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Isothermal coordinates comparison and
Moderately varying Gauss curvature

Matan Eilat

Abstract

Let (M, g) be a C?-smooth Riemannian surface. A well-known theorem states that the
Gauss curvature function K : M — R vanishes everywhere if and only if the surface is
locally isometric to the Euclidean plane. The first main result of our study is a quantitative
version of this theorem with respect to an isothermal coordinate chart. We essentially show
that if B is a Riemannian disc of radius § > 0 with 6?supp |K| < ¢, forsay 0 < ¢ < 1,
then there is an isothermal coordinate map from B onto an Euclidean disc of radius 4 which
is bi-Lipschitz with constant exp(4e).

We then use this result to study surfaces with moderately varying Gauss curvature, i.e.
surfaces whose Gauss curvature function is Holder continuous with exponent 0 < o < 1.
For this purpose we define the notion of an a-almost-flat radius at a given point. We intro-
duce two definitions, one via the Gauss curvature function and the other via a coordinate
chart. Our second main result is the equivalence of these definitions up to a constant de-
pending on . The use of an isothermal coordinate chart in our proof implies a quantitative
statement on the superior regularity of the isothermal coordinate chart, somewhat similar to
the optimality shown by Deturck and Kazdan [1].

1 Introduction

Let (M, g) be a C%-smooth Riemannian surface, i.e. a C?-smooth two-dimensional Riemannian
manifold. A well-known theorem states that the Gauss curvature function K : M — R is zero
if and only if the metric is locally flat, i.e. around every point there is a neighborhood in which
the metric is Euclidean. A quantitative version of this theorem might investigate the behavior of
different coordinate charts in case the Gauss curvature is not identically zero, but say satisfies

| K| < e for a small € > 0.

For example, fix a point py € M and write Bj;(po, 1) for the Riemannian disc of radius 1
around py. In a normal polar coordinate chart (7, ), the metric takes the form

g = dr?* + ¢*(r, 9)0[«92,

for some function ¢. In case ¢ = r, the metric is Euclidean. A simple comparison argument

(see, e.g., Proposition 3.8) states that if || < ¢, for a small enough ¢ > 0, then

sinr(i"/\g/g) < ¢(7;: 0) < sini(\/rg\/g)’




which implies that ¢/r — 1 as e — 0, and yields information on the rate of this convergence.

The geodesic normal coordinate chart arises naturally in the study of Riemannian manifolds,
and its properties are relatively well-known, e.g. the comparison argument above. However,
the isothermal coordinate chart we investigate has several advantages over other coordinate
charts, including the geodesic normal coordinate chart. The isothermal coordinate chart is a
two-dimensional special case of a harmonic coordinate chart, where the coordinate functions are
conjugate harmonic. As shown by Deturck and Kazdan [1], a harmonic coordinate chart satisfies
the optimal regularity properties, while changing to normal coordinates may involve loss of two
derivatives.

The first main result of our study is a quantitative version of the theorem stated above, with
respect to an isothermal coordinate chart z : Bys(po, d) — Bc(0, ), where we write By (po, ) C
M for the Riemannian disc of radius § > 0 around py € M, and B¢(0,6) C C for the Euclidean
disc of radius ¢ around the origin. The metric in such an isothermal coordinate chart is given by

2
9= ldz[%,

where ¢ is a positive function, to which we refer as the conformal factor. Our theorem implies

that there is no disadvantage in considering this isothermal coordinate chart in the aspect of

comparison theorems such as the one discussed. We discuss the isothermal coordinate chart and
the conformal factor in greater detail in upcoming sections.

The formulation of the theorem is followed by several remarks and corollaries, which hope-
fully shed some light on the behavior of the bounding constant, and explain in what sense the
estimates are sharp. Note that in most cases, when given such an isothermal coordinate chart
z, we will not distinguish between the conformal factor ¢ as a function on Bj;(po,d) and as a
function on Bc(0,d). For the Euclidean disc of radius § > 0 around the origin, its closure and
its boundary, we will use the abbreviations

6D := Bc(0,9), 6D := Bc(0,6)  and &S := 0Bc(0,0).

Theorem 1.1. Let (M, g) be a C*-smooth Riemannian surface, fix py € M and let 6 > 0.
Suppose that the injectivity radius of all points of B := By(po,0) is at least 25, and that the
Gauss curvature function K : M — R satisfies —x < K ‘ 5 <K for some constant k > 0 such
that 8%k < 7?/4. Let z : B — 6 be an isothermal coordinate chart such that z(py) = 0 and
2(0B) = 6S', and whose conformal factor is o. Then

52k [1 L (sinh(é\/ﬁ) tan(5+/x) )2] |

1 <2t
sgl%wL_Q 1 o

Remark 1.2. There are various ways to express the bound for the conformal factor ¢ from the
theorem above. The important thing to notice is that the term in the inner brackets is increasing
as a function of §%k, tends to 1 as 6%k \, 0, and tends to infinity as §°x  72/4. In case §°k
is assumed to be bounded away from 7% /4, the estimate may be expressed as C' - 6%« for some
universal constant C'. We thus formulate the following corollary, for simplicity and ease of use.
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Corollary 1.3. Under the assumptions of the theorem together with the additional assumption
that 6k < w2 /8, we have that
sup | log ¢| < 86%k.
B

Such a uniform bound on the conformal factor immediately yields a uniform bound on the bi-
Lipschitz constant of the coordinate map, as mentioned below, namely in (8). Writing d, :
M x M — R for the Riemannian distance function on M induced by the metric g, and | - | for
the Euclidean norm on C, we may thus formulate the following corollary.

Corollary 1.4. Under the assumptions of the theorem together with the additional assumption
that *k < w2/8, for any p # q € B,

dy(p, q)
12(p) — 2(q)]

exp(—46%k) < < exp(46°k).

Remark 1.5. As a part of the proof of Theorem 1.1, we will produce bounds for the conformal
factor on the boundary, as expressed in Proposition 3.1. These bounds originate in the extremal
cases of the spherical and hyperbolic metrics, which implies that they are sharp. In light of these
bounds, together with the fact that log(sinh?(z)/2?) = ©(2?) and log(sin(z)/2?) = O(—z?)
as x \, 0, we see that in the case where 62« is bounded away from 72 /4, as in Corollary 1.3 for
example, the estimates are sharp up to some multiplicative universal constant.

The first part of our study is dedicated to the proof of Theorem 1.1. Afterwards, we apply the
theorem to study surfaces with moderately varying Gauss curvature.

The simplest geometric spaces in two dimensions are probably the simply-connected mani-
folds of constant Gauss curvature: The sphere, the hyperbolic space and the Euclidean space. We
believe that next in line should be surfaces whose Gauss curvature is not constant, yet it does not
vary too wildly. This motivates us to study surfaces whose Gauss curvature function is Holder
continuous with exponent 0 < o < 1. For this purpose we define the notion of a surface being
a-almost-flat at a given point to a certain distance.

Our first definition, namely Definition 1.6, involves conditions on the C'“-norm of the Gauss
curvature function. The second definition, namely Definition 1.7, relies on the existence of a
coordinate chart in which the metric coefficients satisfy bounds on their C**-norms. To each of
these definitions we add a definition of a corresponding a-almost-flat radius, dependent on the
point and on «, which is the supremum of all the distances to which the surface is a-almost-
flat. In Theorem 1.8 we show the equivalence of these two radius definitions up to a constant
depending on c. The Hélder norms | - [, we use in our formulations, together with the proof of
Theorem 1.8, are presented in the last section.

Let M be a C?-smooth Riemannian surface, let 0 < o < 1 and write K : M — R for the
Gauss curvature function.



Definition 1.6. We say that M is a-almost-flat via curvature at a point py € M to distance § > 0
if the injectivity radius of all points of B := By(po, d) is at least 20, and

52 ’ |K|6,a;B <1

We also define the a-almost-flat radius via curvature of M at a point py € M to be the supremum
of all such 6, and denote it by peurarre = Peurvanure(Po, )-

Definition 1.7. We say that M is a-almost-flat via a coordinate chart at a point py € M to
distance 6 > 0 if the injectivity radius of all points of B := By(po, d) is at least 20, and B is
isometric to a bounded open set U C C endowed with the Riemannian tensor

2
g= Z gijda'da?,

ij=1
such that g;; : U — R satisfy
gij(wo) =65 and |gij = Oyjlyey <1 forall i j € {12},

where xo € U is the image of py under the implied isometry, and 0;; is the Kronecker delta
function. We also define the a-almost-flat radius via a coordinate chart of M at a point py € M
to be the supremum of all such §, and denote it by peparr = Penart(Po, Q).

Theorem 1.8. Let M be a C*-smooth Riemannian surface, let po € M and 0 < « < 1. Then

Peurvature 2 Cl * Pchart (1)

and
Pchart Z C'2 * Peurvature s (2)

for some constants Cy, Cy > 0 depending on «.

The proofs of the two claims in Theorem 1.8, namely (1) and (2), are given in the last section.
For the proof of (2) we use the isothermal coordinate chart from Theorem 1.1. Therefore, by
combining Claims (1) and (2) from Theorem 1.8, we see that if the metric satisfies the C*%-
estimates in some coordinate chart on a Riemannian disc of radius § > 0, then it satisfies these
C?*“-estimates in an isothermal coordinate chart on a disc of radius C§, where 0 < C' < 1
is a constant depending on «. This fact may be thought of as a quantitative evidence of the
superiority of the isothermal coordinate chart in regularity aspects. As mentioned before, the
fact that harmonic coordinates have optimal regularity was shown by Deturck and Kazdan [1].

In the n-dimensional case, there is a notion of a similar flavour to ours, called the harmonic
radius. Loosely speaking, the C*“-harmonic radius at p, € M is the largest radius 6 > 0 such
that there exists a harmonic coordinate chart on the geodesic ball B);(pg,d) in which the metric
tensor is C*“-controlled. Lower bounds on the C''**-harmonic radius in terms of the injectivity
radius and the Ricci curvature were given by Anderson in the context of Gromov-Hausdorff
convergence of manifolds [15]. For other estimates and more details, we refer to [16] and [17].

