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Abstract

In the context of his work on maximal functions in the 1980s, Jean Bourgain came across
the following geometric question: Is there c > 0 such that for any dimension n and any
convex body K ⊆ Rn of volume one, there exists a hyperplane H such that the (n − 1)-
dimensional volume of K ∩H is at least c? This innocent and seemingly obvious question
(which remains unanswered!) has established a new direction in high-dimensional geom-
etry. It has emerged as an “engine” that inspired the discovery of many deep results and
unexpected connections. Here we provide a survey of these developments, including many
of Bourgain’s results.

Foreword by V. Milman: Some historical reminiscences
In August 1984 I visited Jean Bourgain for a couple of days in Brussels where he worked

at the time. We intended to spend a year together at IHES, Paris (during the 1984-85 academic
year). Jean was preparing his trip to Leningrad (now St. Petersburg) in September, and I wanted
to see him before he left (I had many colleagues and friends there). When he brought me to
the train station on my way back to Paris he proposed the following question: “Let K be a
centrally-symmetric convex body in Rn; let V ol(K) = 1. Does there exist u ∈ SLn such that all
hyperplane central sections of u(K) will have around the same (n− 1)-dimensional volume?”

To say more precisely for the non-experts: Is there a universal number C (independent of
anything, including the dimension n) such that for every (n − 1)-dimensional subspace H the
following holds:

1

C
a ≤ V oln−1(u(K) ∩H) ≤ Ca? (1)

Here C means a universal constant, as usual. Jean added that the question had arisen in his work
on maximal functions.

During the train trip back to Paris, I suddenly realised that some of our recent joint obser-
vations with Gromov (see Lemma 1 in [21]) on some consequences of the Brunn-Minkowski
inequality may lead to the answer (see Lemma 2 in [21]).

I informed Jean about this upon arriving to Paris. This result of Jean on maximal functions
was published in 1986 in Amer. J. Math [21]. I should note here that only a few years later
did we learn about Hensley’s paper [45] where isotropic position and Lemma 2 were already
considered for problems of analytic number theory.
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However going back to 1984/85, Jean asked me a few months later whether the number
“a” in (1), which already depended on the body K, is actually uniformly independent of the
dimension n, bounded from below? He knew how to prove that it is bounded from above (by
its value for the euclidean ball of volume 1). “I don’t need this information for my paper” -
Jean said - “this number is cancelled in computations; but, I feel I should know it if I need to
use it”. Jean thought that I may see some geometric point from which it will easily follow, and
indeed I thought at first it would be easy: If “a” for some K is extremely small this means that
all central hyperplane sections have a very small volume for a body of volume 1. It looks very
counter-intuitive, however, it is not yet proved, 35-years later.

The question appears in the ”Remark” after Lemma 2 in [21]. Shortly after Alain Pajor and I
produced some advanced study of the isotropic position and this problem [82] and demonstrated
some equivalent problems. In the meantime Jean proved a lower bound of 1

n0.25 logn
(see [22])

and 20 years later Boaz Klartag improved upon it to obtain the better lower bound, of 1
n0.25 by a

different approach.

It is surprising and striking how far-reaching and how consequential this problem has become.
We will demonstrate this in this survey.

Jean had revisited the aforementioned problem many times, from his 1986 congress talk in
Berkeley [23] to his works [24, 25, 26] in later years.

I was told once by Jean that he had spent more time on this problem and had dedicated more
efforts to it than to any other problem he had ever worked on. A few months before his passing,
Jean wrote to me again, inquiring about any recent progress. He wanted to know the answer
before he would leave.

1 Introduction
The classical Busemann-Petty problem, which is closely related to the slicing problem, reads
as follows: Let K and T be centrally-symmetric convex bodies in Rn and V oln−1(K ∩ θ⊥) ≤
V oln−1(T ∩ θ⊥) for all θ ∈ Sn−1 = {x ∈ Rn ; |x| = 1}. Does it follow that V olnK ≤ V olnT ?
Here θ⊥ = {x ∈ Rn ; 〈x, θ〉 = 0} is the hyperplane orthogonal to θ. This is Problem 1 in [30],
where it is shown that the answer is affirmative when K is an ellipsoid.

For general K and T , the answer to the Busemann-Petty question turned out to be “yes” for
dimensions n ≤ 4. However, surprisingly, the intuition breaks and for dimensions n ≥ 5 it does
not hold (see the book by Gardner [39] and Koldobsky [63] for history and references). In fact,
the intuition in high dimension fails so miserably and the computations are so difficult, that the
counter-example in a sufficiently high dimension is simple to describe: Just take K for the cube
and T for a Euclidean ball, as shown by K. Ball [5, 7]. Indeed, for n ≥ 10, K = [−1/2, 1/2]n

and for T a Euclidean ball of volume 9/10 centered at the origin in Rn,

V oln−1(K ∩ θ⊥) ≤
√

2 < 0.9
√
e ≈

Γ
(
n
2

+ 1
)(n−1)/n

Γ
(
n+1

2

) · 0.9(n−1)/n = V oln−1(T ∩ θ⊥).
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In order to overcome this obstruction, a question that looks more sensible to us today is the
following:

Question 1.1. LetK,T ⊆ Rn be centrally-symmetric convex bodies such that V oln−1(K∩θ⊥) ≤
V oln−1(T ∩ θ⊥) for all θ ∈ Sn−1. Does it follow that V olnK ≤ C · V olnT for some universal
constant C?

In particular, is it true that there exists a constant c > 0 (perhaps, very small) such that
for every dimention n and for any convex centrally-symmetric body K ⊂ Rn, if V oln−1(K ∩
θ⊥) < c for every θ ∈ Sn−1 then V olnK ≤ 1? This is the essence of the slicing problem,
sometimes referred to as the hyperplane conjecture. The assumption of central-symmetry is not
very essential (see e.g. [50]), and Question 1.1 is in fact equivalent to the following:

Question 1.2. Let K ⊂ Rn be a convex set of volume one. Does there exist a hyperplane
H ⊂ Rn, such that

V oln−1(K ∩H) > 1/C

for some universal constant C > 0, independent of the dimension n?

This is known as Bourgain’s slicing problem. It is not just a nice riddle; A positive answer
would have several consequences in convex geometry. In fact, in some sense the hyperplane con-
jecture is the “opening gate” to a better understanding of uniform measures in high dimensions.
It is simpler and it is implied by the thin shell problem of Anttila, Ball and Perisinnaki [2] and by
the conjecture of Kannan, Lovász and Simonovits (KLS) on the isoperimetric inequality in con-
vex sets [48], which we discuss below. In fact, the slicing problem appears virtually in any study
of the uniform measure on convex sets in high dimension. Here is a sample of entirely equivalent
formulations of Question 1.2 mostly taken from [82]. We write A ' B if cA ≤ B ≤ CA for
some universal constants c, C > 0.

1. Let K ⊂ Rn be a convex body (i.e., a non-empty, bounded, open convex set). Does there
exist an ellipsoid E ⊂ Rn, with V olnE = V olnK, such that V oln(K ∩ CE)/V oln(K) ≥
1/2, where C > 0 is a universal constant?

2. Let K ⊂ Rn be a convex body. Select n + 2 independent, random points according to the
uniform measure on K. Let p(K) be the probability that these n+ 2 points are the vertices
of a convex polytope. Is it true that (1 − p(K))1/n ' 1/

√
n? This question is known as

the Sylvester problem.

