
On Yuansi Chen’s work on the KLS conjecture

Lectures by Bo’az Klartag∗

Winter School at the Hausdorff Institute, January 2021

Lecture 1 – Background on the KLS conjecture
The KLS conjecture is a question regarding the isoperimetric inequality in high-dimensional
convex bodies, which has several consequences in high-dimensional geometry. Six and a half
weeks ago, Yuansi Chen uploaded a preprint to the arXiv which represents significant progress
towards this conjecture. These three lectures are devoted to this progress, and to the many ideas
upon which it builds.

Isoperimetry: Let (X, d, µ) be a measure-metric space, i.e., (X, d) is a metric space and µ a
Borel measure on X . Each measurable subset A is associated with its measure µ(A), as well as
with its boundary measure

µ+(∂A) = lim inf
ε→0+

µ(A+ ε)− µ(A)

ε

where A+ ε = {x ∈ X ; infy∈A d(x, y) < ε} is the ε-neighborhood of A.

Example: Assume that X = K ⊆ Rn is an open set with smooth boundary (Lipschitz is
enough). Now d is the Euclidean metric in Rn. The measure µ has a density p : K → [0,∞),
continuous up to the boundary. Then for a domain A ⊆ Rn with smooth boundary,

µ+(∂A) =

∫
K∩∂A

p.

Isoperimetric problem in (X, d, µ): For a fixed t > 0, among allA ⊆ X of measure t, minimize
the boundary measure µ+(∂A).

Exact solution: In Rn, Sn,Hn, half-space, Bn. The hamming cube {0, 1}n if we slightly change
the definition of the boundary measure, ε = 1 in place of a limit. An example which is relevant
to us is

(Rn, dEuclid, γn)

∗Videos should be available at https://www.him.uni-bonn.de/index.php?id=4133
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where γn is the standard Gaussian measure in Rn. These are highly symmetric or highly struc-
tured situations.

Another case in which an exact solution may be described: If K ⊆ R2 is convex, µ the Lebesgue
measure on K, and d is Euclidean – Then the boundary of the extremal sets is either a single
circular arc or a straight line, and in both cases the intersection with the boundary is orthogonal.

Non-trivial approximate solutions: There are examples in combinatorics (“expander graphs”),
in geometric group theory and in Riemannian geometry. In these lectures we are interested in
convexity in Euclidean space. Throughout these lectures, from now on we assume that

X = K ⊆ Rn

is an open, convex set, and d is the Euclidean metric. What about the measure µ? IfK is bounded,
then we may take µ as the uniform, Lebesgue measure onK normalized to a probability measure.
More generally: We assume that the probability measure µ has a log-concave density in Rn. That
is, the density p : Rn → [0,∞) satisfies

p(λx+ (1− λ)y) ≥ p(x)λp(y)1−λ ∀x, y ∈ Rn, 0 < λ < 1.

This includes the uniform measure on convex sets, the Gaussian measures, and it is a rather stable
condition: Closed under convolutions, products, weak limits etc. If p is smooth and positive, and
p = e−ρ, then log-concavity is equivalent to

∇2ρ ≥ 0.

Is convexity relevant to isoperimetry? Of course. There are quite a few results in this direction,
essentially going back to the Poincaré inequality from the 19th century, “spectral gap under
convexity assumption”. We will discuss it soon. In the meanwhile let us mention

Theorem (Sternberg-Zumbrun ’99 –convex body case, E. Milman ’09 – generalization to log–
concave). The isoperimetric profile I is concave, where

I(t) = inf
A⊆Rn

{
µ+(∂A) ; µ(A) = t

}
.

It is also symmetric about 1/2.

This is a difficult theorem, because it relies on regularity of the minimizer and on results in
geometric measure theory.

Corollary. (“Enough to partition into two halves”) We have

I(t) ≥ 2I

(
1

2

)
min{t, 1− t}.

Hence for any measurable A ⊆ Rn,

µ+(∂A) ≥ 2I

(
1

2

)
min{µ(A), µ(Rn \ A)}.
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Definition. The Isoperimetric Constant (or Cheeger constant) ψ = ψµ is

ψ = ψµ = inf
A⊆Rn

µ+(∂A)

min{µ(A), 1− µ(A)}
.

Attained when µ(A) = 1/2.