Acknowledgements. 1 would like to express my deep gratitude to my advisor, Prof. Bo’az
Klartag, for his continuous guidance, assistance and encouragement.
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2 Background on Riemannian Geometry and the Uniformiza-
tion Theorem

An n-dimensional Riemannian manifold M is C*-smooth if each point in M is covered by some
C*-smooth coordinate chart, i.e. in this chart the metric tensor takes the form

g= i gijdz'da’,

1,j=1

where g;; are C*-smooth functions. One similarly defines a C*°-smooth or a C*®-smooth Rie-
mannian manifold for some 0 < o < 1. Any isometry between C*-smooth metrics is itself
C**1_smooth, as shown by Calabi and Hartman [2]. A two-dimensional Riemannian manifold is
referred to as a Riemannian surface.

When a Riemannian manifold M is C*-smooth, we may speak of its exponential map and
curvature tensor. We write 7,,M for the tangent space of the manifold )M at the point p € M,
and exp,, : T,M — M for the exponential map. The injectivity radius of the manifold M at a
point p € M is at least § > 0 if and only if the exponential map exp, is a diffeomorphism from
Br,m(0,0) onto its image, where Br,5/(0,6) is the ball of radius ¢ around the origin in 7}, M.
We write d, : M x M — R for the Riemannian distance function, and B)(p, §) for the open
Riemannian ball of radius 6 > 0 around a point p € M. If the injectivity radius at p € M is at
least & > 0, then the distance function from p € M is smooth on By (p, d) \ {p}, and every value
in (0,d) C R is a regular value of this function.

The curvature tensor of a C*-smooth Riemannian surface M is determined by the Gauss
curvature function K : M — R. Due to Gauss’ Theorema Egregium, the Gauss curvature of a
surface is invariant under isometries, making it an intrinsic measure of the curvature, depending
only on distances that are measured on the surface. The Killing-Hopf theorem [3, 4] states that a
simply-connected geodesically-complete Riemannian manifold of constant sectional curvature is
isometric to either the sphere, the hyperbolic space or the Euclidean space, depending on the sign
of the curvature. In a local coordinate chart (xy,z5) : M — R?, the Gauss curvature function
may be expressed in terms of the metric tensor as follows (see, e.g., [5])

1 0 0
K=—-— _1?2 - _Ffl + 1—%21?1 - Fhré + F%QF%Q - F%IFgQ ) (3)
g1 \ 01 Oxo

where Ffj are the Christoffel symbols of the second kind.

A set U C M is called strongly convex if its closure U has the property that for any p, ¢ € U
there is a unique minimizing geodesic in M from p to ¢, and the interior of this geodesic is
contained in U. In the case where M is two-dimensional, assuming that the injectivity radius at
all points of the Riemannian disc By, (po, d) is at least 20 and furthermore

6. sup K(p) < */4,

PEBn (po,d)



where K : M — R is the Gauss curvature function, the Riemannian disc By, (po, d) is strongly
convex, according to the Whitehead theorem [6] (see also [7] for more details).

From now on in this section and throughout the first part of our study, we will consider the
setup from Theorem 1.1. We let (M, g) be a C*-smooth Riemannian surface, fix a point py € M
and § > 0, and consider the Riemannian disc B := Bj;(po,d). We assume that the injectivity
radius of all points of B is at least 29, and that the Gauss curvature function K : M — R satisfies
-k < K | 5 S K, for some constant £ > 0 such that §%k < 72 /4. In light of the discussion above,
we see that B is always strongly convex.

Toponogov’s theorem is a triangle comparison theorem, one of a family of theorems that
quantify the assertion that a pair of geodesics emanating from a point spread apart more slowly
in a region of high curvature than they would in a region of low curvature. It is a powerful global
generalization of the first Rauch comparison theorem. The classical formulation of Toponogov’s
theorem considers the case where the curvature is bounded from below (see, e.g., [7]). However,
under some conditions, a symmetric assertion holds when the curvature is bounded from above,
as we discuss below.

Denote by M, the simply-connected two-dimensional model space of constant sectional
curvature x, and let d,, denote the induced metric on M,. For p,q,r € B we write A =
A(p,q,7) C B for the associated geodesic triangle, meaning that its sides are the minimizing
geodesic segments [p, ql, [, 7], [r, p] connecting their corresponding endpoints. We let L(A) =
dy(p,q) + dy(q,7) + dy(p,r) denote its perimeter. Since B is strongly convex, and the Gauss
curvature function satisfies /X' ‘ 5 < K, it follows that B is a CAT(x) space. By one of several
equivalent definitions of a CAT (k) space, one obtains the following lemma (see, e.g., [13] and
[14] for more details).

Lemma 2.1. For any geodesic triangle A = A(p,q,v) C B with perimeter L(A) < 27 /+\/K,
with p # q and p # r, if 0 denotes the angle between [p,q| and [p,r] at p, and if Ag =
A(po, qo, 7o) is a geodesic triangle in M, with d.(po,q) = dg(p,q), dw(po,70) = dg(p,r),
and angle at py equal to 0, then d,(q,7) > d,(qo, 70).

Since (M, g) is a C?-smooth Riemannian surface, around any point p € M there exists an
isothermal coordinate chart (see, e.g., [1]), i.e. there is neighborhood U containing p and a
coordinate chart w = x + 1y : U — C, such that the metric in these coordinates is of the form

g = Ndw|* = \(da® + dy?),

where ) is a positive function, to which we refer as the conformal factor. By virtue of Deturck
and Kazdan [1], we know that ) is a C?-smooth function. The transition maps between these
isothermal coordinate charts are holomorphic functions, hence the surface M admits a complex
structure, making it a Riemann surface, i.e. a one-dimensional complex manifold. Note that
every open connected subset of a Riemann surface, e.g. the Riemannian disc B C M, is a
Riemann surface on its own right.

An upper semi-continuous function u : M — R U {—o0c} is said to be subharmonic, if each
p € M belongs to an isothermal coordinate chart z, such that « is subharmonic as a function
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of z. The function w is called superharmonic if —u is subharmonic. A function which is both
subharmonic and superharmonic is called harmonic. An important theorem in the study of sub-
harmonic (resp. superharmonic) functions is the maximum (resp. minimum) principle (see, e.g.,
[9]). Note that when we refer to a set as a domain, we always mean a connected open set.

Theorem 2.2 (The maximum (resp. minimum) principle for subharmonic (resp. superharmonic)
functions). Let §2 be a bounded domain in C and let u(z) be a subharmonic (resp. superhar-
monic) function on Q. If limsupu(z) < 0 (resp. liminfu(z) > 0) as z — 0L, then u(z) < 0
(resp. u(z) > 0) for all z € S

Two Riemann surfaces are said to be conformally equivalent if there is a one-to-one confor-
mal mapping of one onto the other. A fundamental theorem in the study of Riemann surfaces is
the uniformization theorem.

Theorem 2.3 (The Uniformization Theorem). Every simply-connected Riemann surface is con-
formally equivalent to a disc, to the complex plane, or to the Riemann sphere.

As a result of the uniformization theorem, a non-compact Riemann surface must be conformally
equivalent to either the unit disc D C C, in which case it is called hyperbolic, or the complex
plane C, in which case it is called parabolic. (see [8] for more details on the uniformization
theorem).

If (and only if) a Riemann surface R is hyperbolic, for any point py € R there exists a function
G : R\{po} — R, called Green’s function with a pole at p,, which is a generalization of Green’s
function on the plane - the fundamental solution of the Laplace operator. Green’s function can be
used to construct the conformal equivalence w : R — I, and their relation is given by |w| = e~¢.
Our approach to Green’s function will be “reversed”, meaning that under our assumptions, as we
will explain shortly, the Riemannian disc B is hyperbolic, i.e. conformally equivalent to the

Euclidean unit disc. Given the conformal equivalence w : B — D with w(py) = 0, we merely

use G = — log |w|. This way, the properties of Green’s function are evident. We see that
G >0, G(p) LRCENYY and G(p) 2 .

Moreover, the function G is harmonic on B\ {po}, with a logarithmic pole at p,. The relation
between the conformal factor, i.e. the function A for which the metric takes the form g = A|dw|?,
and the gradient of Green’s function may be expressed by

Mw(p) - IVG@)l; - lw(p)? =1 foranyp € B\ {po}, 4)

where || - ||, denotes the Riemannian norm on the appropriate tangent space.

As mentioned above, it follows from the uniformization theorem that 5 is hyperbolic. To see
this, consider the distance function r : B — R from the center of the disc py € B. It follows
from our assumptions that the function r is subharmonic (This is an immediate consequence of
Proposition 3.8), and it is clearly non-constant and bounded from above. By Liouville’s theorem,



such a function does not exist on a parabolic surface. The conformal equivalence between B and
D may be given by an isothermal coordinate chart

w=x+iy: B—D such that w(py) =0 and w(0B) =S".

To explain the boundary behavior, consider a slightly larger Riemannian disc B, := By (po, d +
¢). For a sufficiently small ¢ > 0, the Riemannian disc B. will also be conformally equivalent
to the unit disc D via some mapping w. : B. — D with w(py) = 0. The set U := w.(B) C Dis
a simply-connected open set, hence by the Riemann mapping theorem, there exists a conformal
mapping f : U — D with f(0) = 0. Moreover, the set U has a C'*°-smooth boundary, being
the level set of the regular value 0 of the Riemannian distance function from 0. Hence the map
f extends to a diffeomorphism between U and D, due to Painlevé [10] and Kellogg [11]. Thus
w := fow,|p extends continuously to a function on the closure 5. Note that the conformal factor
A associated with the coordinate chart w also extends continuously to a function on D. Indeed, if
we consider the conformal factor A, associated with w., we see that A = |(f~1)'|*- (A\|p o f71),
and thus extends continuously to a function on D.

Under the isothermal coordinate chart w : B — D with the conformal factor ), the Gauss
curvature function K : B — R is given by Liouville’s equation

A (log \)
K=—7"—- 5
ST &)
where A is the flat Laplace operator with respect to the coordinate map w = = + iy, i.e.
0? 0?
A=—+ —.
0x? + oy?