3. Let K ⊂ Rn be a convex body of volume one. Is it true that there exists a volume-
preserving, affine map T : Rn → Rn, such that

V oln−1(T (K) ∩H) ' 1

for any hyperplane through the origin H ⊂ Rn?
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4. Let K ⊂ Rn be a convex body. Denote by Cov(K) the covariance matrix of a random
vector that is distributed uniformly in K. In Bourgain’s notation, the isotropic constant of
K is defined as

LK =
det(Cov(K))

1
2n

V oln(K)
1
n

. (2)

The isotropic constant is invariant under invertible, affine transformations. It is known that
(2πe)−1/2 + o(1) ≤ LK for any convex body in Rn (the minimizer is the Euclidean ball or
an ellipsoid). Is it true that LK < C, for some universal constant C > 0, independent of
the dimension?

However, let us now take a step back. The slicing problem is part of the study of measures
in a high-dimensional space. One of the earliest results on probability distributions in high-
dimensional spaces is of course the classical central limit theorem: The sum of independent
random variables is approximately Gaussian when the number of variables approaches infinity,
under quite general assumptions. In other words, for large n, suppose that f1, . . . , fn are proba-
bility densities on the real line of mean zero and variance one, satisfying certain mild regularity
conditions. Then the integral ∫

Ht

n∏
i=1

fi(xi)

with Ht = {x ∈ Rn ;
∑n

i=1 xi = t
√
n}, is approximately the Gaussian density e−t2/2/

√
2π.

Therefore the value of this integral does not depend too much on the specific form of the densi-
ties we started with, and the behavior is asymptotically universal. This is a marvelous effect of
universality in high dimensions, indicating that when viewed correctly, high-dimensional mea-
sures exhibit regularity and order rather than incomprehensible complications.

Another example for regularity in high dimensions is Dvoretzky’s theorem, which asserts that
any high-dimensional convex body has nearly Euclidean sections of a large dimension, see [81]
and references therein for background. Thus the symmetries of the Euclidean ball appear, even
though we made only minimal assumptions: only convexity and the high dimension. The central
limit theorem and Dvoretzky’s theorem are high-dimensional effects that lack clear analogs in
low dimensions.

As it turns out, there are motifs in high-dimensional geometry which seem to compensate
for the difficulties that arise from high dimensionality. One of these motifs is the concentration
of measure phenomenon. Quite unexpectedly, a scalar Lipschitz function on a high-dimensional
space behaves in many cases as if it were a constant function. For example, if we sample five
random points from the n-dimensional unit sphere, for large n, and substitute them into a 1-
Lipschitz function, then we will almost certainly obtain five numbers that are very close to one
another. This phenomenon is reminiscent of the well-known geometric property that in the high-
dimensional Euclidean sphere, “most of the mass is close to the equator, for any equator”. This
geometric property, which follows from the isoperimetric inequality, is unthinkable in, say, three
dimensions. Since the second-named author’s proof of Dvoretkzy’s theorem in the 1970s, the
concentration of measure has become a major tool in high-dimensional analysis.
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It was a big surprise in the 1970s and 1980s that the asymptotic behavior (i.e., when the di-
mension increases) of high-dimensional normed spaces is “well organized” and not chaotic, as
one could expect from the intuition which was based, perhaps, on exponential growth of entropy
(=covering) for n-dimensional spaces. However, the concentration of measure balances the ex-
ponentially high entropy of n-dimensional spaces and leads to a “regularity” in high dimension,
limiting the “geometric diversity” in high dimensions. The absolute constants involved in the
analysis may balance the rate of exponential decay (coming from concentration) with the rate
of exponential expansion (coming from covering/entropy). Surprisingly, both exponents have
“roughly” the same order of decay via expansion by dimension and only a constant factor is
needed in order to compensate and obtain a regularity result in high dimensions. The constant
factors in the exponent are needed for compensation, and this explains the “isomorphic” nature
of the results, the fact that absolute constants appear in their formulation.

So, a new intuition had to be created roughly four decades ago, and it was built upon results
which showed very regular patterns. Today we may state that these results were observed roughly
in two different forms:

(a) Geometric and structural results (e.g., Dvoretzky’s theorem, Quotient of Subspace Theo-
rem, Ramsey’s theorem in Combinatorics).

(b) The uniform measure distribution (volume behavior) in high-dimensional convex bodies.

In both of these forms there is striking regularity and almost no pathology when the dimension
increases. Bourgain’s slicing problem had a major influence on (b), and the entire direction
actually stemmed from his conjecture and his work. The Bourgain-Milman inequality [27] is
one of the results from that period of time that is closest to a bridge between (a) and (b).

The spatial arrangement of volume due to the geometry of Rn, for large n, imposes rigidity
on convex sets and convexity-related measures. Convexity is one of the ways in which one
may harness the concentration of measure phenomenon in order to formulate clean, non-trivial
theorems. The Brunn-Minkowski inequality from the end of the 19th century states that for any
non-empty Borel sets A,B ⊆ Rn,

|A+B|1/n ≥ |A|1/n + |B|1/n, (3)

where A + B = {x + y ;x ∈ A, y ∈ B} and |A| is the volume of the set A. The Brunn-
Minkowski inequality is a close relative of the isoperimetric inequality, and equality holds in (3)
essentially only when A and B are congruent convex bodies. In addition to (1) above, let us
mention another consequence of the Brunn-Minkowski theory: The reverse Hölder inequalities,
proven by Berwald [13] and Borell (see [82] or Borell’s papers [17, 18, 20]). For any convex
body K ⊆ Rn, a linear functional f : Rn → R and p, q > 0,(∫

K

|f(x)|p dx
|K|

)1/p

≤ C

(∫
K

|f(x)|q dx
|K|

)1/q

(4)

where C = Cp,q > 0 depends solely on p, q and neither on K nor on the dimension n. This
amusing property of convex domains goes beyond linear functionals. Suppose now that f :
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Rn → R is an arbitrary polynomial of degree at most d. Bourgain proved in his paper [22] that
(4) holds true in this case, with the constant C depending only on p, q and d, and not on the
convex body or the dimension. These results serve as evidence for the general hypothesis, that
in many respects the uniform measure on a high-dimensional convex body resembles a Gaussian
measure.

In the same paper [22] Bourgain proved that the constant C from Question 1.2 (or Question
1.1) may be replaced by Cn0.25 log n. The logarithmic factor was later removed by the first-
named author in [51]. We proceed with a more detailed account of the development of the study
of the regularity of high-dimensional convexity-related measures, and the major influence that
Jean Bourgain had on this development.

2 The isotropic position
The covariance matrix Cov(K) = (Covij(K))i,j=1,...,n of a convex body K ⊂ Rn is given by

Covij(K) =

∫
K

xixj
dx

V oln(K)
−
∫
K

xi
dx

V oln(K)

∫
K

xj
dx

V oln(K)
. (5)

When V oln(K) = 1, its isotropic constant satisfies L2n
K = det Cov(K), according to (2).