How should we partition a convex body into two pieces with small interface?

KLS Conjecture (Kannan-Lovász-Simonovits ’95, “Up to constant, bisect by a hyperplane”).
There exists a universal constant c > 0 such that ∀µ in Rn, log-concave probability measure,

ψµ ≥ c · inf
H⊆Rn
halfspace

µ+(∂H)

min{µ(H), 1− µ(H)}
, (1)

where the infimum runs over all half-spaces H ⊆ Rn.

Remarks.

1. The infimum over half-spaces is much easier to compute, using the covariance matrix of µ
which is Cov(µ) = (Cij)i,j=1,...,n where

Cij =

∫
Rn

xixjdµ(x)−
∫
Rn

xidµ(x)

∫
Rn

xjdµ(x).

The RHS of (1) is equivalent, up to a universal constant, to 1/
√
‖Cov(µ)‖op. A completely

equivalent formulation of the KLS conjecture is that

ψµ ≥
c√

‖Cov(µ)‖op
.

Why? By Hensley ’80, Fradelizi ’99: For any θ ∈ Sn−1,

1

5
≤
√
Cov(µ)θ · θ · sup

t∈R
µ+({x · θ = t}) ≤ 5.

Thanks to the Prékopa-Leindler inequality (a variant of Brunn-Minkowski), we reduce
matters to the following one-dimensional inequality: For any log-concave probability den-
sity p : R→ [0,∞) with

∫∞
−∞ xp(x)dx = 0,

1

5
≤

√∫ ∞
−∞

x2p(x)dx · sup
x∈R

p(x) ≤ 5.

2. If Cov(µ) = Id then we say that µ is isotropic or normalized. The KLS conjecture is
equivalent to the bound ψµ ≥ c for an isotropic, log-concave probability measure µ.
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Denote ψn = infµ in Rn ψµ, where the infimum runs over all log-concave, isotropic measures in
Rn.

Yuansi Chen thm (arXiv, 27/11/20): For any ε > 0 there exists cε > 0 such that

ψn ≥ cε/n
ε.

Optimizing over ε we get ψn ≥ C exp(−
√

log n log log n).

Earlier bounds:

1. Using needle decomposition/localization: ψn & n−0.5 by KLS ’95, improved by Bobkov
’07 to ψn & n−0.25/

√
σn for a certain “thin shell parameter” σn.

2. Using non-trivial bounds for “thin shell”: ψn & n−0.46 by K. ’07, Fleury ’09 gave n−7/16,
Guédon and E. Milman ’11 gave n−5/12.

3. Using Stochastic localization: Eldan ’13 gave n−1/3/ log n and Lee-Vempala ’17 gave
n−1/4.

At the time some mathematicians speculated that the Lee-Vempala bound could have been
the optimal answer, now we know that it is not.

Applications.

1. Bourgain’s slicing problem. Given K ⊆ Rn convex, volume one. Does there exist a
hyperplane H ⊆ Rn with V oln−1(K ∩H) ≥ c?

Still open. We may replace c by 1/Ln, where: Bourgain ’91, Ln ≤ Cn1/4 log n, and K.
’06: Ln ≤ Cn1/4.

Eldan-Klartag ’11 proved Ln ≤ C/ψn (and Ball-Nguyen ’13 proved Ln . exp(c/ψ2
n)), so

now we know
Ln ≤ cεn

ε ∀ε > 0.

2. Approx. Gauss marginals. LetX be a random vector in Rn, log-concave density. Assume
that it is normalized (or isotropic) so EX = 0 and Cov(X) = Id.

Convex CLT (K., ’07) For most θ ∈ Sn−1 (in sense of measure),

d (〈X, θ〉, Z) ≤ C/nα

for some universal constants C, α > 0. Here Z ∼ N(0, 1) is a standard Gaussian and
d(Y, Z) = supt∈R |P(Y ≤ t)− P (Z ≤ t)| is the Kolmogorov distance.
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Theorem (Bobkov-Chistyakov-Götze ’19, plus Chen’s bound). For any ε > 0, can take
α = 1− ε.

Note that this is a better rate than the Berry-Esseen rate for θ = (1, . . . , 1)/
√
n.