For the Laplace-Beltrami operator, we use the notation Aj,;. Under the isothermal coordinate
chart, we have Ay, = A 'A. Since A > 0, we see that a smooth function v : M — R
is harmonic (resp. subharmonic, superharmonic) if and only if Ayu = 0 (resp. Ayu > 0,

To avoid confusion, we will stick to the following notation throughout: The coordinate map
z : B — 6D will be used for isothermal coordinates with z(py) = 0 and z(0B) = 6S*, and the
corresponding conformal factor will be denoted by ¢. The coordinate map w = 6 'z : B — D
will be used for isothermal coordinates with w(pg) = 0 and w(9B) = S!, and the corresponding
conformal factor will be denoted by A. We thus have the relations

z = dw and 0(z) = 02\ (w). (6)

Theorem 1.1 provides bounds on the conformal factor ¢ associated with the isothermal co-
ordinate chart z : B — 6D. Since the metric in these coordinates is given by g = ¢|dz|?,
the infinitesimal ratio between the Riemannian distance d, and the Euclidean distance under the
coordinate chart z is given by /0, i.e.

d
lim +(p, )

B — 9T — \Jo(p for any p € B. (7)
B\{p}2g-p |2(p) — 2(q)]| )



Moreover, in case ¢ is uniformly bounded, the ratio between the distances is also uniformly
bounded by the square-roots of the corresponding bounds, i.e.

dy(p, q)
~ [2(p) — 2(9)]

The following section is dedicated to the proof of Theorem 1.1, and the final section to the proof
of Theorem 1.8.

<b VYp#qeEB < a*<p(p) <V VpehB. (8)

3 Proof of Theorem 1.1

3.1 Reduction to Propositions 3.1 and 3.3

We split the proof of Theorem 1.1 into two intermediate steps. The first key step is producing
bounds for the conformal factor on the boundary which originate in the extremal cases of the
spherical and hyperbolic metrics, as expressed in the following proposition.

Proposition 3.1. Under the assumptions of Theorem 1.1, we have that

4tanh?(5y/k/2) < < 4tan?(6y/K/2)

0%k < ¢lpo) < 0%k ’
e 2(6v/F) 2(6/F)
sin K sinh K
525 < 90|aB < e

In order to simplify our estimates on the boundary, we use the fact that for 0 < x < 7/2 we have
log(sin?(x)/2?) > —x2/2 and log(sinh®(z) /2?) < 22/2 (see Lemma 5.2 from the appendix) to
obtain the following corollary.

Corollary 3.2. Under the assumptions of the proposition we have

The second central proposition we will prove yields, together with (8), a bound for the conformal
factor which is asymptotically (7/2)2. This 7 /2 factor is in a sense a ”by-product” of our proof
strategy, which relies on the ratio between the chordal-distance and the arc-distance.

Proposition 3.3. Under the assumptions of Theorem 1.1, for any p # q € B

4 _ 2 sin(dv/k) < dy(p, q) sinh(d+/k) tan(d+/k)
mw2cosh(m/2) 7w dy/kcosh(dy/k) ~ |z(p) — 2(q)| 2K

s
< .
-2



Given Propositions 3.1 and 3.3, we are able to prove Theorem 1.1. The only missing ingredient is
the following lemma, which is a simple application of the minimum principle for superharmonic
functions. Recall that we abbreviate 61D := Bc(0, §), 6D := Bc(0,6) and §S' := 9B¢(0, ) for
the Euclidean disc of radius 6 > 0 around the origin, its closure and its boundary, respectively.

Lemma 3.4. Suppose that u € C*(6D) N C°(6D) satisfies Au = f on 6D. Then

sup [u] < sup [u] + (6%/4) - sup | f].
oD oSt oD

Proof. In case supyy, | f| is infinite, the inequality is trivial. Otherwise, define v : 6D — R by

62 — |2|?
o(z) = suplul + — L sup ).
sst 5D
Since A|z|? = 4, we have that Av = — supyy, | f|. Therefore, for any z € 6D we have that

Alv—u)(z) = —sup[f] - f(2) <0,
which means that v — u is superharmonic on §ID. Moreover, for any ¢ € §S' we have that
(v—u)(¢) = Sup juf = u(¢) = 0.

Thus by the minimum principle for superharmonic functions, i.e. Theorem 2.2, for any z € 6D
we have
u(z) < v(2) < suplul + (62/4) sup | f].
sst D

Replacing u by —u, for any z € §ID we also have that
—u(z) < sup [u| + (6% /4) sup | f],
ss! 5D

thus completing the proof. O

Proof of Theorem 1.1. Using (5) we see that
A(log p) = —2K .
By Proposition 3.3 and (8), we have that

2 <sinh((5\/%) tan<5\/z))2 |

<.
S0_4 0%k

By Lemma 3.4 and Corollary 3.2, we obtain that

0k

— |1
5 +

Y

%2 ‘ (sinh((s\@ Zan((; \/E)>2

sup | log | < sup |log¢| + (62/2) - sup |K - ¢| <
B OB B
and the theorem is proved. O

The following sections are dedicated to the proof of Propositions 3.1 and 3.3.
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3.2 The Harmonic Barriers

Our strategy will be to use the maximum (resp. minimum) principle, as stated in Theorem 2.2,
to produce bounds involving the Euclidean distance under the coordinate chart w : B — D. Our
functions will be defined on a punctured domain, and will have a logarithmic pole at the point
in which they are not defined. To ensure that the singularity is removable, we use the following
lemma (see, e.g., [18] for more details on subharmonic functions and removable singularities).

Lemma 3.5. Assume that Q is a bounded domain in C and let zy € Q. Ifu: Q\ {z} — Risa
continuous function, subharmonic (resp. superharmonic) on Q \ {zo} such that

lim sup[u(z) + log |z — zo|] < o0 (resp. liminf[u(z) + log|z — z|] > —o0),

2—20 Z—20

Then u(z) 4 log |z — zo| extends (uniquely) to a subharmonic (resp. superharmonic) function on
Q.

We now formulate the main proposition we will use to produce the bounds on the distances ratio.

Proposition 3.6. Under the assumptions of Theorem 1.1, write w = 6~z : B — I, so that w is
an isothermal coordinate chart with w(py) = 0 and w(0B) = S'. Let p € B and suppose that
u: B\ {p} — Ris a continuous function satisfying:

(i) Forany q € OB we have u(q) < —log|w(p) — w(q)| (resp. u(q) > —log|w(p) — w(q)|),
(ii) The function u is subharmonic (resp. superharmonic) on B \ {p}, and

(iii) lim sup(u(q) + log w(p) —w(q)]) < oo (resp. lim inf(u(q) +log [w(p) —w(q)]) > —o0).

q—p

Then u(q) < —log|w(p) — w(q)| (resp. u(q) = —log|w(p) — w(q)|) for any q € B\ {p}.
Proof. Consider the function ¢ = wow™ : D\ {w(p)} — R so that
u(g) = (w(q))  foranyq e B\ {p}.

The function 1 is continuous on D\ {w(p)}, and by (i) it is subharmonic (resp. superharmonic)
on D\ {w(p)}. Using (ii7) we see that

lim sup(¢)(w) + log |w — w(p)|) < oo (resp. liminf(¢(w) + log |w — w(p)|) > —o0).

w—w(p) w—w(p)

By Lemma 3.5, the function ¢)(w) + log |w — w(p)| thus extends to a subharmonic (resp. super-
harmonic) function ® on D. Using (i) we see that

P(w) <0  (resp. ®(w)>0) foranyw €S
By the maximum (resp. minimum) principle, i.e Theorem 2.2, we obtain that

d(w) <0 (resp. P(w) >0) for any w € D.
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Thus for any ¢ € B\ {p} we have that

u(q) +loglw(q) —w(p)| = B(wlq)) <0 (resp. u(g) +log|w(g) —w(p)| = 0),

and the proof is completed. O

Our choice of harmonic barriers is motivated by Green’s functions in the spherical and hyper-
bolic cases. Let us discuss some of their properties. Consider the Riemannian surfaces (D, g5)
and (DD, g, ), where D C C is the unit disc, and the metrics are given by

4ldz|?

B 4|dz|?
N e

and g = ——— 57,
R (1= |2?)?

for some constant x > 0. The Riemannian surface (ID, g;) is of constant curvature , while the
Riemannian surface (ID, g;,) is of constant curvature —r. Fix § > 0 such that §°x < 72/4, and
abbreviate

BS = B(D,gs)(o, 5) and Bh = B(ngh)((), 5), (9)

for the respective Riemannian discs of radius ¢ around the origin. Writing rs(z) = d,(z,0) and
ri(2) = dy, (2,0), we have that

|z| = tan (ry(2)v/k/2) = tanh (r,(2)v/k/2) .

Thus an isothermal coordinate chart w, which maps B, onto D with w,(0) = 0 and w,(0B,) =
S! may be given by

w,(2) = cot(6v/k/2) - ,
and an isothermal coordinate chart wj;, which maps By, onto D with wy,(0) = 0 and wy, (0B},) = S*
may be given by

wp,(2) = coth(0v/k/2) - 2.
In particular, the corresponding Green functions are given by

Gs(z) = —log|w,(z)| = —log (cot (6y/k/2)) — log (tan (rs(2)v/k/2)) ,
and
Gh(z) = —log|wy(z)| = —log (coth (6v/k/2)) — log (tanh (r4(2)v/k/2)) .
Since these are radial functions, their gradients satisfy

5 = 100Gl = Vi/sin(ro/k)  and [VGilly, =10, Chl = v/ sinh(r/w).

By (4), the conformal factors may be expressed by

As(2) = (IVG(2)I72 - Jws ()7 = (4/k) - tan?(0/k/2) cos* (rs(2)V/5/2),  (10)

VG,

and
M(2) = |[VGL(2)| 72 - |wn(2)|7% = (4/K) - tanh®(6+/k/2) cosh? (1, (2)V/K/2). (11)

12



Our harmonic barriers will have a varying “base-point”, which will be denoted in the sub-
script, and might be in the interior of B or on the boundary 5. For p € B we define GI(,S) :
B\ {p} > Rand G : B\ {p} - R by

G)(q) = —log (tan (dy(q. p)V/K/2)) (12)

and
G (q) = —log (tanh (dy(q,p)v/%/2)) . (13)

Note that these functions are well-defined as long as 6% < 72/4. The relevant properties of G\
and G,()h) are summarized in the following proposition.