A convex body K ⊂ Rn of volume one is isotropic (or in isotropic position) if its barycenter
lies at the origin and its covariance matrix is a scalar matrix. Any convex body K ⊂ Rn can
be transformed into an isotropic convex body by applying an affine transformation of the form
Tx = αCov(K)−1/2x+ v for appropriate α > 0 and v ∈ Rn. It follows from (2) that when K is
isotropic,

Cov(K) = L2
K · Id. (6)

In other words, when K is isotropic, for any θ ∈ Sn−1,∫
K

〈x, θ〉2dx = L2
K . (7)

It follows from (6) that for any convex body K ⊆ Rn with V oln(K) = 1 and for any invertible
linear map T : Rn → Rn,

L2
K ≤

1

n| detT |2/n

∫
K

|Tx|2dx. (8)

Indeed, it suffices to prove (8) in the case where K is isotropic. In this case the right-hand side of
(8) equals L2

K · Trace[T ∗T ]/(n| detT |2/n) ≥ L2
K , by the arithmetic-geometric means inequality.

When K ⊆ Rn is a convex body of volume one with barycenter at the origin, an alternative
definition of L2

K is that it is the minimum of the right-hand side of (8) over all linear transfor-
mations of determinant one. Consequently, for such K ⊆ Rn there exists a linear map T with
det(T ) = 1 and

L2
K =

1

n

∫
K

|Tx|2dx =
1

n

∫ ∞
0

V oln(K \
√
sT−1(Bn))ds ≥ 1

n

∫ κ
−2/n
n

0

[
1− κnsn/2

]
ds = L2

Bn ,

6



where Bn = {x ∈ Rn ; |x| = 1} is the Euclidean unit ball and κn = V oln(Bn). Since L2
Bn =

1/(2πe) + o(1), we conclude that LK > c for some universal constant c > 0.

If K ⊂ Rn is an isotropic convex body, then for any two hyperplanes H1, H2 ⊆ Rn through
the origin,

V oln−1(K ∩H1)

V oln−1(K ∩H2)
≤ C (9)

for a universal constantC > 0. This was proven by Hensley [45] in the case whereK is centrally-
symmetric, and rediscovered by the second-named author in Lemma 2 in [21]. Fradelizi [38]
eliminated the assumption that K is centrally-symmetric, and obtained the sharp bound C ≤

√
6

in (9). In order to prove (9), one fixes a unit vector θ ∈ Sn−1 and denotes

ρ(t) = V oln−1(K ∩ (tθ + θ⊥)).

A crucial property that follows from the Brunn-Minkowski inequality is that ρ is log-concave,
that is, the function log ρ is a concave function (which is allowed to attain the value−∞). There-
fore the proof of (9) boils down to the proof of the following one-dimensional inequality: For
any log-concave probability density ρ : R→ [0,∞) with

∫
tρ(t)dt = 0,

1√
12
≤ ρ(0) ·

√∫ ∞
−∞

t2ρ(t)dt ≤ 1√
2
. (10)

The space of one-dimensional, log-concave probability densities of mean zero and variance one
is compact in the L1-topology. A compactness argument shows that an inequality such as (10)
holds true with some numerical constants. The sharp values of the constants in (10) are due to
Fradelizi [38]. Consequently, whenever K ⊆ Rn is an isotropic convex body, for any hyperplane
H ⊆ Rn through the origin,

1√
12 · LK

≤ V oln−1(K ∩H) ≤ 1√
2 · LK

. (11)

The assumption that H passes through the origin is not entirely necessary for the right-hand
side inequality in (11), if one is willing to increase the constant. This follows from a version of
inequality (10) where ρ(0) is replaced by sup ρ, see Fradelizi [38]. It follows that when K ⊆ Rn

is convex and isotropic, for any hyperplane H ⊆ Rn,

V oln(K ∩H) ≤ 1

LK
. (12)

From (12) we obtain the relatively trivial bound LK ≤ C
√
n for the isotropic constant. Indeed,

since K is convex and of volume one, it cannot have a width larger than 5
√
n in all directions,

as otherwise K−K would contain a Euclidean ball of volume larger than 4n, in contradiction to
the Rogers-Shephard inequality [85]. We recall that this inequality states that V oln(K −K) ≤
4nV oln(K) for any convex body K ⊆ Rn. Pick a direction in which the width of K is at
most 5

√
n, and use Fubini’s theorem to find a hyperplane H orthogonal to this direction with

V oln(K ∩H) ≥ 1/(5
√
n). Now (12) shows that LK ≤ 5

√
n.

7



The idea demonstrated above, of reducing statements on convex bodies to one-dimensional
inequalities pertaining to log-concave functions, is a common theme in convex geometry. For ex-
ample, the reverse Hölder inequality (4) may be proven by reducing matters to a one-dimensional
inequality with log-concave probability densities. A log-concave function in one dimension of a
finite integral decays exponentially at infinity (see, e.g. [52, Lemma 2.1]). It follows (see [82]
or [80]) that for any convex body K ⊆ Rn of volume one, the “ψ1-norm” of a linear functional
f : Rn → R satisfies

‖f‖ψ1(K) ≤ C‖f‖L2(K) (13)

where C > 0 is a universal constant, where ‖f‖pLp(K) =
∫
K
|f |p and where for α ≥ 1,

‖f‖ψα(K) = inf

{
λ > 0 ;

∫
K

exp(|f/λ|α) ≤ 2

}
. (14)

The ψ1-norm of a function f is finite if its value distribution is sub-exponential, and the ψ2-
norm is finite if the distribution is sub-Gaussian. The contrast between ψ1-norm and ψ2-norm,
or between sub-exponential tail and sub-Gaussian tail, lies at the heart of Bourgain’s bound
LK ≤ Cn1/4 log n. Before proceeding with Bourgain’s proof, let us provide a bit of background
on ψ2-processes and on certain results from the local theory of Banach spaces that are related to
Bourgain’s proof. Suppose that µ is a probability measure on Rn, and denote

A := sup
θ∈Sn−1

‖fθ‖ψ2(µ) (15)

where fθ(x) = 〈x, θ〉 and where the ψ2-norm of a function f with respect to the measure µ is
defined analogously to (14) above. A key result by Talagrand [95, 96] continuing the work of
Fernique [35] states that for any norm ‖ · ‖ on Rn,∫

Rn
‖x‖dµ(x) ≤ CA

∫
Rn
‖x‖dγn(x) (16)

where C > 0 is a universal constant, and where γn is the standard Gaussian measure on Rn. The
proof of inequality (16) involves concepts such as majorizing measures and generic chaining.

Bounds for the Gaussian integral of a norm, as on the right-hand side of (16), are of great
importance in the local theory of Banach spaces. One of the most important and useful technical
statements in this direction is the following theorem, which is a combination of three results, by
Lewis [68], by Figiel and Tomczak-Jaegermann [36] and, the most non-trivial, by Pisier [90, 89]
(see also the appendix of [27] for a complete proof):

Theorem 2.1. For any norm ‖ · ‖ on Rn there exists an invertible linear transformation T such
that ∫

Rn
‖Tx‖dγn(x) ·

∫
Rn
‖(T−1)∗y‖∗dγn(y) ≤ Cn log dBM

where ‖ ·‖∗ is the dual norm and where dBM is the Banach-Mazur distance of the norm ‖ ·‖ from
a Euclidean norm. The linear map T determines the so-called `-position.
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When a norm ‖ · ‖ on Rn has K as its unit ball, its Banach-Mazur distance from a Euclidean
norm is

dBM = dBM(K) = inf{rs > 0 ; ∃T : Rn → Rn linear, with r−1Bn ⊆ T (K) ⊆ sBn}. (17)