3. Cheeger’s inequality. We always have

λµ ≥
ψ2
µ

4

where λ = λµ is the Poincaré constant, the “spectral gap”, the best constant in the Poincaré
inequality: For any smooth f : Rn → R,

λ · V arµ(f) ≤
∫
Rn

|∇f |2dµ

where V arµ(f) =
∫
f 2dµ − (

∫
fdµ)2. The Poincaré constant governs the mixing time

of heat flow and certain random walks on convex bodies. This is used in algorithms for
sampling and for computing the volume of convex bodies. Chen’s result improved the
complexity bound for such algorithms.

How can we prove isoperimetric inequalities under convexity assumptions? With uniform
bounds on log-concavity, things are easier:

Theorem (“More log-concave than Gaussian”, Bakry-Ledoux ’96). Suppose that dµ/dx = e−ρ

and t > 0 satisfy∇2ρ(x) ≥ t · Id for all x ∈ Rn, in the sense of symmetric matrices. Then,

ψµ ≥
√

2

π
·
√
t

which is what you get for the Gaussian e−t|x|
2/2. Similarly, for the spectral gap, we have λµ ≥ t.

There are a number of ways to prove this: First, Bakry-Emery Γ2 calculus or Bochner-type
formulas. Second, mass transport, or you can use the Caffarelli ’00 result, that there exists a
contraction transporting the Gaussian to µ. An isoperimetric coefficient is improved by measure-
transporting contractions. Another method is:

Convex localization, decomposition of measure into needles (Payne-Weinberger ’60, Gromov-
Milman ’87, LS ’93 and KLS ’95). Roughly, given A ⊆ Rn with µ(A) = 1/2, bisect by a
hyperplane H so that

µ(A ∩H+)

µ(H+)
=

1

2
,

µ(A ∩H−)

µ(H−)
=

1

2

where H± are the two half-spaces determined by H . Then bisect again and again, until in the
limit you get something lower dimensional, and then induct on the dimension. In the next lecture
we will discuss another method, Eldan’s stochastic localization, which is motivated by convex
localization.
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Lecture 2 – Eldan’s stochastic localization, Lee-Vempala ver-
sion
Convex localization involves sharp bisections by hyperplanes: We replace K by K ∩ H+ and
K ∩H−. In his Ph.D. Eldan worked on an extension from two aspects:

• Random localization: Choose hyperplanes randomly, through barycenter.

• Continuous localization: Don’t cut sharply. Instead, multiply by an affine functional that
is very close to the constant function 1.

Let µ be a probability measure with a log-concave density p. For a small ε > 0, in place of
cutting into H+ and H−, we look at the two measures

(1± ε〈x− bµ, θ〉)p(x),

where bµ =
∫
xdµ(x) is the barycenter. Then,

• We get two measures whose average is the original measure.

• Moreover, assume that ε > 0 is small and µ compactly-supported. Say that Zt is uniform
on
√
nSn−1. Then each of these two measures is still a log-concave probability density!

This procedure has the virtues of convex localization.

• Why multiply by an affine function of all functions? With other functions, it is hard to
arrange that both measures are log-concave.

Let us now repeat this “soft bisection” process again and again, with θ being random.

A stochastic process (discrete time): Fix a small ε = ∆t > 0, which will tend to zero in a few
moments. Set p0(x) = p(x) and

pt+∆t(x) = (1 + 〈x− bt,
√

∆tZt〉)p(x)

where Zt for t = 0, ε, 2ε, . . . is a sequence of i.i.d. standard random vectors in Rn, maybe
uniform on

√
nSn−1 or maybe standard Gaussians. [The difference is miniscule when ε is small,

but let us consider the sphere for now] Here bt is the barycenter of pt. We can write it as a
difference equation

pt+∆t(x) = pt(x) + 〈x− bt,
√

∆tZt〉p(x).

Then we get a random log-concave probability measure pt. Since the distribution of Z − t is
symmetric, for all x ∈ Rn,

Ept(x) = p0(x).

That is, we have a decomposition of the measure p into log-concave pieces.
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More precisely, let Ft be the σ-algebra generated by (Zs)0≤s≤t, all events that are determined up
to time t. Then,

E (pt+∆t|Ft) = pt(x).

This is called a martingale condition: The expectation of the next value conditioned on the past,
is the present value.