Proposition 3.7. Under the assumptions of Theorem 1.1, write w = 6 'z : B — D, so that w
is an isothermal coordinate chart with w(po) = 0 and w(0B) = S', write X for the conformal
factor corresponding to w, and let p € B. Then

(i) The function G]E,s) is superharmonic on B\ {p},
(i) The function G is subharmonic on B \ {r},

(iii) Both functions are monotonically decreasing with the distance from p, i.e.

0<dp,q1) <dp.g2) = GP(q) > GC(g) and GV (q1) > G (g),

(iv) Both functions have a logarithmic pole at p, and in fact

lim  (GY)(q) +log|w(p) —w(q)]) = _ lim (G (q) +log |w(p) — w(q)|)

B\{p}>q—p B\{p}>q—p

= —log(v/r - A(p)/2).

In the proof of Proposition 3.7, and specifically in the harmonicity claims, we will use a com-
parison argument involving the Laplacian of the distance function. For the statement of this
argument we use normal polar coordinates. Fix p € B and consider a normal polar coordinate
chart (r,0) : B\ {p} — (0,28] x [0, 27). The metric in these coordinates is given by

g = dr? + ¢*(r,0)d6?,
for some positive function ¢. If we fix 6 € [0, 27) and define ¢y(r) = ¢(0, ), then
lim ¢y (1) = 0, lim ¢y (r) = 1, and o(r) 4+ K(r,0) - ¢g(r) =0,
r—0 r—0

where K is the Gauss curvature function. Moreover, the Laplacian of the distance function r
from p is given by
_ 9(p)

~ 9e(p)

From the properties above one may obtain the following well-known comparison argument (see,
e.g., [12]).

AMT(pv 9)
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Proposition 3.8. Under the assumptions of Theorem 1.1 and the setup above, we have that
sin(y/k - r) < o(r.0) < sinh(\/E-r)7
VE NG

and

VEcot(Vi 1) < Ayr < Vrcoth(ve - ).

Proof of Proposition 3.7. Write r : B — R for the distance function from p. Define ¢, :
(0,26] — Rand ¢y, : (0,26] — R by
¢s(x) = —log (tan (zv/k/2)) and on(z) = —log (tanh (2/k/2)),
so that
GY =gp,or and GV =gj,or
Differentiating ¢ and ¢}, we obtain that
: v
#s(2) sin(z/k) a #h(@) sinh(z+/k)
Since 0 < r < 26 and §v/k < 7/2, we see that ¢, < 0 and ¢} < 0, thus proving (7).
Differentiating once more, we have that
) = /@ot(x\/ﬁ) and () = Ii(.ZOth(.’L‘\/E).
sin(x/kK) sinh(z+/k)
Using the chain rule, we see that
A keot(ry/k) VK- Ayr
. r = _
M sin(r/k) sin(ry/k)’

A kcoth(ry/k) VK- Ayr

CAyr = — :

M sinh(ry/k)  sinh(r\/k)

By Proposition 3.8, we know that \/k cot(y/k - 1) < Apyr < y/kcoth(y/k - r), which implies
that

AnGY = (¢lor) + (w,or)

and
AyGP = (g or) + (g}, o)

AyGY <0 and  AyGP >0,

thus proving (7) and (7). Since lim,_, tan(az)/x = lim,_,o tanh(az)/x = a, we see that

lim  (GY(q) +log(r(q))) = _ lim (G(q) +log(r(q))) = —log(v/x/2).

B\{p}>¢—p B\{p}>q—p

By (7), we see that

lim  (log |w(p) — w(q)| —log(r(q))) = —log(+/A(p)),

B\{p}>q—p

and the proof of (iv) is completed. O
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3.3 Bounding the conformal factor on the boundary and at the origin -
Proof of Proposition 3.1

The bounds for the conformal factor at the origin and on the boundary are given by the corre-
sponding values of the spherical and hyperbolic conformal factors A; and Ay, as described in (10)
and (11), respectively. This is shown in the following proposition. In the formulation we use the
abbreviations B, and B, as in (9).

Proposition 3.9. Under the assumptions of Theorem 1.1, write w = 'z : B — I, so that w is
an isothermal coordinate chart with w(py) = 0 and w(OB) = S', and write X for the conformal
factor corresponding to w. Then

(4/k) tanh?(5v/k/2) = Au(0) < M(po) < As(0) = (4/k) tan®(6v/k/2), (14)
and
sin?(6v/k) /K = )\5|6B < )\‘BB < )\h{th = sinh*(0v/k) /k. (15)
Proof. Write G = — log |w| for the associated Green’s function. Then

G (q) —log(cot(3v/k/2)) = G (g) —log(coth(3v/k/2)) = G(q) =0 forall g € IB. (16)
By Propositions 3.6 and 3.7, we have that
G (p) — log(coth(5vk/2)) < G(p) < G (p) — log(cot(6Vk/2))  forallp € B. (17)
Define r : B — R by r(p) = d,(po, p)- By (17) we see that for any p € B we have
cot (6v/k/2) tan (r(p)v/k/2) < |w(p)| < coth (6v/k/2) tanh (r(p)v/k/2) .

Using the fact that lim,_,¢ tan(x)/z = lim,_,o tanh(z)/x = 1, we obtain that

(2/V/F) tanh(0v/A/2) < Tim — 2L < (2//k) tan(6v/5/2).

p=po [w(p)|

and (7) completes the proof of (14). By (16) and (17) we see that for any ¢ € 0B we have
Vi/sinh(0v/k) = —0,GP(q) < —9,G(q) < —9,G)(q) = v/ sin(6V/k).
Moreover, for ¢ € 0B we have that | VG(q)|l, = —0,G(q) and A(q) = [[VG(q)]|, by (4). Thus
sin?(0v/k)/k < AM(q) < sinh?*(6v/k)/k  forall ¢ € OB,

completing the proof of (15). O



Remark 3.10. Note that the conformal factor A\ at the origin is bounded from above by the
spherical conformal factor at the origin, i.e. A\;(0), and below by the hyperbolic one, i.e. \;(0).
However, on the boundary the bounds are reversed, meaning that A on the boundary is bounded
from above by the hyperbolic one, and from below by the spherical one. This might indicate why
the bounds on the entire disc are not trivially given by the extremal cases.

Proof of Proposition 3.1. Recall from (6) that the relation between the conformal factor ¢ of
the coordinate chart z and the conformal factor A of the coordinate chart w is given by p(z) =
67 2\(w). Proposition 3.9 thus translates to the desired inequalities. O

In the following section we obtain estimates on the distances ratio for boundary points. We will
use these estimates in the proof of Proposition 3.3.

3.4 Bounding the distances-ratio on the boundary

Given two points ¢; # @2 on the boundary 0B, there are two paths joining them in 0B. The
length of the shorter path gives us the arc-distance, which we denote by dsp(qi1,q2). When
w : B — D is an isothermal coordinate chart with w(py) = 0 and w(0B) = S', we denote the
arc-distance between w(q;) and w(gs) in S* by dg: (w(q1),w(ge)). Using Proposition 3.9, while
recalling that the metric in these coordinates is given by \|dw|?, we see that

sin(0+/k) < das(q1, q2) < sinh(d+/k)
VE T dg(w(@),wig) T VE
Given ¢, # @2 € 0B we may also consider the angle between the geodesics connecting each of
them with py € B. We denote this angle by Z(q1, ¢2). In the Euclidean plane, the arc-distance
and the angle coincide on the unit disc. For a general surface, this is not necessarily the case.
However, assuming that the curvature is bounded does yield a bound on the ratio between them.

(18)

Lemma 3.11. Under the assumptions of Theorem 1.1, for any ¢, # ¢ € OB

dop(q1, q2) < sinh(d+/k)
L, ) —  VE

Proof. Let ¢ # qu € OB. Consider a normal polar coordinate chart (r,6) : B\ {p,} —
(0, 8] x [0,27) such that #(q;) = 0 and 0 < 0(g2) < 7. The angle is then given by

4(Q1>Q2) = 9(612)-

The metric in these coordinates is given by

g = dr* + ¢*(r, 0)d6?,
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for some function ¢ : (0, 0] x [0,27) — R. By Proposition 3.8, we see that

sin(ﬁ-r) < 6(r.0) < sinh(\>/§-r).

The arc-distance between ¢, and ¢, thus satisfies

0(g2) 6(qz2)
sinh(d+/k
sl ) < [ Va0 a6 = [ o060 < R g,
0 0
and the proof is completed. O

In the case of the Euclidean unit disc, we have the following inequalities bounding the ratio
between the Euclidean distance and the arc-distance of two points w(q;) # w(q) € S,

dst (w(q1), w(g2))

S Tl — wla)]

T
<2 (19)

A similar inequality also holds in the more general case of a surface that satisfies our assump-
tions, as formulated in the following lemma. The qualitative statement of the lemma is that the
maximum of the ratio between the angle at the origin and the Riemannian distance of two points
on the boundary is attained for antipodal points, i.e. points for which the angle is 7. Our proof
relies on Toponogov’s theorem, or more precisely Lemma 2.1, together with Lemma 5.4 from
the appendix. We believe that a simpler argument can be found for the proof of the lemma, since
the statement does not involve the Gauss curvature bounds.

Lemma 3.12. Under the assumptions of Theorem 1.1, for any ¢, # q» € 0B

4(Q17 Q2>

<
do(q1,92) ~

s
25

Proof. Consider the sphere of constant curvature x, and a geodesic triangle on this sphere with
edges a, b, ¢ and opposite angles A, B, C, respectively. By the spherical law of cosines (see, e.g.,
[14]), we know that

cos(cv/k) = cos(av/k) cos(by/k) + sin(av/k) sin(by/k) cos(C).

Since dy(po, ¢1) = dg(po, ¢2) = 9, we see that the perimeter of the geodesic triangle A(po, g1, ¢2)
is at most 40, which is smaller than 27 /+/x by our assumptions. By Lemma 2.1 we thus obtain
that

x

dy(qr,q2) > % cos ! (cos?(6v/k) + sin®(0v/k) cos(Z(q1, q2)))-
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Dividing both sides by Z(q1, ¢2), we obtain that

dy(q1, q2) S cos ™ (cos?(6+y/k) + sin®(0y/k) cos(Z(q1, q2)))
Z(q1,q2) — VE - L(q1, q2) '

By Lemma 5.4 from the appendix, the infimum of the right-hand side is attained when Z(q1, ¢2) =
7. Moreover, since cos(26) = cos?(#) — sin*(6) and §v/k < 7/2, we see that

dy(q1, q2) - 20\/K _ 20

g, ) ~ VE-mo o]

and the proof is completed. O

Combining all of the inequalities above, we obtain the following corollary.