It is well-known that dBM ≤
√
n, see e.g. [80]. We remark in passing that up to logarithmic

factors, the slicing problem is equivalent to the question of whether the isotropic position is
an `-position, as one may show, see [26] for related results. Theorem 2.1 is a central ingredient
of the original proof of the Bourgain-Milman inequality [27], which states that for any convex
body K ⊆ Rn with barycenter at the origin,

V oln(K)V oln(K◦) ≥ cnV oln(Bn)2 ≥ (c′/n)n, (18)

where K◦ = {x ∈ Rn ; ∀y ∈ K, |〈x, y〉| ≤ 1} is the polar body, i.e., the unit ball of the dual
norm. There are by now several proofs of (18) using methods and ideas from very different parts
of mathematics. Kuperberg’s proof relies on topology [65], Nazarov’s proof on complex analysis
[84], and the proof by Giannopoulos, Paouris and Vritsiou on transportation of measure via the
logarithmic Laplace transform [42] as in Section 4 below. Inequality (18) is a converse to the
Santaló inequality, which states that

V oln(K)V oln(K◦) ≤ V oln(Bn)2,

and may be proven via Steiner symmetrizations [75, 76]. A clever application of Hölder’s in-
equality shows that

∫
Rn ‖x‖dγn(x) ≥ cn · v−1/n where v > 0 is the volume of the unit ball of the

norm ‖ · ‖ in Rn. It thus follows from Theorem 2.1 and from the above that for any norm ‖ · ‖ on
Rn, there exists a linear map T : Rn → Rn of determinant one such that∫

Rn
‖Tx‖dγn(x) ≤ Cn log n · V 1/n (19)

where now V > 0 is the volume of the unit ball of the dual norm ‖ · ‖∗ in Rn.

Let us now return to the proof of Bourgain’s bound for the isotropic constant. It follows from
(7) and from the Markov-Chebyshev inequality that for any isotropic convex body K ⊆ Rn,

V oln(K ∩ (
√

2nLKB
n)) = 1− V oln(K \ (

√
2nLKB

n)) ≥ 1−
∫
K
|x|2dx

2nL2
K

=
1

2
. (20)

The first step of the proof is to use (20) in order to show the following: When replacing K
with K ∩ C

√
nLKB

n, the isotropic constant changes by a factor of at most C, and the new
convex body is still roughly in isotropic position (up to a constant). Thus, it suffices to bound the
isotropic constant of an isotropic convex bodyK ⊆ Rn which satisfies the additional assumption
that

K ⊆ 10
√
nLKB

n. (21)

One corollary of (21) is that for any θ ∈ Sn−1, the linear functional fθ(x) = 〈x, θ〉 satisfies

‖fθ‖L∞(K) ≤ 10
√
nLK .

9



The ψ1(K)-norm of fθ is at most CLK , according to (7) and (13) above. There is a simple
interpolation inequality between the ψ1-norm and the L∞-norm that yields a bound for the ψ2-
norm. Namely, for any θ ∈ Sn−1,

‖fθ‖ψ2(K) ≤
√
‖fθ‖ψ1(K) · ‖fθ‖L∞(K) ≤

√
CLK · 10

√
nLK = C ′n1/4LK . (22)

The proof of the interpolation inequality on the left-hand side of (22) is simple, note that when
sup |f | ≤M , ∫

K

e|f/
√
λM |2 ≤

∫
K

e|f/λ| ≤ 2

if λ ≥ ‖f‖ψ1(K). The next step in Bourgain’s proof is to apply (8), and conclude that for any
symmetric, positive-definite linear map T : Rn → Rn with detT = 1,

nL2
K ≤

∫
K

〈Tx, x〉 ≤
∫
K

sup
y∈TK

|〈x, y〉| =
∫
K

‖Tx‖dx (23)

where ‖x‖ = supy∈K |〈x, y〉| is a norm on Rn whose unit ball is polar to K ∩ (−K). An
interesting feature of the manouver (23) is the comparison between an integral with quadratic
dependence on x, which is reflected in the square of LK on the left-hand side, and an integral
whose dependence on x is not quadratic but only linear. Next, thanks to (22) we may apply the
Talagrand bound (16) and conclude that

nL2
K ≤

∫
K

‖Tx‖dx ≤ Cn1/4LK

∫
Rn
‖Tx‖dγn(x). (24)

Inequality (24) is valid for any linear map T : Rn → Rn of determinant one (the assumption
that T is symmetric and positive-definite is immaterial due to the symmmetries of the Gaussian
measure). We may now choose T to be a map leading to `-position, and apply Pisier’s bound in
the form of inequality (19) above. This shows that

nL2
K ≤ Cn1/4LK · n log n · V oln(K ∩ (−K))1/n ≤ C ′n1/4LK · n log n.

This completes the proof of Bourgain’s bound LK ≤ Cn1/4 log n.

In his paper [21], Bourgain claimed a positive answer to the slicing problem in the case where
K ⊆ Rn is unconditional, i.e., when for any x = (x1, . . . , xn) ∈ Rn,

(x1, . . . , xn) ∈ K ⇐⇒ (|x1|, . . . , |xn|) ∈ K.

In this case, one may use the Loomis-Whitney inequality [70], which is valid for any compact
set in Rn:

V oln(K) ≤
n∏
i=1

V oln−1(Proje⊥i K)1/(n−1), (25)

where Proje⊥i is the orthogonal projection onto the hyperplane e⊥i , and ei is the ith-standard
unit vector in Rn. When K is convex and unconditional, Proje⊥i K = K ∩ e⊥i . Hence (11)
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and (25) imply that LK ≤ 1/
√

2 when K is convex and unconditional (this numerical constant
may be improved). Moreover, if K ⊆ T and T is an unconditional convex body such that
V oln(T )/V oln(K) ≤ An, it is known that LT ≤ CA, see [82] or the recent book by Brazitikos,
Giannopoulos, Valettas and Vritsiou [12], a large part of which is concerned with the slicing
problem.

In addition to unconditional bodies, there are other classes of convex bodies for which an
affirmative answer to the slicing problem is known. These include zonoids [86], their duals,
more generally subspaces and quotients of Lp spaces [8, 46, 47, 77], unit balls of Schatten class
norms [64], random convex bodies [58], 2-convex bodies and other examples described in [12].

In [24] Bourgain proved the boundness of the isotropic constant for “ψ2-bodies” which are
convex bodies for which the ψ1-estimate (13) can be upgraded to a ψ2-estimate. That is, for a
convex body K ⊆ Rn of volume one with barycenter at the origin, and for 1 ≤ α ≤ 2, we write
bα(K) to be the minimum b > 0 such that for any linear functional f : Rn → R,

‖f‖ψα(K) ≤ b‖f‖L2(K).

Thus b1(K) ≤ C according to (13), while for ellipsoids E ⊆ Rn we have b2(E) ≤ C. Bourgain
proved that LK ≤ Cb2(K) log b2(K), and the logarithmic factor was later removed by the first-
named author and E. Milman in [62] using methods related to those described in Section 4 below.
The current state of the art is the bound LK ≤ C

√
bα(K)αn1−α/2 for any 1 ≤ α ≤ 2, from [62].