[If Zt is Gaussian, then there is a small probability that pt would become negative because the
affine functional could become negative in the support. However, this small probability goes to
zero as ∆t goes to zero. The two possibilities for Zt yield very similar processes for small ∆t.]

If Zt are i.i.d Gaussian then we could have taken
√

∆tZt = Wt+∆t −Wt =: ∆Wt,

where (Wt)t≥0 is a standard Brownian motion in Rn, which we fix once and for all.

By moving from discrete time to continuous time we gain precise formulas for derivatives and
for changing variables. Thus, by letting ∆t→ 0 we obtain:

Stochastic Localization: A stochastic differential equation, a limit of the stochastic difference
equation discussed earlier:

dpt(x) = 〈x− bt, dWt〉pt(x)

where p0 is given, and bt =
∫
Rn xpt(x)dx.

Theorem. Existence and Uniqueness of a solution for t ∈ (0,∞). Moreover, almost surely, for
all t,

• pt is a continuous probability density, positive on Supp(p) = Supp(p0).
(This may be proven by considering the evolution equation of log pt, written in (2) below)

• For any fixed x ∈ Rn, the process (pt(x))t≥0 is a martingale, i.e.,

E(pt(x)|Fs) = ps(x) for all t > s.

Here, Ft is the σ-algebra generated by (Wr)0≤r≤t, all events determined up to time t.

Remarks.

1. All stochastic processes (Xt)t≥0 that we will discuss from now on will be adapted, the
value of Xt is determined by the path of the Brownian motion up to time t. Our processes
cannot see the future.
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2. Suppose that (Xt)t≥0 is an adapted stochastic process, real-valued, with the stochastic
differential equation

dXt = 〈vt, dWt〉+ δtdt.

What is the meaning of this equation? Formally, through Itô integral. Intuitively, this
means that the increment in Xt in an infinitesimal time interval dt is the sum of two terms,
one is just δtdt like in ordinary differential equations, and the other is a little new Gaussian
vector times vt. In small scales, the other term is roughly of the order of

√
dt, so it is larger

than the δtdt term. Indeed, recall that ∆Wt = Wt+∆t −Wt
(d)
=
√

∆tZ.

3. If δt is zero, then Xt is a martingale, the expected increment is zero. Moreover, in general,

d

dt
EXt = Eδt.

4. Itô’s change-of-variables formula states that for a reasonable function ϕ : R→ R,

dϕ(Xt) = ϕ′(Xt)dXt +
1

2
ϕ′′(Xt)|vt|2dt.

There are two summands in the Itô formula. The first one involves the first derivative
of ϕ is the familiar term from ordinary differential equations (ODE). The second term
– the “Itô term” – involves second derivative of ϕ. This is roughly because the Brownian
motion jumps to distance

√
dt, so the second term in the Taylor expansion would contribute

something of the order of dt.

To summarize, for any set E ⊆ Rn (say with a smooth boundary),

p0(E) = Ept(E)

where by abuse of notation pt denotes both the density and the measure, and

p+
0 (∂E) = Ep+

t (∂E).

The discrete analog of the process was log-concave. In the continuous world we have a much
more precise statement. This is one of the virtues of stochastic localization, due to Lee and
Vempala:

Proposition. (“More log-concave than the Gaussian”) Write pt = e−ρt . Then with probability
one, for any x ∈ Supp(p0),

∇2ρt(x) = ∇2ρ0(x) + t · Id ≥ t · Id.

In particular pt is always more log-concave than e−t|x|
2/2.
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For the proof, use Itô’s formula:

dpt(x) = 〈x− bt, dWt〉pt(x)

so

d log pt(x) = 〈x− bt, dWt〉 −
1

2
|x− bt|2dt = −|x|

2

2
dt+ affine function of x. (2)

Consequently, the Cheeger constant of pt is always at least c
√
t. I.e., for any E ⊆ Rn,

p+
t (∂E) ≥ c

√
t · pt(E) · (1− pt(E))

where we abbreviate pt(E) =
∫
E
pt, i.e., both the probability measure and its density are denoted

by pt.

Proof strategy of Chen’s theorem: Begin with an isotropic, log-concave density p = p0 on Rn.
For simplicity let us assume that

Supp(p) ⊆ B(0, n5).