Corollary 3.13. Under the assumptions of Theorem 1.1, write w = 6 'z : B — D, so that w is
an isothermal coordinate chart with w(po) = 0 and w(OB) = S'. Then for any q, # q» € OB

26 sin(0+/kK) < dy(q1,42) < 7sinh(dy/k)
wsinh(dv/k) © w(g) —w(g))l —  2vE

Proof. Combining (18) with (19) we see that

sin(d+/k) dos(q1, q2) 7 sinh(d/kK)
Vi S Tule) —w@] S 2k )

By Lemma 3.11 and Lemma 3.12 we have that

< sinh(0+/k) T 21

Je 2%

The desired inequalities follow from (20) and (21). O

1< daB(Q1>Q2) _ daB(QhQQ) ) 4(611,(]2)
N dg(Q1,Q2) 4(Q1>Q2) dg(Ql;QQ)

3.5 Bounding the distances-ratio - Proof of Proposition 3.3

In order to bound the distances-ratio between any two points, we will successively use the barriers
Gés) and G,(,h) with respect to a different point p € B. The boundary inequalities required by
Proposition 3.6 will be met by varying these barriers by additive constants, whose values are
given by virtue of Corollary 3.13.

Lemma 3.14. Under the assumptions of Theorem 1.1, write w = § 1z : B — D, so that w is an
isothermal coordinate chart with w(py) = 0 and w(0B) = S, and fix qo € OB. Then for any

q € 0B\ {q}
G (g) +C™M < —log lw(q) — w(qo)],
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and
GSJZ)(Q) +C® > —log |w(q) — w(g)|,

where

CM = log <%) and ~ C) =log (”inh(‘sg\)/?n(éﬁ))

Proof. Define r(p) := d,(p, qo). By Corollary 3.13, for any ¢ € 0B \ {qo}

26 sin(0+/%) 7sinh(0+/kK)
log (W) < log(r(q)) — log|w(q) — w(qo)| < log (T) ' (22)

For any a > 0, the function z/tanh(az) is increasing on (0, 00) (see Lemma 5.3 from the
appendix). Since 0 < r(g) < 24, we have that

log(r(g)) — log (tanh (r(q)v/x/2)) < log(26) — log(tanh(dv/x)).

Thus by (22), for any g € 0B \ {qo} we have that

G (q) = —log (tanh (r(¢)v/r/2)) < —log(r(q)) — log(tanh(6\/x)) + log(29)
< —C™ —log |w(q) — w(qo)|-

For any a > 0, the function x/tan(ax) is decreasing on (0, 5-) (see Lemma 5.3 from the ap-
pendix). Since 0 < 7(q) < 2§ < 7/+/k, we have that

log(r(q)) — log (tan (r(g)v/k/2)) > log(20) — log(tan(dv/x)).
Thus by (22), for any ¢ € 0B \ {qo} we have that

GY)(q) = —log (tan (r(q)v/k/2)) > —log(r(q)) — log(tan(5v/x)) + log(24)
> —C® —log |w(q) — w(qo)l,

and the proof is completed. O

Proof of Proposition 3.3. Write w = § 'z : B — D, so that w is an isothermal coordinate chart
with w(pg) = 0 and w(9B) = S*. Fix gy € OB and consider the functions u,v : B\ {q} — R
given by

u(p) = G (p) +log [w(p) — w(go)| +C™ and  v(p) = G (p) +loglw(p) —w(go)| +C,
where C") and C'®) are as defined in Lemma 3.14. By this lemma, we know that

u(g) <0 and w(g) >0 forallg € 0B\ {q}-
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Moreover, by Proposition 3.7 we see that u is subharmonic on B, that v is superharmonic on
B, and that both functions are well-defined and continuous at ¢;. Hence by the maximum (resp.
minimum) principle, i.e. Theorem 2.2, for any p € B we have that

G (p) + C" < —log|w(p) — w(g)| and G¥)(p)+ C* > —log|w(p) — wig)|. (23)
For every p # ¢ € B, we have the symmetry
GP(p)=GP(g)  and  GP(p) = GY(q). (24)
Fix p; € B. Using (23) and (24), and since ¢y € 0B was chosen arbitrarily, for any ¢ € 0B
G (q) +C™ < —log|w(p1) —w(q)] and G (q) + C® > —log|w(ps) — w(q)|-
Invoking Propositions 3.6 and 3.7 one last time, for any p, € B \ {p;} we have
G (pa) + C"W < —log|w(pr) — w(p2)] and G (ps) + C > —log|w(pr) — w(ps)].

Since tanh(z) < z < tan(z) for 0 < x < 7/2, for any p # q € B we thus obtain that

oy 0VR2) + 1o (D) < 60(0) + 0 < g () — wlo)
and
—log(dy(p, 9)v//2) +1og (Wsmh(dg\)/%an(dﬁ)) > G (q)+C® > —log lw(p) —w(q)|.

Therefore for any p # ¢ € B we have that

2sin(0v/k) < dy(p, q) 7 sinh(d+y/k) tan(d+/k)
my/kcosh(0v/k) ~ |w(p) —w(q)| — 20K

Recalling that the coordinate chart z : B — 6D satisfies z = dw, the result is obtained. O

This completes the proof of Theorem 1.1. In the following section we elaborate on Definitions
1.6 and 1.7, and prove Theorem 1.8.

4 The almost-flat radius - Proof of Theorem 1.8

4.1 Holder norms

In this section we discuss the Holder norms used in Definitions 1.6 and 1.7. We follow the
definitions and notation given in [19].
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For a subset D of a metric space (X, d), a function f : D — Rand 0 < a < 1, we write

.p = Su T and oD = Su
| flo.p x€g|f( )l [fla:p #ygD do(z,y)

If the quantity [f],.p is finite, the function f is said to be Holder continuous with exponent « in
D. The function f is said to be locally Holder continuous with exponent « in D if f is Holder
continuous with exponent a on compact subsets of D. The diameter of D is given by

diam(D) :=inf{r > 0: d(x,y) < rforallz,y € D},

and when it is finite, the set D is said to be bounded. For a bounded set D with d := diam(D),
we define

f10,0:0 = [flosp + d*[flasp

For an open set (2 in R™ and a non-negative integer k, the Holder spaces C*®(Q) (resp. C*(Q))
are defined as the subspaces of C*(€) (resp. C*(£2)) consisting of functions whose k-th order
partial derivatives are Holder continuous (resp. locally Holder continuous) with exponent « in
Q. For simplicity we write C%(Q) = C%%(Q) and C*(Q) = C**(Q). For f € C*(Q) we set

[fleoa = |DFfloa = Slflzp ;1‘1_% Dl and  [flran = [DF flan = ‘Z?B{[Dﬁf]a;m (25)

where /3 is an n-dimensional multi-index. With these seminorms, assuming that 2 C R" is a
bounded open set with d := diam(2), one can define the following “non-dimensional” norms on
C*(Q) and C*2(Q) respectively,

||f||/(;k |f|kQ_Zd]|D]f|OQ and ||f||cka |f|kaQ |f|k9+dk+a[Dkf]

When the set € is fixed, we sometimes omit it from our notation. Let us mention several proper-
ties of these norms which we will use later. Fix 0 < v < 1 and a bounded open set €2 in R", with
d := diam(2). By the triangle inequality, it is easy to verify that | - [ , is sub-multiplicative, i.e.
for f, g € C*(Q2) we have that fg € C*(Q2), and

1£9l0.0 < 1f10.0 " 1910.0- (26)

For the reciprocal of a non-vanishing f we have the following inequality

11/ floa < 11/ Flo + |flo.a - (11/fl0)* 27)

In case € is convex, the mean value theorem implies that for f € C?(§2) we have

’fyé),a < \/ﬁ ’f|/1 < \/ﬁ ’f’é,a and d‘le‘/O,a < \/ﬁ ‘f‘l2 < \/ﬁ |f‘l2,a7 (28)

where |D1f|6,a = Supg|=1 |Dﬂf|6,a-
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4.2 Scaling Definition 1.7

The first step in the proof of Claim (1) from Theorem 1.8 will be to allow ourselves to work with
metrics whose coefficients” C**-distances from §;; are bounded by a constant much smaller than
1. For this purpose we let 0 < € < 1, and introduce the following definition, which depends on
. Note that we will not use this definition with arbitrary values of ¢, but rather with a constant
value which is small enough for our requirements. The lemma following the definition shows
that in order to prove (1), it is enough to consider a metric which satisfies the conditions of
Definition 4.1, for some fixed 0 < ¢ < 1. From now on, the notation ¢;; will always be used for
the Kronecker delta function.

Definition 4.1. We say that M is a-almost-flat via an e-restricted coordinate chart at a point
po € M to distance § > 0 if the injectivity radius of all points of B := By(po, d) is at least 20,
and B is isometric to a bounded open set U C C endowed with the Riemannian tensor

2
9= gyda'dr’,

ij=1
such that g;; : U — R satisfy
gij(xo) =05 and  |gij — bijly .y <€ forall i,j € {1,2},

where xo € U is the image of py under the implied isometry. We also define the a-almost-flat
radius via an e-restricted coordinate chart of M at a point py € M to be the supremum over all
such 6, and denote it by p._chan = Pe—chart(Do, Q).

Lemma 4.2. Let M be a C*-smooth Riemannian surface, letpo € M, 0 < o < land(0 < e < 1.
Then

Pe—chart Z C * Pchart)

for some constant C' > 0 depending on ¢.

Remark 4.3. Since we assume that 0 < ¢ < 1, the reversed inequality to the one in Lemma 4.2
clearly holds with constant 1, i.e.