A class of convex bodies in high dimensions with favorable properties is the class of convex
bodies of a finite volume ratio, a notion introduced by Szarek and Tomczak-Jaegermann [93, 94].
These are centrally-symmetric convex bodies K ⊆ Rn that contain an ellipsoid E such that
V oln(K)/V oln(E) ≤ Cn for a universal constantC. Dvoretzky’s theorem assert that an arbitrary
convex body in Rn has a k-dimensional section that is approximately Euclidean for k of the
order of magnitude of log n. This estimate is dramatically improved in the class of finite-volume
ratio bodies, and it was proven by Kashin [49] and then using this terminology by Szarek and
Tomczak-Jaegermann [93, 94] that such bodies contain an approximately Euclidean section of
dimension k ≥ cn. In our joint work with Bourgain [25, 26], we proved that the validity of the
hyperplane conjecture in the class of finite-volume ratio bodies, would imply its validity in the
class of all convex bodies. This is proven via a method based on Steiner symmetrization.

We move on to describe yet another equivalent formulation of the slicing problem, which is
also related to Steiner symmetrizations. Let K ⊆ Rn be a convex body and let H = h⊥ ⊆ Rn be
a hyperplane, where h ∈ Sn−1 is a unit vector. Define the Steiner symmetral of K with respect
to H as the set:

SH(K) =

{
x+ th ;x ∈ H, t ∈ R, K ∩ (x+ Rh) 6= ∅ , |t| ≤ 1

2
Meas{K ∩ (x+ Rh)}

}
where Meas is the one-dimensional Lebesgue measure in the line x+ Rh. Steiner symmetriza-
tion preserves the volume of the set K and it transforms convex sets to convex sets. Applying
consecutive Steiner symmetrizations with respect to a seqeunce of hyperplanes makes K “more
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symmetric”, or “closer to a Euclidean ball”. It was proven in [59] that for any convex body
K ⊆ Rn with V oln(K) = V oln(Bn) there exist 3n Steiner symmetrizations that transform K
into a convex body K̃ with

1

C
Bn ⊆ K̃ ⊆ CBn. (26)

When K̃ satisfies (26) we say that it is an “isomorphic Euclidean ball”. If one applies only n− `
symmetrizations for some positive `, then there exists an `-dimensional projection of K that
remains unchanged in the symmetrization process. Hence at least n−O(1) symmetrizations are
required to arrive at an isomorphic Euclidean ball as in (26), or even at an isomorphic ellipsoid.
However, there exist certain special convex bodies, such as the unit cube, that can be transformed
into an isomorphic ellipsoid using fewer symmetriztions. Given a convex body K ⊂ Rn and a
function c(ε) (0 < ε < 1), we say that “K is c(ε)-symmetrizable” if for any ε > 0 there exist
bεnc Steiner symmetrizations that transform K into a convex body K̃ with

dBM(K) < c(ε)

where dBM(K) is the Banach-Mazur distance between K and a Euclidean ball, defined analo-
gously to (17) above. For example, the cube [−1, 1]n is c(ε)-symmetrizable for c(ε) = C

√
| log ε|/ε.

Suppose that we are allowed to remove 10% of the mass of a convex body K. Can we now apply
only εn Steiner symmetrizations, and obtain a body that resembles an ellipsoid, up to a universal
constant?

Question 2.1. Does there exist C, d > 0, such that for any dimension n and for any convex body
K ⊆ Rn, there exists a convex body T ⊆ K with V oln(T ) > 0.9 · V oln(K) such that T is
(C/ε)d-symmetrizable?

In [60] it is proven that Question 2.1 has an affirmative answer if and only if Bourgain’s
hyperplane conjecture holds true.

3 Distribution of volume in convex bodies
The assumption that K is convex was used in Bourgain’s proof through the ψ1-bound (13), the
fact that the distribution of values of a linear functional on a convex set has a uniformly subex-
ponential tail. In fact, instead of dealing with the uniform measure on a given convex body
K ⊆ Rn of volume one, we may consider a more general situation: Suppose that µ is a probabil-
ity measure supported on K whose continuous density is denoted by f . Assume that µ satisfies
a ψ1-condition: For any linear functional f : Rn → R,

‖f‖ψ1(µ) ≤ A‖f‖L2(µ),

for some parameter A > 0, where the definition of the ‖ · ‖ψ1(µ) norm is analogous to (14). A
straightforward adaptation of Bourgain’s argument (see the Appendix of [57]) shows that under
these assumptions there exists a hyperplane H ⊆ Rn with∫

H

f ≥ c(A)

n1/4 log n
, (27)
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where c(A) > 0 depends solely on A. Up to the logarithmic factor, the estimate “n1/4 log n” in
(27) is sharp, as shown by the first named author and Koldobsky [57]. Thus Bourgain’s bound
for the slicing problem is sharp up to logarithmic factors, if all that one takes from convexity is
the uniform ψ1-estimate for linear functionals.

Nevertheless, there is more to say about the distribution of volume in convex bodies beyond
the sub-exponential tail of linear functionals. We begin by discussing the point of view empha-
sized by K. Ball [6], that connects between volume distribution of convex bodies and that of
log-concave measures. Recall that a function ρ : Rn → [0,∞) is log-concave if − log ρ is a con-
vex function, which is allowed to attain the value +∞. For example, the characteristic function
of a convex body, that equals one on the body and vanishes elsewhere, is a log-concave function.

A Borel measure on Rn is log-concave if it is supported in an affine subspace with a log-
concave density in this subspace. It was proven by Borell [19] that a finite, Borel measure µ on
Rn is a log-concave measure if and only if the following Brunn-Minkowski type inequality holds
true: For any compacts A,B ⊆ Rn and for any 0 < λ < 1,

µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ. (28)

It follows from (28) that the push-forward of a log-concave measure under a linear map, is again
log-concave. In particular, by projecting the uniform measure on a convex body to a lower-
dimensional subspace, we obtain a log-concave measure on this subspace. Given an integrable
log-concave function ρ : Rn → R with ρ(0) > 0, define

K(ρ) =

{
x ∈ Rn ;

∫ ∞
0

ρ(tx)tndt ≥ ρ(0)

n+ 1

}
. (29)

As shown by K. Ball [6], the set in (29) is always convex. The convexity of K(ρ) is closely
related to the Busemann inequality [29], see [82].

The convex body K(ρ) seems to represent rather well the volume distribution of the measure
µ whose density is ρ. For example, if the barycenter of µ lies at the origin, so does the barycenter
of K(ρ). As in [51], we define the isotropic constant of a log-concave function ρ : R → [0,∞)
with 0 <

∫
ρ <∞ as

Lρ =

(
sup ρ∫
ρ

)1/n

· det Cov(ρ)1/(2n)

where the covariance matrix Cov(ρ) is defined analogously to (5) above. It was proven by Ball
[6] (see also [51]) that we always have

Lρ ' LK(ρ). (30)

Thus the slicing problem is equivalent to the problem of bounding the isotropic constant of
an arbitrary log-concave measure µ on Rn.