This holds automatically when p is uniform on a convex body, and in the general log-concave
case there are stability estimates following from Milman/Sternberg-Zumbrun allowing to throw
away an exponentially small amount of mass. [Exercise: Show that by truncating to the ball we
remove less than Ce−cn2 of the mass. Paouris ’06: Less than e−cn5].

We run the Eldan stochastic localization process, obtain a stochastic process of log-concave
measures (pt)t≥0. Set

At = Cov(pt).

So A0 = Id, and as a side remark we know that At ≤ Id/t since we are more log-concave than
the Gaussian. The main question is whether At can explode in a short time interval.

Proposition (“Basic estimate”). For any fixed 0 < T < 1, if

E
∫ T

0

‖At‖opdt ≤
1

8

then ψp0 ≥ c
√
T .

Proof of basic estimate. Fix E ⊂ Rn with p(E) = 1/2, say with smooth boundary. Then by the
martingale property,

p+(∂E) = Ep+
t (∂E) ≥ c

√
t · Ept(E) · (1− pt(E)) = c

√
tEMt(1−Mt),

where Mt = pt(E) =
∫
E
pt(x)dx. The process (Mt)t≥0 is a martingale:

dMt =

∫
E

〈x− bt, dWt〉pt(x)dx = 〈vt, dWt〉
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with vt =
∫
E

(x− bt)dµt. Now,

|vt| = sup
θ∈Sn−1

∫
E

〈x− bt, θ〉pt(x)dx ≤ sup
θ∈Sn−1

√∫
Rn

〈x− bt, θ〉2pt(x)dx =
√
‖At‖op.

Apply the Itô formula

d [Mt(1−Mt)] = −|vt|2dt+ martingale term = −‖At‖op + martingale term,

where “martingale term” means dNt for some martingale (Nt)t≥0. Therefore,

EMT (1−MT ) = M0(1−M0)− E
∫ T

0

‖At‖opdt ≥
1

4
− 1

8
=

1

8
.

Remark: In Lecture 3 we will show that the basic estimate is tight, up to logarithmic factors.
That is, up to a log-factor, the squared KLS constant ψ2

n is the maximal time where all eigenvalues
of the covariance matrix are bounded by a universal constant.

Example: Suppose that p = p0 is a product measure. In this case the eigenvalues λ1, . . . , λn are
independent stochastic processes. If you compute their tail distribution, it turns out that one of
them can reach log n in a short time, a bit like exponential random variables, and the operator
norm would be at least log n. In fact, in the example when p is a product of exponential random
variables, in time t = C/ log n for appropriate constant C > 0 we have E‖At‖op ∼ log n.

Dynamics of the covariance matrix. First, what is the dynamics of the barycenter?

dbt =

∫
Rn

x〈x− bt, dWt〉pt(x)dx =

[∫
Rn

x⊗ (x− bt)pt(x)

]
dWt = AtdWt.

Next we claim that

dAt =

[∫
Rn

(x− bt)⊗3pt(x)dx

]
dWt − A2

tdt. (3)

That is, a symmetric 3-tensor is contracted with a vector and this gives a matrix, something like∑
aijkvk. Indeed, to prove (3), by translation invariance it suffices to consider the case where

bt = 0. In this case the computation is as in the case of the barycenter, yet there is also an Itô
term coming from the stochastic differential bt ⊗ bt, which is −A2

tdt. Equation (3) means that
the (i, j)-entry of the matrix At satisfies

d(At)i,j = 〈ξi,j, dWt〉 − (A2
t )i,jdt

where
ξi,j =

∫
Rn

xxixjpt(x+ bt)dx.
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Lecture 3 – Moments of order 3 along the dynamics
Here we incorporate simplifications suggested in discussions with Daniel Dadush, Ronen Eldan
and Joseph Lehec. We study the moments of the covariance matrix At. For a positive integer
q ≥ 3 set

Γt = Tr[Aqt ].

We need to show that this does not grow too quickly. Two types of controls are useful:

(A) Bound in terms of t:

dΓt ≤ 2q2 · 1

t
Γtdt+ martingale term.

(B) In terms of ψn:
dΓt ≤ Cq2 · ψ−2

n ‖At‖op · Γt + martingale term.

(It’s not needed here, but the martingale terms are vt · dWt with |vt| ≤ qΓt
√
‖At‖op).

Write ‖At‖q = Γ
1/q
t = Tr[Aqt ]

1/q for the q-Schatten norms.

