2)

Let dp = fdx where dx is the Lebesgue measure, f : R® — R is given by

@) = {ck T € By

0 Otherwise

and ¢, is given by
cr = k . Tlt{;_n — k . Q(nit)(k+2)

Notice that since

1 1 1 1 1
Ok T oR+2  \ ki1 T o3 ) T 9E+s
we have that any B(z,2~**3)) 0 B; = for any = € By, and [ # k.

Write w,, for the Lebesgue measure of the unit ball in R™.

Claim 1: Let £ > 1. Then:

(a) p(Br) = kwnry,

(b) For any € By and 0 < r < 2=*+3) we have that u(B(z,7)) < crwnr™
Proof: We have that

w(Byg) = /fd:L‘ = ¢, - Leb(By,) = cpwnry = kwrh
B

and
w(B(z,r)) = / fdx < ¢ - Leb(B(x,r)) = cpwpr™

B(z,r)

Claim 2: For any m > 1 we have ) ;7 k™27 < cc.



Proof: Let z =2t > 1. Then

i k,m2—tk _ i ﬂ
2k
k=1 k=1

Letting ay = ’Z—T: we see that

mo gk E+1\™ 1 1
limakH:limM'z = 'm< +) .

k—oo Qg k—o0 Zk+1 km k— o0

and by the ratio test the series converges. g

Corollary 1: u(R") < o0

Proof: Using the claim we see that

p(R™) = u(Bi) = 27w, - > k27" <00
k=1 k=1

Claim 3: Let
flz) = / & — y|~tdp(y)
R’V'L

Then for any = € By we have
f(x) < Cik + Cs
Proof: We split the integral into two:

flz) = / |z —y| " duly) = / |z —y| ™ duly) + / |z — y|~tdu(y)
R™ B(z,2—(k+3)) R\ B(z,2— (k+3))

I 11

We bound the second part as follows:

IT < 27Hk+3) L (R™) < p(R™) =: Oy
Moreover,

o0

I =/Ix —y| 7" D a-erany (y)duly) = /u({y Dz =yl A a-0en) (y) > ub)du
R™ 0
Noticing that

Blaut S ot(k+3)
{y: o —yl™  Ipa o) (y) = u} = Blz,u”7) N B(z,27"+3)) = { e b

B(z,2=F3)) < 2tk+3)

we have that

ot(k+3)

= / p(B(x, 2~ 5 +3)))du + / (B, u™*))du
0 2t(k+3)
A B



Clearly
(B, 27 F0)) < u(B(ag, 27 FD)) < pu(By) = kwprf, = kw, 27 "2

and so we obtain the following bound for A
A < 2t FA) oy o=t (BH2) — oy ot

For B we have that

o= (k+3)

wnt
< cpwy - t / PPty = 2 e <7""t
n—t

0

In total we obtain

and the claim is proved.

Corollary 2: We have that I (u) < .

Proof:
i) = [ [le =i tantn) = [ s =" [ r@ant) <

R R R k 1Bk

<Y (Cik+Co) - = (Cik+Cy) - = (Cik + Cy) - kwy, 27 H2) =
k=1 k=1 k=1

oy, [01 SR LY kgtk] < oo
k=1 k=1

All in all, p is a compactly-supported, finite Borel measure on R™ with finite ¢-energy.

However, for any M > 1 we may choose k such that k& > WM, and we obtain that
w(By) = u(B(zg, 1)) = kwart > Mrt

and we are done.

. Write § for the space of Schwartz functions in R"™. Let T': § — S be a continuous, translation invariant linear
operator. Prove that F~! o T o F is a multiplication operator, where F is the Fourier transform.

Solution: For a function f € S, write f € S for the function given by f(z) = f(—x).

Claim 1: For any ® € S we have that

DTy = (T*(D) * ¢

where T* is the adjoint operator of 7.
Proof:



Let ® € S such that F~(®) > 0. Using the claim we have that

FA@) F T = FH @ T) = F I @) v ) = FHT@) - F ()

Thus

_ FHIT(®)

]:71(T90) = F-1(®) "7:71(%0)

Defining a € S to be a = F~H(T*(®))/F~(®) we have that
(FloTeF ) (p) = FUTF () —a- F U (F(e) =a-g
and we are done. o
. Prove that for any ¢ > 0, the function f(¢) = (1+ |£|>)™ on R is the Fourier transform of an L!- function g.

Solution: Notice that

22
Fle~ ) = Virte ¢t

where F denotes the Fourier transform. Define

o(z) = / et (t)dt
0

where ¢(t) = \/%:lf?g) and a = —32 + £. Notice that

Then by Fubini we have that

(€)= / eI g(2) dy = / eiéw<76”i¢(t)dt>d$ _ 7%)( / eifrezidx> dt =
0 R

R R 0
7 —e2y o, [ —€2 g, _ [t —ert g, L [ - (1+€2) 7 _
—/go(t)]:(e )dt—/cp(t)\/47rte tdt—/ e e Stdt = e /t e MIHE) gt =
0 0 0 0
_ _ 2 _ (1+£2)_8 r e—1_-—s _ 2\—¢
—[3—(1—1—5)1&}—“6)0/3 e *ds = (14 &%)



6. Prove that if f € L! is continuous, bounded and with a non-negative Fourier transform, then f €L

Solution: Let #(z) = e~12* and for R > 0 define 65 to be

2
Jz|

Or(x) :=60(x/R) =€ &

Claim 1: [0 - fll; < (27)"]|/ .

Proof: The Fourier transform of fg is given by

Since 5 R R 9 9
2I12R2 n |12R2 n n L

[ e n I [ Rt |y = o] = [ = Tt

Rn R R™
we obtain that

. non _ leI?R? n
16mll = "3 /e £ de = (27)
R'ﬂ.

By Fubini, we have that

. [7sal — vt = [ ([ e pade \de =
||0R-f||1[fzo] [ ont@)- feae / ( [ e s )ds

R™ R

- / f(x)( / eife-wdf)dx - / @)z < | flloolBrlh = @) flloe
R™ Rn

Rn

For any « € R™ we have that R — 0r(z) is non-decreasing, and that

lim Or(z) =1

R—o0

Thus the monotone convergence theorem implies that

Ifll = Jim (|65 fllx < 27)"[|fllee < o0
eade el

which means that f € L. g