A new era in the study of volume distribution in high-dimensional convex sets began in 2005
when Paouris [88] found applications of the following property: For any absolutely-continuous,
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log-concave probability measure µ on Rn, there exists θ ∈ Sn−1 with(∫
Rn
|〈x, θ〉|ndµ(x)

)1/n

'

√∫
Rn
|x|2dµ(x). (31)

This property is proven by associating a certain convex body with the measure µ similarly to
(29) above, see [61] or (better) the short argument in [1]. Note that this property of log-concave
measures does not follow from the ψ1-bound for linear functionals, used in Bourgain’s proof
(e.g., look at the random variable X = RΓ where R is a standard one-dimensional Gaussian,
and Γ is an n-dimensional standard Gaussian independent of R). Recalling that the orthogonal
projection of the uniform measure of a convex body is always log-concave, we conclude the
following from (31): For any isotropic convex bodyK ⊆ Rn and for any `-dimensional subspace
E ⊆ Rn, there exists a unit vector θ ∈ E with(∫

K

|〈x, θ〉|`dx
)1/`

'
√
`LK . (32)

Note that an isotropic convex body K is a ψ2-body if and only if (32) holds true for any θ ∈ Rn

and for any `. Thus property (32) may be viewed as a weak form of a ψ2-estimate, which is valid
for any convex body. Paouris used (32) in order to prove the following large deviation estimate:

Theorem 3.1 (Paouris [88]). Let K ⊆ Rn be an isotropic convex body of volume one. Then for
any t > 1,

V oln({x ∈ K ; |x| ≥ CtLK
√
n}) ≤ e−t

√
n (33)

where C > 0 is a universal constant.

In order to appreciate Theorem 3.1, recall from (20) that

V oln({x ∈ K ; |x| ≤ 2LK
√
n}) ≥ 1/2,

i.e., at least half of the mass of K is located in a ball of radius 2LK
√
n centered at the origin.

Theorem 3.1 tells us that only a tiny fraction, just an e−
√
n-fraction of the mass of K, is located

outside a ball of radius CLK
√
n. This effect is a precursor to the thin shell estimate for isotropic

convex bodies that we will discuss shortly. The Paouris proof of Theorem 3.1 applies the second-
named author’s estimates for the Dvoretzky theorem (see [81]) in the context of the norm

‖y‖Lp(K) = ‖〈·, y〉‖Lp(K) =

(∫
K

|〈x, y〉|pdx
)1/p

(y ∈ Rn).

The unit ball of the dual norm is denoted by Zp(K) ⊆ Rn and it is referred to as the Lp-centroid
body of K, see also Lutwak and Zhang [71]. If K is isotropic, then the set Z2(K) is a Euclidean
ball of radius LK . In the case where K is centrally-symmetric, we have Z∞(K) = K. The
ψ1-estimate for linear functionals on convex bodies (13) is equivalent to the assertion that

Zp(K) ⊆ CpZ2(K) for all p ≥ 1. (34)
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The idea of Paouris was to apply the quantitative theory of Dvoretzky’s theorem, due to the
second-named author [81], to the Lp-centroid bodies. Together with the estimate (34), this quan-
titative theory yields the following: Suppose that K ⊆ Rn is an isotropic convex body and
1 ≤ ` ≤ c

√
n. Then for a random `-dimensional subspace E ⊆ Rn, with high probability, the

orthogonal projection of Z`(K) onto E denoted by

ProjE(Z`(K)) (35)

is an isomorphic Euclidean ball. In other words, the convex body in (35) contains a Euclidean
ball of radius r centered at the origin, and it is contained in a Euclidean ball of radius Cr.
We may now invoke (32) and conclude that r has the order of magnitude of

√
`LK . Thus by

the quantitative estimates revolving around Dvoretzky’s theorem, due to Litvak, Milman and
Schechtman [69],

√
`LK ' r '

(∫
Sn−1

‖y‖`L`(K)dσ(y)

)1/`

'
√
`

n

(∫
K

|x|`dx
)1/`

, (36)

where σ is the rotationally-invariant probability measure on Sn−1. Thus (36) yields estimates for
Lp-moments of the Euclidean norm for all p ≤ c

√
n, which imply that only a fraction of at most

e−
√
n of the volume of K, is located outside a ball of radius CLK

√
n.

The tension between ψ1-estimates and ψ2-estimates for convex bodies, going back to Bour-
gain’s work in the 1980s, is a central issue in the analysis of the slicing problem. Recall that the
inclusion (34) follows from the ψ1-bound, while a ψ2-estimate with constant A would yield that
Zp(µ) ⊆ CA

√
pZ2(µ). In this respect, it is worthwhile to mention yet another equivalent formu-

lation of the hyperplane conjecture, which may be extracted from [62, Remark 3.3]: Question
1.2 has an affirmative answer if and only if for any isotropic convex body K ⊆ Rn and any
1 ≤ p ≤ n,

V ol1/n(Zp(µ)) '
√
p · V ol1/n(Z2(µ)).

A question by the second-named author (see [10, 86, 87]) asks whether for any convex body
K ⊆ Rn there exists a non-zero linear functional ϕ : Rn → R for which

‖ϕ‖ψ2(K) ≤ C‖ϕ‖L2(K),

with a universal constant C. In other words, does any convex body have at least one direction
with a uniformly sub-Gaussian tail? In some sense, a direction where the tail is approximately
exponential resembles a “cone-like behavior” of the convex body (see [52]), and the question is
whether there always exists a direction in which better, sub-gaussian behavior is observed. It was
proven by the first-named author in [52] that the answer is affirmative up to logarithmic factors.
The logarithmic factor that the proof in [52] yielded is log5(t + 1) (in formula (37) below), and
it was subsequently improved to log2(t+ 1) in Giannopoulos, Pajor and Paouris [40] and then to
log(t+ 1) in Giannopoulos, Paouris and Valettas [41]:

Theorem 3.2. Let n ≥ 1 be an integer, and let K ⊂ Rn be a convex body of volume one. Then
there exists a non-zero linear functional ϕ : Rn → R such that for any t ≥ 1,

V oln
(
{x ∈ K; |ϕ(x)| ≥ t‖ϕ‖L1(K)}

)
≤ e−c

t2

log(t+1) (37)
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where c > 0 is a universal constant.

In the case of unconditional convex bodies, the logarithmic factor in (37) is not needed at
all, as proven in Bobkov and Nazarov [15]. In general it is not known whether the logarith-
mic factor is necessary, or equivalently, whether any convex body admits at least one uniformly
sub-Gaussian direction. We move on to discuss the question of the existence of approximately
Gaussian directions. A conjecture that appears in the works of Anttila, Ball and Perissinaki [2]
and Brehm and Voigt [28] suggests that any high-dimensional convex body admits at least one
approximately Gaussian direction. That is, it was conjectured that whenever X is a random vec-
tor in Rn, uniformly distributed in some convex body, then there exists 0 6= θ ∈ Rn such that the
random variable

〈X, θ〉
is approximately a Gaussian random variable. The degree of the approximation is expected to
improve when the dimension n increases. The conjecture clearly holds true in the case where
X is uniform in an n-dimensional cube, by the classical central limit theorem, and in the case
where X is uniform in a Euclidean ball or an ellipsoid, by the so-called Maxwell observation.
The conjecture has turned out to be true in general, as proven by the first-named author [53]:

Theorem 3.3 (“Central limit theorem for convex bodies”). There exists a sequence εn ↘ 0 for
which the following holds: let K ⊂ Rn be a convex body, and let X be a random vector that is
distributed uniformly in K. Then there exist a unit vector θ ∈ Sn−1, t0 ∈ R and V > 0 such that

sup
A⊆R

∣∣∣∣P { 〈X, θ〉 ∈ A } − 1√
2πV

∫
A

e−
(t−t0)

2

2V dt

∣∣∣∣ ≤ εn,

where the supremum runs over all measurable sets A ⊆ R.

