Harmonic Analysis, homework assignment no. 3

Please submit your solution in pdf format by Monday, June 22 at 2PM at the link: https://www.dropbox.com/request/40YmvQmDqBf1mbxCpuCU

You are asked to solve at least 4 questions.

1. A tempered distribution $F \in S^*$ is supported in a closed set $F \subseteq \mathbb{R}^n$ if $F(\varphi) = 0$ for all $\varphi \in S$ with $\overline{Supp(\varphi)} \subseteq \mathbb{R}^n \setminus F$.

Prove that if $F \in S^*$ is supported at $\{x_0\}$ for some $x_0 \in \mathbb{R}^n$, then F takes the form $F = \sum_{|\alpha| < N} a_{\alpha} \partial^{\alpha} \delta_{x_0}$ for some $N \ge 0$ and coefficients $a_{\alpha} \in \mathbb{C}$.

2. A tempered distribution $F \in S^*$ is \mathbb{Z}^n -periodic if $F(\varphi) = F(\tau_k \varphi)$ for all $k \in \mathbb{Z}^n, \varphi \in S$ where $\tau_k \varphi(x) = \varphi(x - k)$.

Prove that $F \in S^*$ is \mathbb{Z}^n -periodic if and only if $\hat{F} = \sum_{k \in \mathbb{Z}^n} a_k \delta_{2\pi k}$ for numbers $a_k \in \mathbb{C}$ $(k \in \mathbb{Z}^n)$ called the Fourier coefficients.

3. Prove the Poisson summation formula: For any $f \in S$,

$$\sum_{k \in \mathbb{Z}^n} f(k) = \sum_{k \in \mathbb{Z}^n} \hat{f}(2\pi k).$$

(e.g., by using the \mathbb{Z}^n -periodization $F(x) = \sum_{k \in \mathbb{Z}^n} f(x+k) \in \mathcal{S}^*$).

4. Complete the proof sketched in class of the following formula: For any compactlysupport Borel measure μ on \mathbb{R}^n and any 0 < t < n,

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{1}{|x-y|^t} d\mu(x) d\mu(y) = c_{n,t} \int_{\mathbb{R}^n} \frac{1}{|\xi|^{n-t}} |\hat{\mu}(\xi)|^2 d\xi.$$

(Carefully justify all passages. Recall that the Fourier transform of $|x|^{-t}$ is $c|\xi|^{t-n}$).

5. (Mattila-Orponen) Let $A, B \subset \mathbb{R}^2$ be two compacts, both of Hausdorff dimension greater than one. Prove that with positive probability of choosing the unit vector $\theta \in S^1$, the intersection $P_{\theta}(A) \cap P_{\theta}(B) \subseteq \mathbb{R}$ has a positive Lebesgue measure. Here $P_{\theta}(x) = \langle x, \theta \rangle$.

(Hint: As in class, take Frostman measures μ and ν , recall that $\mu_{\theta} = (P_{\theta})_* \mu \in L^2(\mathbb{R})$ for almost any $\theta \in S^1$, and show that the θ -average of $\langle \mu_{\theta}, \nu_{\theta} \rangle$ is positive).

6. Let $f \in S$ satisfy $Supp(\hat{f}) \subseteq \{\xi \in \mathbb{R}^n ; R/2 < |\xi| < 2R\}$ for some R > 0. Prove that $R \|f\|_{\infty} \leq C \|\nabla f\|_{\infty}$ for some C > 1 depending on n.