Corollary of bound A (Power-law growth – a new ingredient by Chen). For t > s,

E‖At‖q ≤
(
t

s

)2q

E‖As‖q.

Proof. Recall that dΓt ≤ (2q2/t)Γtdt + martingale term. The function x1/q is concave, hence it
yields negative Itô terms and

dΓ
1/q
t ≤ 1

q
Γ

1/q−1
t dΓt ≤

1

q
Γ

1/q−1
t · (2q2/t)Γtdt+ martingale term.

Therefore
dE‖At‖q

dt
≤ 2q

t
and

log
E‖At‖q
E‖As‖q

≤ log

(
t

s

)2q

.

Corollary of bound B (“The basic estimate from Lecture 2 is sharp, up to log factors”). There
exists a small enough c > 0 such that for any T > 0 (deterministic),

T ≤ c
ψ2
n

log n
=⇒ E‖AT‖op ≤ 3

and moreover E‖AT‖q ≤ 3n1/q for all q ≥ 1.
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Proof. Enough to show that P (‖AT‖op < 2) ≥ 1 − 1/n10, since p is supported in B(0, n5) and
‖AT‖op ≤ n10. Let

τ = inf{t > 0 ; ‖At‖op ≥ 2},

which is a stopping time. By the optional stopping theorem, ifMt is a martingale, then alsoMt∧τ
is a martingale. Set q = d40 log ne and denote

Xt = Γt∧τ .

Then we have

dXt ≤ C log2 n · ψ−2
n ‖At‖op ·Xtdt+ dMt ≤ C̃ log2 n · ψ−2

n ·Xtdt+ dMt

for a martingale Mt. Therefore,

d

dt
EXt ≤ C̃ log2 n · ψ−2

n · EXt.

Since X0 = Γ0 = n,
EXT ≤ n · eC̃ log2 n·ψ−2

n ·T ≤ n · elogn = n2

by the choice of T . Now,

n2 ≥ EXT ≥ P (‖AT‖op > 2) · 240 logn

and we obtain the right bound.

Proof of Chen’s theorem

It will be bootstrapping for ψn. Take T0 = cψ2
n/ log n ≤ 1/100, so that E‖At‖op ≤ 2 for t ≤ T0.

Hence, for t ≥ T0 and q ≥ 2,

E‖At‖q ≤
(
t

T0

)2q

E‖AT0‖q ≤ 3n1/q ·
(
t

T0

)2q

.

Therefore, for any fixed T1 > T0,∫ T1

0

E‖At‖opdt ≤ 3T0 +

∫ T1

T0

E‖At‖qdt

≤ 3

100
+ 3n1/qT

2q+1
1

T 2q
0

.

Recall the basic estimate from Lecture 2: If the integral up to T1 is at most 1/8 for any initial
data p0 which is log-concave and isotropic, then ψn &

√
T1.
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Can we take T1 � T0, and still bound the integral by 1/8? We need to solve

n1/qT
2q+1
1

T 2q
0

=
1

50
.

This means that we should take
T1 ∼ T

2q
2q+1

0 n−
1

q(2q+1) .

This yields

ψn &
√
T1 ∼ T

q
2q+1

0 n−
1

2q(2q+1) .

Substituting the value for T0,

ψn & ψ
2q

2q+1
n (log n)−

q
2q+1n−

1
2q(2q+1) .

Thus we bounded ψn by a different power of ψn, this is the “bootstrapping”. Consequently, for
any q ≥ 2,

ψn ≥
(

c

log n

)q
n−1/(2q).

Taking q ∼
√

log n/ log log n we obtain

ψn & c1e
−c2
√

logn log logn.

What remains to prove are the bounds A and B for the growth of the q-norm of the covariance
matrix, which involve 3-tensors. Recall the formula

d(At)i,j = 〈ξi,j, dWt〉 − (A2
t )i,jdt

where
ξi,j =

∫
Rn

xxixjpt(x+ bt)dx.

It is a bit easier to work in the orthonormal basis of eigenvectors of At. Itô’s formula yields:

Computation. Write 0 < λ1 ≤ λ2 ≤ . . . λn for the eigenvalues of At, and e1, . . . , en are
orthonormal eigenvectors. Then, for any smooth function f ,

d
n∑
i=1

f(λi) =

[
1

2
·

n∑
i,j=1

|ξi,j|2
f ′(λi)− f ′(λj)

λi − λj
−

n∑
i=1

λ2
i f
′(λi)

]
dt + martingale term.