Moreover, if the convex body K ⊆ Rn is an isotropic body of volume one, then there exists a
subset Θ ⊆ Sn−1 with σ(Θ) ≥ 1− εn such that for all θ ∈ Θ,

sup
A⊆R
|P { 〈X, θ〉 ∈ A } − P {Z ∈ A } | ≤ εn,

where Z is a Gaussian random variable of mean zero and variance L2
K .

The bound obtained in [54] for εn is εn ≤ C/nα where C, α > 0 are universal constants and
α ≥ 1/15. The optimal exponent α remains unknown.

Theorem 3.3 exposes a universal property of high-dimensional convex bodies: they all have
approximately Gaussian one-dimensional marginals. Moreover, most of these marginals of a
high-dimensional convex body, with the isotropic normalization, are approximately Gaussian. In
fact, this phenomena is not restricted to one-dimensional marginals. As was proven by Eldan and
the first-named author [32], when one projects the uniform measure of an istoropic convex body
K ⊂ Rn to a random k-dimensional subspace E with k ≤ cnα, the probability measure obtained
in E has a density that is approximately Gaussian, both in total variation sense, and in the sense
that the ratio between this density and a Gaussian density in E is very close to 1 in large parts of
the subspace E. Here, c, α > 0 are universal constants.
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Interestingly, the Gaussian approximation property of convex bodies may be reformulated
in terms of a thin shell condition, according to a beautiful general principle that goes back to
Sudakov [92] and to Diaconis and Freedman [31] (see also Anttila, Ball and Perissinaki [2],
Bobkov [14] and von Weizsäcker [97]). This principle reads as follows: suppose that X is any
random vector in Rn with finite second moments, normalized to have mean zero and identity
covariance. Then most of the one-dimensional marginals of X are approximately Gaussian if
and only if the random variable |X|/

√
n is concentrated around the value one, i.e.,

E
(
|X|√
n
− 1

)2

≤ ε,

for a small number ε > 0. These assumptions imply that the Kolmogorov distance between a
typical marginal of X and a Gaussian distribution is bounded by C(ε + n−α) for universal con-
stants C, α > 0, see the formulation in [55]. In other words, typical marginals are approximately
Gaussian if and only if most of the mass of X is concentrated in a “thin spherical shell” whose
radius is

√
n and whose width is much smaller than

√
n. Theorem 3.3 is therefore parallel to the

estimate
σ2
K

n
:= E

(
|X|√
nLK

− 1

)2

≤ C

nα
, (38)

valid for any random vectorX that is distributed uniformly in an isotropic convex bodyK ⊆ Rn,
where C, α > 0 are universal constants. Thus most of the volume of a convex body in high
dimensions, with the isotropic normalization, is contained in a thin spherical shell, whose width
is much smaller than its radius. This complements the Paouris large deviation bound, Theorem
3.1 above. See Figure 1 for an illustration.

The parameter α from (38) is related to the width of the thin spherical shell that contains most
of the mass of an isotropic convex body K ⊆ Rn. The argument in [54] leads to the estimate
α ≥ 1/6, which was improved to α ≥ 1/4 by Fleury [37], to α ≥ 1/3 by Guédon and Milman
[44] and then to α ≥ 1/2 by Lee and Vempala [66] who built upon a stochastic localization
technique of Eldan [34]. In terms of the thin shell parameter σK defined in (38), the current best
bound due to Lee and Vempala [66] is that for any isotropic convex body K ⊆ Rn,

σK ≤ Cn1/4 (39)

where C > 0 is a universal constant. The “1/4” in (39) perhaps reminds us of the best known
result for the slicing problem LK ≤ Cn1/4 from [51], which is up to logarithmic factors due to
Bourgain. This is not fully a coincidence. It was proven by Eldan and the first-named author in
[33] that

sup
K⊆Rn

LK ≤ C sup
K⊆Rn

σK . (40)

Thus any progress on the thin-shell parameter σK beyond the bound (39) would automatically
lead to progress in the slicing problem. It was conjectured in Anttila, Ball and Perissinaki [2]
and in Bobkov and Koldobsky [16] that σK is bounded by a universal constant, perhaps up to
a logarithmic factor. In view of (40), the thin shell conjecture would imply the hyperplane
conjecture.
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Figure 1: The thin-shell and large deviation regimes (illustration by S. Artstein-Avidan).

We move on to a brief discussion of further developments related to the isoperimetric problem
in convex bodies, see e.g. the recent survey by Lee and Vempala [66] for a thorough treatment.
In addition to the isotropic constant LK and the thin shell parameter σK , an important quantity
related to an isotropic convex body K ⊆ Rn is its isoperimetric constant or Cheeger constant,
defined as follows:

1

ψK
:= LK · inf

A⊆K

V oln−1(K ∩ ∂A)

min{V oln(A), V oln(K \ A)}
(41)

where the infimum runs over all subsets A ⊆ K with smooth boundary, and where we recall that
in this paper a convex body K is an open set and K is its closure. In the infimum in (41), we
partition K into two parts so as to minimize the surface area of the interface between them; we
do not include in the surface area the part of ∂A that lies on the boundary ofK, only the interface
between the two parts inside the convex, open set K. The reason for the normalization in (41) is
the following chain of inequalities:

sup
K⊆Rn

LK ≤ C sup
K⊆Rn

σK ≤ C̃ sup
K⊆Rn

ψK ≤ C̄n1/4, (42)

where the suprema run over all isotropic convex bodies in Rn, and where the last inequality
was proven by Lee and Vempala [66]. It was conjectured in Kannan, Lovász and Simonovits
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(KLS) [48] that ψK ≤ C for any isotropic convex body K ⊆ Rn, where C > 0 is a universal
constant. This is a stronger conjecture than slicing, in view of (42). Ball and Nguyen [9] proved
the bound LK ≤ exp(Cψ2

K) for any isotropic convex body in Rn. Eldan reduced the study of the
isoperimetric KLS conjecture to the thin-shell conjecture, up to logarithmic factors. Denoting
ψn = supK⊆Rn ψK and σn = supK⊆Rn ψK it was proven in Eldan’s breakthrough paper [34] that

ψn ≤ C

√√√√log n ·
n∑
`=1

σ2
`

`
,

where C > 0 is a universal constant. It follows that up to factors logarithmic in the dimension,
the thin shell conjecture is equivalent to the isoperimetric KLS conjecture. We summarize
this section by noting that current progress in the thin shell and KLS conjectures stops at n1/4,
which is the best known bound for the seemingly-innocent slicing problem.

4 Bound for the isotropic constant
In this section we provide some details regarding the logarithmic improvement of Bourgain’s
bound for the isotropic constant. This improvement is related to the following theorem due to
the first-named author [51], the so-called isomorphic version of the slicing problem:

Theorem 4.1. Let K ⊂ Rn be a convex body and 0 < ε < 1. Then there exists a convex body
T ⊂ Rn such that

(i) (1− ε)T ⊆ K ⊆ (1 + ε)T .

(ii) LT < C/
√
ε, where C > 0 is a universal constant.

In [56] it is proven that T from Theorem 4.1 can be additionally assumed to be a projective
image of K. Recall that the projective image of a polytope is itself a polytope with the same
number of vertices and faces.