Pchart Z Pe—chart- (29)

Note that in case ¢ is taken to be sufficiently small, it is also possible to omit the requirement
gi;(zg) = d;; from Definition 4.1, and still obtain (29). In this case, one merely “fixes the
origin” by considering the pull-back metric under the linear transformation (G(xzo)~"')'/2, where
G(x0) = [gij(x0)] is the matrix of metric coefficients evaluated at x,. Since ¢ is assumed to be
small, one would obtain that G(z() = I, + E, where I, = [J;;] is the 2 x 2 identity matrix and
E ~ 0. It is thus possible to show that the C**-distances of the pull-back metric’s coefficients
from 9,; are bounded by 1. We will use a similar argument later on, in the special case where
g = ¢ - (dr? + dy?), so that G(x) is a scalar matrix.
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Before we prove Lemma 4.2, let us discuss a few estimates which we will also use later on.
From now on, we write
gJo = 5Z‘jdl‘ld$]

for the Euclidean metric on C. Suppose that g = g;;dx’da’ is another metric on an open set U C

C. We write || (|40 = v/go(, -) for the Euclidean norm on the tangent space, and || ||, = 1/g(", *)
for the norm with respect to the metric g. For two points z,y € U, we denote their Euclidean

distance by |z — y|, and their distance with respect to the metric g by d,(z,y). Forapathy C U,
we denote its Euclidean length by L, (), and its length with respect to the metric g by L, (7).

Let x € U, and suppose that max; jc(1,2y |gij(x) — 6;;] < ¢, for some ¢ > 0. Then for any
two vectors u = u*0,, v = v*0;, € T,U we have that

l9(v,w) — go(v,u)] < e+ (Jo'] + [ (|u'] + [u?]) < 2el|v]lgyl|ullgo, (30)
where all the expressions are evaluated at x. In particular, we see that
(1= 20)lJvllg, < llvllg < (1 + 2¢)vllg,- 31
Hence for any path v C U such that max; je(i1,9} |95 (2) — 6;;] < ¢ for any x € -, we have that

Ly(7) < V1+2c- Ly (7). (32)

In case ¢ < 1/2, we also have
Ly(v) = V1 =2¢c- Ly, (7). (33)

The following lemma exploits these estimates in order to obtain relations between the radius of
the Riemannian disc and the Euclidean diameter of the isometric set.

Lemma 4.4. Let M be a C*-smooth Riemannian surface, fix py € M and let &6 > 0 be such
that the injectivity radius of all points in the Riemannian disc B := By(po, ) is at least 20.
Suppose that B is isometric to a bounded open set U C C endowed with the Riemannian tensor
g = gidaz'da? such that g;; : U — R satisfy |gi; — 0ijlow < cforanyi,j € {1,2}. Then

§<V1+2c-d,

where d is the Euclidean diameter of U. Furthermore, if ¢ < 1/2, then

d<25/V1—2c.

Proof. Write xq € U for the image of py € B under the implied isometry, and let ¢ € OU be
such that
|z — q| = inf{|zo — p| : p € OU}.
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The line (t) = (1 — t)zo + tq connecting xy and ¢ is contained in U, i.e. v([0,1)) C U. Since
dy(z0,q) = 0, by (32) we obtain that

4> a0 — gl = Lgy(v) = Ly(7)/VI T 2 > §/v/T7 2.

Now suppose that ¢ < 1/2, and let 2,y € U. Since the injectivity radius of p, is at least 2,
there exist minimizing geodesics v*), vy} C U with respect to g, such that v(*) connects z, to
x, while 7(9) connects z( to y. Then by (33) we obtain that

L) + L (™) _ 28
V1-=2¢ - JV1=2¢

which implies that d < 2§/+/1 — 2¢, thus completing the proof. O

| —y| <o — @] + |70 — y| < Lgy(Y?) + Ly, (1) <

Proof of Lemma 4.2. Suppose that M is a-almost-flat via a coordinate chart at py € M to dis-
tance 0 > 0, i.e. the injectivity radius of all points of B := By(po,d) is at least 24, and B is
isometric to a bounded open set U C C endowed with the Riemannian tensor g = g¢;;da'da?,
such that g;; : U — R satisfy

gij(xo) = 51']' and ’91] — 5ij’/2,o¢;U S 1 for all Z,j € {1, 2},

where xq € U is the image of py under the implied isometry.
Let ¢ € OU. Since the injectivity radius of p, is at least 24, the exists a minimizing geodesic
7@ C U with respect to g connecting x and ¢, so that Lg(w(q)) = J. Then by (32) we have
4]

Lo (Y\9) > —. 34
g0 (7 ) Z \/g ( )
(@)

For every p € 79 write v,” C 4@ for the portion of (9 connecting x and p. From (34) we
deduce that there exists y = y(q) € 7@ such that

)
Ly (19) = =2 35
9o (fYy ) 8\/§ ( )
Let d be the Euclidean diameter of U. By Lemma 4.4 we see that § < d+/3, and together with
(35) we see that

ed
Loy(1") < 5 (36)
For any i, 7 € {1,2} we have that

9ij(0) = 6ij and |Dlgij|0;U = ‘Sl‘lp !Dﬁgzj’o;U <d
Bl=1

Hence by the mean value theorem together with (36), we see that for any ,j € {1,2} and

(@)

x € 7y we have

_, ed 1
gij(x) — 6i5] < V2dt- 3 <-< 1 (37)

1 ™
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Thus by (33) and (35), we obtain that

,— 3
LQO ’yy 8\/_

The Riemannian disc By (po, %) is thus isometric to aset V' C J,cops 7?5? ;) endowed with the
restricted metric g‘v. For any ¢ € OU, by (36) we have

Y(9) — o] < Ly (40)) < =

which implies that dyy < ed/4, where dy is the Euclidean diameter of /. Thus for any i, j €
{1,2} we have

d@\Dkgmo;v < (¢/4)* forany k € {1,2} and AT [D?gijlav < (g/4)%F

By (37) we see that max; je(1,2} |gij — dijlo,v < €/4. Thus for any 4, j € {1,2} we have

|95 — Oijlo.00 = (Zd |D*(gi; — ij)|0;V> + & [D?gijlav < e,

and the proof is completed, with the constant being ﬁé'

4.3 Bounding the curvature via metric coefficients - Proof of (1)

Throughout this section, we fix ¢ = 1/100. In light of Lemma 4.2, we see that showing Claim
(1) from Theorem 1.8 reduces to the following proposition.

Proposition 4.5. Let M be a C*-smooth Riemannian surface, let po € M and 0 < « < 1. Then

Pcurvature Z C- Pe—chart;
for some constant C' > 0 depending on a.

This section is thus dedicated to the proof of Proposition 4.5. Throughout this section, we let
M be a C?-smooth Riemannian surface, we fix a point py € M and let > 0 be such that the
injectivity radius of all points in the Riemannian disc B := Bjys(po,d) is at least 2. In our
formulations we use the Einstein summation convention.

We use formula (3) in order to deduce bounds on the Gauss curvature function from the
information we have on the metric’s coefficients. For the evaluation of the Christoffel symbols
we use the following formula

1
Ffj - §9lk(3j9il + 0igji — 019;i), (38)
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where [¢"/] denotes the inverse matrix of [g;;]. Differentiating (38) yields

amej = %[&nglk(aj% + 0ig51 — 019;i) + 6" (0m0; 91 + OmOigji — OmOrg;i)]. (39)
In Definition 4.1 we introduce a bounded open set U C C, which is the image of the Riemannian
disc B under the implied isometry. Since B is a Riemannian disc of radius ¢, and the given
metric’s coefficients are ”C?-close” to the Euclidean metric’s coefficients, it makes sense to
expect that the set U will be somehow “geometrically-close” to an Euclidean disc of radius 9.
We will only show that U is convex in the Euclidean sense, i.e. as a subset of C with respect to the
Euclidean metric. This will ensure that in our case, the inclusion of Holder spaces C*+1(U) C
C*(U) holds. In particular, the inequalities given in (28) will be available to us. Note that this
inclusion does not hold in general, without any assumption on the geometry of U. In order to
show that U is convex, we first show that under the assumptions on the metric’s coefficients, the
quantity 62| K|, is bounded by a small universal constant. Note that according to the Whitehead
theorem [6], as mentioned before, this would imply that B is strongly convex.

From now on we use the notation from (25) for the derivatives’ norms, meaning that whenever
we write | D7 [}, , for some integer j > 0, it should be understood as supys; | D’ f1}. ,» where 3
is a 2-dimensional multi-index.

Lemma 4.6. Suppose that B is isometric to a bounded open set U C C endowed with the metric
g = gijda’dat, such that g;; - U — R satisfy |g;; — 0ij|h,y < € = 1/100 for any i,j € {1,2}.
Then 6*|K|o.p < 1/10.

Proof. The norms in this proof are implicitly with respect to the set U. When we refer to K as
a function on U, it should be understood as the composition of K with the implied isometry. By
definition, we have that

d*|D*(g;; — 0i;)lo <&  foranyi,j € {1,2}and k € {0, 1,2}, (40)

where d is the Euclidean diameter of U. For the following inequalities, we implicitly use the
triangle inequality and the fact that | - |y is sub-multiplicative. All indices are implicitly taken
from the set {1, 2}. Since det g = g11922 — g12921 > 1 — 2¢, we see that

max 1970 < max |9ijlo - deltg ) < 11_—1—255. (41)
By formula (38) for the Christoffel symbols, together with (40) and (41), we obtain that
max ITilo < Hzl,?x|gij|o - 3max D" gijlo < 11j2€5 3ed™ < %. (42)
Since 9,g" = —¢'*¢7°0, g, using (40) and (41), we see that
y o\ 2 1+¢e)\°
max D'y < 4- (TI%&X |9”|0> max |D g0 < 4 (1 — 25) ed™". (43)
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Differentiating the Christoffel symbols formula (38) yields (39), and by (40), (41) and (43), we
have that

max |D'T% |0 < max |D'g"|o - 3max |D'g;;|o + max |97 - 3max | D?g;o
2,7, 2y 1,7 2¥) 2,7
5, e(1+¢) l1+¢ d—2
<d?. - 112 3 < =—. 44
= 1 — 2 { 5(1—25>+}—31 “4)

By formula (3), together with (42), (44), and the fact that 1/g;; < 1/(1 — ), we obtain that

2
100 2 4 1
K| <|—| - |2 d? DTk 4. (d e <2 (AL 2 =
o= 1aml, [ DTGl 4\ dmaxililo ) | <559\ 32)) <1
By Lemma 4.4 we have § < /1 + 2¢ - d, which implies that §*| K |y < 1/10. O

Lemma 4.7. Suppose that B is isometric to a bounded open set U C C endowed with the metric
g = gijdx’dat, such that g;; - U — R satisfy |g;; — 0ij|h.y < € = 1/100 for any i,j € {1,2}.
Then the set U is convex in the Euclidean sense.