(when the denominator λi−λj vanishes, the quotient is interpreted by continuity as f ′′(λi)). The
ξi,j are expressed in the basis of the eigenvectors.

This computation boils down to the following linear algebra lemma.
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Lemma (Similar to Hadamard variational formula, Daleckii-Krein ’51) For symmetric ma-
trices A,H ∈ Rn×n and for small ε,

Trf(A+ εH) = Trf(A) + ε · Tr[f ′(A)H] +
ε2

2
· Tr[(g(1)(A) ◦H)H] + o(ε2)

where ◦ is the Schur product or Hadamard product, and g(1)(A) is the matrix whose entries in
the basis of the eigenvectors of A are (g(λi)− g(λj))/(λi − λj) for g = f ′.

Proof of bounds (A) and (B). Denote dΓt = δtdt+ martingale term. We need to prove that

δt ≤ 2q2 ·max

{
1

t
, Cψ−2

n ‖At‖op
}
· Γt

almost surely. From now on we prove a deterministic statement, there will be no more expecta-
tions with respect to the Brownian motion. Denote the above maximum by 1/κ.

Observation. The Poincaré constant (spectral gap) of pt is at least κ. Indeed, pt is more log-
concave than exp(−t|x|2/2), hence its Poincaré constant is at least t. By the definition of ψn and
the Cheeger inequality, the Poincaré constant is at least cψ2

n/‖At‖op.

Since Γt = Tr(At)
q we need to plug in f(t) = tq in the above computation in order to find δt,

the drift term. Substituting f(t) = tq in the computation yields

δt ≤
q(q − 1)

2

n∑
i,j=1

λq−2
i |ξi,j|2,

since (λq−1
i − λq−1

j )/(λi − λj) ≤ (q − 1) · (λq−2
i + λq−2

j )/2. Now set

ξijk = EXiXjXk

where X is distributed like pt(·+ bt), so it is centered. So we have

ξij = (ξijk)k=1,...,n ∈ Rn ξi = (ξijk)j,k=1,...,n = EXiX ⊗X ∈ Rn×n.

Apply the Cauchy-Schwartz inequality and use EXi = 0 to obtain

Tr[ξ2
i ] = Tr[ξiEXiX ⊗X] = EXi〈ξiX,X〉 ≤

√
EX2

i ·
√
V ar(〈ξiX,X〉).

By the definition of the Poincaré constant, for ϕ(x) = 〈ξiX,X〉

V arϕ(X) ≤ 1

κ
· E|∇ϕ(X)|2 =

4

κ
· E|ξiX|2 =

4

κ
· Tr[Atξ2

i ].

To summarize, that Cauchy-Schwartz and the Poincaré inequality tell us that

Tr[ξ2
i ] ≤

2√
κ
·
√
λi

√√√√ n∑
j,k=1

λjξ2
ijk
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Consequently,
n∑
i=1

λq−2
i Tr[ξ2

i ] ≤
2√
κ
·

n∑
i=1

λ
q−3/2
i

√√√√ n∑
j,k=1

λjξ2
ijk.

Now apply a Cauchy-Schwartz inequality,

n∑
i=1

λq−2
i Tr[ξ2

i ] ≤
2√
κ
·

√√√√ n∑
i=1

λqi

√∑
i,j,k

λq−3
i λjξ2

ijk

≤ 2√
κ
·

√√√√ n∑
i=1

λqi

√∑
i,j,k

λq−2
i ξ2

ijk

=
2√
κ
·

√√√√ n∑
i=1

λqi

√√√√ n∑
i=1

λq−2
i Tr[ξ2

i ].

where we used that xq−3y + yq−3x ≤ xq−2 + yq−2. Therefore,

n∑
i=1

λq−2
i Tr[ξ2

i ] ≤
4

κ

n∑
i=1

λqi

Consequently,

δt ≤
q(q − 1)

2

n∑
i=1

λq−2
i Tr[ξ2

i ] ≤
2q(q − 1)

κ
Γt,

as promised, even with q(q − 1) in place of q2.

This completes the proof.
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