The Paouris large deviation estimate, which is Theorem 3.1 above, implies the following: For
any convex bodies K,T ⊆ Rn, if(

1− 1√
n

)
T ⊆ K ⊆

(
1 +

1√
n

)
T (43)

then
LK ' LT . (44)

Indeed, since isotropic constants are invariant under affine transformations, we may assume that
K is an isotropic convex body. Theorem 3.1 shows that at most an e−10

√
n-fraction of the volume

of K is located outside the ball C
√
nLKB

n. It thus follows from (43) that at most an e−
√
n-

fraction of the volume of T is located outside this ball. The variational characterization (8)
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of the isotropic constant of T now implies that LT ≤ CLK , and (44) follows by symmetry.
Consequently, by substituting ε = 1/

√
n in Theorem 4.1, we conclude that for any convex body

K ⊆ Rn,
LK ≤ Cn1/4,

as advertised. Let us now elaborate on the ideas behind the proof of Theorem 4.1. We are given
a convex body K ⊆ Rn. After translation, we may assume that the barycenter of K lies at the
origin. Consider the logarithmic Laplace transform

F (x) = FK(x) = log

∫
Rn
e〈x,y〉dy.

The function F is smooth and convex in Rn, by the Cauchy-Schwartz inequality. In fact, for any
x ∈ Rn, denoting by µx the probability measure on K with density y 7→ e〈x,y〉−F (x)1K(y), we
have

∇F (x) = bar(µx) and ∇2F (x) = Cov(µx), (45)

where bar(µx) =
∫
ydµx(y) is the barycenter of µx and where ∇2F (x) is the Hessian matrix of

F . Note that ∇F (x) ∈ K for any x ∈ Rn, since µx is a measure supported on K and hence its
barycenter is in K by convexity. The Hessian of F is positive-definite everywhere, according to
(45). This convexity property of F implies that the map x 7→ ∇F (x) is a diffeomorphism from
Rn onto an open subset of K (which is in fact K itself).

Fix 0 < ε < 1 as in the formulation of Theorem 4.1. We may use the point of view of
“transportation of measure”, and change variables as follows:∫

εnK◦
det Cov(µx)dx =

∫
εnK◦

det∇2F (x)dx
“y=∇F (x)′′

=

∫
∇F (εnK◦)

1dy ≤ V oln(K),

as ∇F (εnK◦) ⊆ ∇F (Rn) ⊆ K. In particular, there exists x ∈ εnK◦ such that

det Cov(µx) ≤
V oln(K)

V oln(εnK◦)
= ε−n

V oln(K)2

nnV oln(K)V oln(K◦)
≤
(
C

ε

)n
V oln(K)2, (46)

where the last passage follows from the Bourgain-Milman inequality (18). Let us take a closer
look at the probability measure µx. It is a log-concave measure with density

ρ(y) = e〈x,y〉−F (x)1K(y).

Since x ∈ εnK◦, we know that |〈x, y〉| ≤ εn for all y ∈ K. Hence,

supK ρ

infK ρ
=

supy∈K e
〈x,y〉

infy∈K e〈x,y〉
≤ eεn

e−εn
= e2εn. (47)

Recall the convex body K(ρ) associated with the log-concave density ρ via formula (29). It
follows from (29) and (47) that

(1− Cε)K ⊆ K(ρ) ⊆ (1 + Cε)K
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for some universal constant C > 0. We still need to show that LK(ρ) ≤ C̃/
√
ε, so that Theorem

4.1 would follow with T = K(ρ). In view of (30), it suffices to show that

Lρ ≤ C/
√
ε. (48)

However, since the barycenter of K lies at the origin, we know that ∇F (0) = 0 by (45). Since
F is a convex function, its critical points are global minimum points, and hence F (x) ≥ F (0) =
log V oln(K) for any x ∈ Rn. Consequently, by (46),

Lρ = (sup ρ)1/n · det Cov(ρ)1/(2n) = exp

(
supy∈K〈x, y〉 − F (x)

n

)
· det Cov(ρ)1/(2n)

≤ exp

(
εn− log V oln(K)

n

)
·
((

C

ε

)n
V oln(K)2

)1/(2n)

≤ C̃√
ε
.

This completes the proof of (48), as well as our sketch of the proof of Theorem 4.1.

It is possible to view the hyperplane conjecture as a strong conjectural version of the Bourgain-
Milman inequality and of the M-ellipsoid theory due to the second-named author. We present
two interpretations of this point of view. The first interpretation is related to the strong slicing
conjecture, which suggests that for any convex body K ⊆ Rn,

LK ≤ L∆n =
(n!)

1
n

(n+ 1)
n+1
2n ·
√
n+ 2

, (49)

where ∆n ⊆ Rn is any simplex whose vertices span Rn and add up to zero. This conjecture
holds true in two dimensions. See also Rademacher [91] for supporting evidence. On the other
hand, the Mahler conjecture suggests that for any convex body K ⊆ Rn containing the origin in
its interior,

V oln(K)V oln(K◦) ≥ V oln(∆n) · V oln((∆n)◦) =
(n+ 1)n+1

(n!)2
. (50)

In two dimensions the conjecture was proven by Mahler [73], see also Meyer [74], and see
Barthe and Fradelizi [11] for the case of convex bodies with symmetries. The Bourgain-Milman
inequality established (50) up to a factor of cn, for a universal constant c > 0. In [56] it is shown
that the strong version (49) of Bourgain’s slicing conjecture implies Mahler’s conjecture
(50). Let us also mention in passing that in the centrally-symmetric case, the strong version of
Bourgain’s slicing conjecture is that the isotropic constant is maximized for the cube. If this is
true, then an old conjecture by Minkowski would follow, see Magazinov [72] and also Autissier
[3]. The Minkowski conjecture suggests that for any lattice L ⊆ Rn of unit covolume and for
any x ∈ Rn there exists y ∈ L with

∏n
i=1 |xi − yi| ≤ 2−n.

There is also a second interpretation of the relationship between the slicing problem and the
notion of the M -ellipsoid and the Bourgain-Milman inequality. For a convex body K ⊆ Rn, an
ellipsoid E ⊆ Rn is called an M -ellipsoid for K with constant A if

V oln(E) = V oln(K) and N(K, E) ·N(E , K) ≤ eAn.
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Here, N(K,T ) = inf{N ; ∃x1, . . . , xN ∈ Rn, K ⊆
⋃N
i=1(xi + T )} is the covering number of

K by T , the minimal number of translates of T that may cover K. The second-named author
proved [78, 79] that there exists a universal constant C > 0, such that any convex body K ⊆ Rn

has an M -ellipsoid with constant C. This fact plays an important role in Asymptotic Geometric
Analysis. For example, assume the normalization V oln(K) = V oln(Bn), and let u ∈ SLn be
such that u(E) = Bn. Set K1 = u(K). Then for any 0 < λ < 1, with high probability of
choosing a random bλnc-dimensional subspace E ⊆ Rn, the convex body

ProjE(K1)

is a convex body of finite volume-ratio, with a volume-ratio constant depending solely on λ. It
was observed by K. Ball [4] that for an isotropic convex body K ⊆ Rn, the Euclidean ball of
volume one is an M -ellipsoid for K with a constant depending solely on LK . Hence, a positive
solution to the slicing problem, i.e., a universal bound on LK , would imply the theorem on the
existence of the M -ellipsoid.

Note that the M -ellipsoid is an isomorphic notion: if E is an M -ellipsoid for K with constant
A and K/2 ⊆ T ⊆ 2K, then a homothetic copy of E of volume V oln(T ) is also an M -ellipsoid
of T with constant 4α. Therefore Theorem 4.1 implies the existence of an M -ellipsoid for any
K, with some universal constant C > 0.
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