Proof. We show that U is convex by showing that the boundary of U is a convex curve. Since the
C?-norms of the functions g;; are bounded, we may extend the functions g;; and their derivatives
continuously to the closure of U. Hence given a point ¢ € OU, we may speak of the inner product
9(-,-) : T,C€ x T,C — R and the Christoffel symbols I'}; at the point g.

Fix ¢ € OU and let v : [—p,p] — OU be a unit speed curve with respect to g, such that
7(0) = q. Let N € T,C be the inward unit normal at ¢ with respect to g, i.e.

IN|l, =1, g(N,5) =0, and {exp,(tN) : t € (0,t0]} C U for some ty > 0,

where all the expressions are evaluated at ¢. Since B is a Riemannian disc, we have that N =
—0,, where r is the Riemannian distance function from the center of the disc py. Similarly, let
Ny be the inward unit normal at ¢ with respect to go. The set 7,C \ {t - ¥(0) : ¢ € R} consists
of two connected components, denote them by /;, and /,,. One of these connected components,
say the one we denoted by [j,, may be characterized by

In={ueT,C:g(u,N)>0}={ueT,C:gy(u, Ny) > 0}.
In particular, we have that
g(N,No) >0 and  go(N, Ny) > 0. (45)

Write D,u for the covariant derivative with respect to gg, and V,u for the covariant derivative
with respect to g. In order to show that U is convex, it suffices to show that the normal component
of the Euclidean acceleration D5~ points in the direction of the inward normal Ny, i.e.

go(D+7y, No) > 0. (46)
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Since B is a Riemannian disc, and v is a unit speed curve with respect to g, the Riemannian
acceleration V4 is given by the Laplacian of the distance function r from the center of the disc

Po, 1.e.
Vid(q) = Ayr(q) - N.

Hence by the triangle inequality, we have that
|90(D&"Y> No) — Anr| < \go(D:f'y — Vs, No)| + Anr|go(N, No) — 11, 47)

where all the expressions are evaluated at ¢g. Since -y is a unit speed curve with respect to g, by
(31) we see that ||§]|> < 1/(1 — 2¢). Using the bound we obtained for the supremum norm of
the Christoffel symbols in (42) together with Lemma 4.4, we see that for any k£ € {1,2} we have
that max; ; [T};]o < 6~'/31. Thus for any k € {1,2} we have

-1

10| < max Tl - (51 + 17*)* < 2 max Dl - 19115 < 75~
Since V575 — D+ = ('4/T%;) Ok, we obtain that
. . 512
IV = Diillgg < —— (48)
Writing < := |K|o.5, by Lemma 4.6 we have that §./k < 1/3. By Proposition 3.8, we thus
obtain that (5/F)
tan
§-A - 2. 49
(8- Ausr(g) ™ < LD < 49)
By the Cauchy-Schwartz inequality, together with (48) and (49), we obtain that
(Aum) " g0 (Vs — Dyy, No)| < 1/5. (50)
Letv :=*%/|9]l4, € T,C. Using (30) we see that
9o (N,0)] = lgu(V, ) — g(N, )] < —=
V)| = V) — v —
go 9o g m
Moreover, since v and /V, are orthonormal with respect to gy, we have that
97 1 4¢? 100

< |INZ, = 190(N,v) > = |go(N, No)|> < || N||2

— < — =—.
100 142 1-2¢ 50 = 1—2¢ 98

Since go(N, Ng) > 0 by (45), we see that go(IN, Ny) is very close to 1. Using these estimates
together with (50), by (47) we see that

_ . 1
[(Anr) " go(Ds7, No) — 1] < < =+ 100 <

which implies that go(D57, No) > 0, thus proving (46). O
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From now on, we will say that < y if there exists a constant C' > 1 depending only on «, such
thatz < C-y.Incase x < yandy < x, we write © < y.

Lemma 4.8. Let 0 < o < 1, and suppose that B is isometric to a bounded open set U C C
endowed with the metric g = g;;dx'dx’, such that g;; : U — R satisfy |gi;—0ij]5 o0 < € = 1/100
foranyi,j € {1,2}. Then 6*|K|{ ,.p < 1.

Proof. As a result of Lemma 4.6 and the Whitehead theorem [6], we see that B is strongly
convex. Moreover, by Lemma 4.7, we have that U is convex in the Euclidean sense. Hence the
assumption that max; jeq1,2y |gij — 6ijlo,v < 1/100 together with (32) and (33), imply that for
any p, q € U we have

0.98 - [p—q| < dy(p,q) <1.01-|p—q|

In particular, writing d for the Euclidean diameter of U, we see that
0.49d < 6 < 0.51d.

Hence if we wish to refer to [ K[j ., in the Euclidean sense, i.e. where distances are with respect
to the Euclidean distance, we only lose a constant factor depending on «. In other words,

e o KO K@ K () — ()
(20)"Klsp = (20) p#qu d;‘(p, q) ! x#ygU |z —yl|*

=d°[K]au-
Therefore all of the norms in this proof are implicitly with respect to U, where distances are with
respect to the Euclidean metric, and our goal is to show that
P|Klh, S 1. (51)
The assumption that |g;; — dy5]5,, < € forany 4, j € {1,2} implies that
|9ij — dijlo <&, d|D'gijlo <e, and  d*|D%glp, <e. (52)
Furthermore, since U is convex by Lemma 4.7, from (28) we see that that for any i, j € {1, 2}
19ijloa < 05 +V2e and  d|D'gylh, < V2e. (53)

For the following inequalities, we implicitly use the triangle inequality and (26), i.e. the fact that
| - [6,o is sub-multiplicative. All indices are implicitly taken from the set {1,2}. From (53) and
(27) it follows that

max |¢"[f , < max |gijl0.. - |1/ det glg o S 1. (54)
,] ’ ,J ’ ’

For the Christoffel symbols we have formula (38). Thus by (53) and (54), we have that

dmax|Uilo o S max|g?lo, - dmax|Dgiila S 1. (55)
Since 0,9 = —g¢"*¢?°0,gap, using (53) together with (54), we obtain
.. .. 2
dmax|D'g[oq (IT%E;X Ig”li),a) ~dmax|Dlg;l . S 1. (56)
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Differentiating the Christoffel symbols formula (38) yields (39). Thus by (52), (53), (54) and
(56), we see that

d* max |D'T [, S dmax|D'g7[; , - dmax | D' gl , +max [g”]; , - d* max | D?glq ,
0,5,k ] 2] 2, i,
<1 (57)

By applying (27) and using (52) and (53), we see that |1/g11],
together with (55) and (57), we see that

< 1. Hence by formula (3),

~

1
dQ\Kléaﬁ‘—
Y

, 2
| [d2 max [D'TE [, + (dgljalfll“fj\f),a) ] <L
07a sJs

Z'7j7k

Thus (51) holds and the proof is completed. O

Proof of Proposition 4.5. Suppose that M is a-almost-flat via an e-restricted coordinate chart
at po € M to distance 6 > 0, i.e. the injectivity radius of all points of B := Bj(po, ) is at
least 29, and B is isometric to a bounded open set U C C endowed with the Riemannian tensor
g = gi;dx'da?, such that g;; : U — R satisfy

196 = Olo.00 <€ =1/100  forall i,j & {1,2}.

By Lemma 4.8, there exists a constant C' > 1 depending on « such that 6*| K 6.8 < C. Set
Cy = 1/\/5, and define 0 := Cyé and By := Bys(po, dp). Then By C B, and we have

061 K 16,0530 = (0°/C)  [K 053, < (1/C) - 0% Kf s < 1.

Hence we have that peyrvaure = Co * Pehart-
O

Remark 4.9. Note that in the proof of Proposition 4.5 we did not use the fact that g;;(x¢) = d;;,
where xg € U is the image of pyg € B under the implied isometry.

4.4 Apriori bounds on a Poisson’s equation solution - Proof of (2)

In order to prove Claim (2) from Theorem 1.8, we must find a coordinate chart which behaves
nicely with respect to the Gauss curvature. For this purpose we use the isothermal coordinate
chart discussed in earlier sections. The Gauss curvature function and the conformal factor in
these coordinates are related by Liouville’s equation (5), which is a form of Poisson’s equation.
We may thus use the Schauder estimates to relate the C'*-norm of the Gauss curvature and the
C?“-distance between the conformal factor and the constant function 1. In the proof we use
Corollary 1.3 to obtain a bound for the conformal factor involving the supremum norm of the
Gauss curvature. The definitions, notation, and general propositions (namely 4.10, 4.11 and
4.12) in this section are taken from [19].
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Let €2 be a domain (i.e. a connected open set) in R”. A function u : €2 — R satisfies
Laplace’s equation if Au = 0. In this case, as mentioned before, the function is called harmonic.
A more general equation is Poisson’s equation, in which Au = f for some function f : 2 — R.
The properties of harmonic functions, and in particular the maximum principle, provide apriori
bounds for a solution to Poisson’s equation, e.g. Lemma 3.4. Another example of such a bound
is given by the following proposition.

Fix a bounded domain €2 in R™. For z € (2, we write d, := dist(x,dQ) for the distance
between x and the boundary of 2.

Proposition 4.10. Let u € C*(Q) satisfy Poisson’s equation, Au = f, in 2. Then

sup d,|Vu(z)| < C(sup |u] + sup &2 | f(x)]),
Q Q Q

where C' = C(n) is a constant depending on n.

