Harmonic Analysis, homework assignment no. 4

Please submit your solution in pdf format by Monday, July 20 at 2PM at the link: https://www.dropbox.com/request/MirW0BEcgJgPZsXuQWvX

You are asked to solve at least 4 questions, at least one of them from questions 5–8.

1. Prove that for any $f \in C_c^{\infty}(\mathbb{R}^n)$, its Hilbert transform g = Hf satisfies

$$\lim_{t \to \pm \infty} tg(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} f$$

When does $g \in L^1(\mathbb{R})$? and when does $g \in L^2(\mathbb{R})$?

2. Show that the Hilbert transform is *not* bounded from $L^1 \cap C^0$ to C^0 , where C^0 is the space of continuous functions on \mathbb{R} equipped with the L^{∞} -norm.

[Hint: φ a bump function on $[\varepsilon^2, \varepsilon]$).

3. Let $k \ge 0$ and let $m(\xi)$ be a k-homogeneous function which is smooth and nonvanishing in $\xi \in \mathbb{R}^n \setminus \{0\}$. Let $f, g \in L^1(\mathbb{R}^n)$ satisfy

$$\hat{g}(\xi) = m(\xi)f(\xi) \qquad (\xi \neq 0).$$

Prove that for any 0 < s < 1, if $g \in C^s$ then $f \in C_{loc}^{k,s}$.

4. Let K(x, y) be a smooth function of $x, y \in \mathbb{R}^n$, such that for any multiindices α, β and N > 0 there exists a smooth, moderately growing function $A(x) = A_{\alpha,\beta,N}(x) >$ 0 for which $|\partial_x^{\alpha} \partial_y^{\beta} K(x, y)| \leq A(x)/(1 + |y|)^N$ throughout $\mathbb{R}^n \times \mathbb{R}^n$. Consider the integral operator

$$Tf(x) = \int_{\mathbb{R}^n} K(x, y) f(y) dy$$

initially defined for $f \in S$. Explain how to define T on S^* , and prove that T maps tempered distributions to C^{∞} -functions.

[Hint: Recall the proof that $F * \varphi$ is C^{∞} for $F \in S^*$ and $\varphi \in S$.]

5. Let $a_1, a_2, \ldots \in S^m$ be a sequence of symbols that converges pointwise to a function $a(x, \xi)$. Assume that $a_k \in S^m$ with uniform estimates in k, in the sense that for any multi-indices α, β there exists $A_{\alpha,\beta} > 0$ such that

$$\left|\partial_x^{\alpha}\partial_{\xi}^{\beta}a_k(x,\xi)\right| \le A_{\alpha,\beta}(1+|\xi|)^{m-|\beta|}$$

for all $x, \xi \in \mathbb{R}^n$ and $k \ge 1$. Prove that $a \in S^m$ with the same bounds, and that for any $\varphi \in S$ we have the convergence $Op[a_k]\varphi \longrightarrow Op[a]\varphi$ in the topology of S.

- 6. Let $a_1, a_2, \ldots \in S^m$ be a sequence of symbols with uniform estimates such that $Op[a_k]\varphi \longrightarrow Op[a]\varphi$ pointwise for any $\varphi \in S$. Prove that $a_k \longrightarrow a$ pointwise in $\mathbb{R}^n \times \mathbb{R}^n$. [Hint: $\hat{\varphi} \in S$ a bump near ξ_0].
- 7. Let $a \in S^m, b \in S^\ell$ and $\gamma \in C_c^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ with $\gamma(0) = 1$. Set $a_{\varepsilon}(x,\xi) = a(x,\xi)\gamma(\varepsilon x,\varepsilon\xi)$ and similarly $b_{\varepsilon}(x,\xi) = b(x,\xi)\gamma(\varepsilon x,\varepsilon\xi)$. Set $c_{\varepsilon} = a_{\varepsilon} \sharp b_{\varepsilon}$.
 - (a) Prove that there exists a subsequence $\varepsilon_k \searrow 0$ such that $c_{\varepsilon_k}(x,\xi)$ converges pointwise as $k \to \infty$ to some function $c(x,\xi)$. Prove that $c \in S^{m+\ell}$ with the same estimates and the same asymptotic expansion proven in class for c_{ε} .
 - (b) Prove that $Op[c] = Op[a] \circ Op[b]$ as operators acting on S.
- 8. Let $a \in S^m$ and $\gamma \in C^{\infty}_C(\mathbb{R}^n \times \mathbb{R}^n)$ with $\gamma(0) = 1$. Set $a_{\varepsilon}(x,\xi) = a(x,\xi)\gamma(\varepsilon x,\varepsilon\xi)$. Define $Op[a]^*$ via $\langle Op[a]f,g \rangle = \langle f, Op[a]^*g \rangle$ for any $f,g \in S$. Define

$$a_{\varepsilon}^{*}(x,\xi) = (2\pi)^{-n} \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} e^{i(x-y) \cdot (\eta-\xi)} \overline{a_{\varepsilon}(y,\eta)} dy d\eta.$$

Prove that $Op[a_{\varepsilon}^*]\varphi \longrightarrow Op[a]^*\varphi$ pointwise for any $\varphi \in S$ as $\varepsilon \to 0$. Bonus: Prove that $Op[a]^* \in S^m$ with an asymptotic expansion.