Note that if the function u satisfies Poisson’s equation Au = f, and 7,(z) = px is a scaling
function, for some p € R, then A(u o 7,) = p*(f o7,). This phenomena is evident in the formu-
lation of Lemma 3.4 and of Proposition 4.10, as well as in more general estimates, commonly
referred to as the Schauder estimates, which we shall quote later on. For the Schauder estimates
we use a different version of “non-dimensional” norms, similar to | - [} ,, in which the “non-
dimensionality” is expressed by the distance from the boundary rather than by the diameter. In
order to accommodate the situation of Poisson’s equation, we allow “altering” the exponent of
the distance from the boundary. More formally, for an integer £ > 0 and o > (0 we define

k

e =fla=swp dDf(@)]  and  [fl70 = [fl\a.

zeQ,|B|=k =0

For 0 < a < 1, denoting d, ,, := min(d,, d,), we also define
|D7f(zx) = D°f(y)]

faa = sup et : and [0 = /1% + /0
TAyEQ, 5=k |z =yl
In the case where o = 0, we denote these quantities by [ - ]* := [ - ]@ and | - |* := | - |©). Note

that | - |1(:§)2 and |- |l(f(iQ are norms on the subspaces of C*(€2) and C** () respectively for which
they are finite. It is easy to verify that

Folitis) < /160 1916 (58)
For other properties, we will use the following interpolation inequalities.

Proposition 4.11. Suppose j+ 3 < k+a, where j, k € Z>oand 0 < «, f < 1. Let {2 be an open
subset of R" and assume v € C**(Q). Then for any € > 0 and some constant C = C(g, k, j)
we have

[u]? 5.0 < Clulo.a + elulf 0 and ul} 5.0 < Cluloa + lulf a.q-
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We again use the notation D’ f for the derivatives’ norms, meaning that whenever we write
|\ D7 f |,E:Uo)é for some integer j > 0, it should be understood as sup_; | D” f |,(:2 where (3 is a 2-
dimensional multi-index. As before, when the domain is fixed, we sometimes omit it from our
notation. Fix some 0 < o < 1 and an open set € in R". By definition, for any f € C?%(Q) we
have that

D floo < 1 ffia and (DG < |f 5 (59)
Together with Proposition 4.11, we see that for some universal constant C' > 0,
max {| /50, DI} < C |l (60)

For the reciprocal of a non-vanishing f € C'“(2) we again have the inequality

11/ fl50 < 11/ flo+ [fla - (11/£10)% (61)

The Schauder estimate we will use is as follows.

Proposition 4.12. Let u € C?*(Q), f € C%(Q) satisfy Au = f in an open set 2 of R". Then

000 < Cllulon + 1f1500)
where C' = C(n, «) is a constant depending on n and c.

Recall that we write < y if there exists a constant C' > 1 depending only on «, such that
x<C-y.Incaser S yandy < z, we write  ~ .

Lemma4.13. Let 0 < o < 1, let M be a C?-smooth Riemannian surface, fix a point py € M and
let 0 > 0 be such that the injectivity radius of all points in the Riemannian disc B := By (po, 9)
is at least 26. Suppose that §*| K 10.0:8 < 1/100, and let ¢ be the conformal factor corresponding

to an isothermal coordinate chart z : B — 5D with z(py) = 0 and z(0B) = 0S. Then

|90 - 1‘;,01;611]) SJ 52’K|€),a;B'

Proof. Since 6%| K |o.5 < 1/100, by Corollary 1.4 we see that for any p # q € B we have
o/ K(0) — K()| _ |K(p) — K()| _ o5 K(p) = K(9)|
2(p) = z(Ql* = d3(p,q) T |2(p) = z(g)|*

Furthermore, the Riemannian diameter of B and the Euclidean diameter of JID are both 2. Thus
we have that

e

|K|6,a;B ~ |K © Z_1|6,a;6]D)'

Therefore throughout this proof, all of the norms are implicitly with respect to 6D, where the
distances are Euclidean. We refer to K as a function on D as an abuse of notation instead of
K o z7'. Hence 6*|K;, < 1, and it suffices to show that

o — 1[50 S 6K 4 (62)
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By virtue of Corollary 1.3, together with the fact that |e* — 1| < 2|x]| for |z| < 1, we see that
o — 1o < 2[log plo < 16 - 62| K]o. (63)
By Proposition 4.11 and (63), we see that in order to show (62), it suffices to show that
[P0 S 01K 0 (64)

By (63) we clearly have |p|o < 1. By Liouville’s equation (5) together with Proposition 4.10,
we thus obtain that

sup  dy| DPp(x)] S
2€8D,|8|=1 zedD,|f|=1

< sup  d,|DPlogp(x)| < sup |logp| + sup | K|
oD oD
< sup |log ¢| 4+ 6* sup | K| sup o] S 1.
oD oD oD

Hence |p|; < 1, and from Proposition 4.11 it follows that

0100 S 1. (65)

For the following inequalities, we implicitly use the triangle inequality and (58). Using Liou-
ville’s equation (5), Proposition 4.12, Corollary 1.3 and (65), we see that

llog ¢ls. S logplo + [Kel$) < |log plo + K|S 0lsa
S PIK o+ 0Ky alels o S 02Ky o (66)

~Y

For any 7,7 € {1,2} we have that 0;,0;¢ = ¢ - 0;0;log ¢ + 0;log ¢ - 0;log . Thus by (65),
together with (59), (60) and (66), we obtain that

2
¢hsa < ID%I0) S [D%0g ol + (1D 1og ol(0)” S 21K o

Hence (64) holds and the proof is completed. O

Proof of Claim (2) from Theorem 1.8. Suppose that M is a-almost-flat via curvature at a point
po € M to distance 6 > 0, i.e. the injectivity radius of all points of B := Bj(po,0) is at least
29, and

6%+ | Kl 0p < 1.

Consider ¢y := where Cjy > 1 is the implied constant depending on « from Lemma 4.13.

s
10v/Co’
Writing By := By (po, do), we see that

63|K|6,Q;BO S CodglK“),a;Bo = (52/100)|K|6,Q;B0 S 1/100

Let 2y : By — 6D be an isothermal coordinate chart such that zo(py) = 0 and zy(0B,) = 6S',
with conformal factor ¢y. By Lemma 4.13 we obtain that

|900 - 1|;,a;60D < 006[2)’[(’6,04;30 < 1/100 (67)
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Now consider §; = d¢/3, the Riemannian disc By := Bj;(po, 01) and the coordinate map z B

B, — U for some open set U C C. Clearly these are also isothermal coordinates, with the
conformal factor being ¢y|,,. For any ¢ € 0B; we have that d,(py,q) = d1, and by Corollary
1.4, we see that

o

120(q)| < €?°6, < 6y/2
Thus we have that dist(U, 6,S*) > &y/2 and d := diam(U) < §y. Writing d,, = dist(z, §,S'), we
see that for any x € U we have d < 2d,. Hence for any k € {1,2} we have

d*|D¥goloy <4 sup d; - |DPpo(z)] < 4- ol osp-
zeU,|B|=k

Similarly, writing d, , = min(d,, d,), we have that

DB _ DB
d2+a[D2800]a;U < 2% gup diza’ ¢o(7) vo(y)] < 9%a
e#yel,|fl=2 |z — y|*

. [900]3,04;50@-

Using (67) we thus obtain that
|<p0 - 1|/27a;U S 8- |S00 - 1|;,a;50]D) S 2/25

As mentioned in Remark 4.3, we may now ”fix the origin” by applying a linear transformation.
Write £ = /o(0), let V' := &U and set 2z, := fz0]3—1 : B; — V. Recall that z; are also
isothermal coordinates with the conformal factor oy (2) = £ %@y (z/€). Since the norms | - [} ,
are “non-dimensional”, we have that

|901 - 5_2|l2,o¢;V = 5_2 ’ ’900(2/6) - 1|/2,a;V = 5_2 ’ |(100 - 1|’2,O¢;U < 25_2/25
Thus
’()01 - 1‘/2,04;V < |901 - 672‘12,01;‘/ + ’1 - 572’ < 2572/25 + ‘1 - £72"
Since 100/101 < €72 < 100/99, we obtain that
01(0) =1 and lp1 = 1y 0 < L. (63)

To summarize, taking C' = 30\%, which is a constant depending on «, we have that 9; = C,

and we showed that the Riemannian disc B/ (po, d1) is isometric to a bounded domain V' C C
endowed with the metric g = ¢;|dz;|?, where ¢, satisfies (68). Hence we obtained that pepar >
C * Pcurvature « O

S Appendix

The following lemma follows directly from the definition of a convex (resp. concave) function.
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Lemma 5.1. Suppose that g : [0, a] — R is a continuous strictly convex (resp. concave) function
such that f(x) = g(x)/z is a well-defined continuous function. Then f is strictly increasing
(resp. decreasing).

Proof. Let xy € (0, a), and consider the function

h(z) == x(f(x) — f(0)) = g(x) — f(zo0) - @-

The function A is strictly convex (resp. concave) and satisfies h(0) = h(zo) = 0. Thus h(z) < 0
(resp. h(z) > 0) on (0, zo), which implies that f(z) < f(zo) (resp. f(x) > f(x¢)) for any
S (0,$0). O

We use this characterization of convex (resp. concave) functions to show the following results
we used.

Lemma 5.2. We have that

sinh(z)

< exp(a?/4) forany x > 0, (69)

and
sin(x)

> exp(—2?/4)  forany 0 <z < /2. (70)

Proof. The first inequality follows directly from the asymptotic expansion of the two functions.
Indeed, we have that

2n > 2n

sinh(x > 2
Z 2n+ and eXp /4 Z4n n!’

n:O n=0

Since (2n + 1)! > 4™ - n! for any n > 1, we see that (69) holds. In order to show (70), define
g(z) = sin(x) exp(z?/4). Differentiating twice we obtain that

g"(z) = i -exp(z?/4) [(2* — 2) sin(x) + 4 cos(z)] .
Let h(z) = (2? — 2)sin(x) + 4z cos(x). Differentiating the function h twice we obtain that
h'(z) = —(2? + 4) sin(z), so that h” < 0 on (0, 7/2), which implies that h is strictly concave
on (0,7/2). Since h(0) = 0 and h(7w/2) > 0, we have that h > 0 on (0,7/2). Thus ¢" > 0 on
(0,7/2), and by Lemma 5.1 we see that f(z) = g(x)/x is strictly increasing. Since f(0) = 1,
we have that f(z) > 1 for any « € (0, 7/2), thus completing the proof. O

Lemma 5.3. For any a > 0, The function x/ tanh(ax) is increasing on (0, 00), and the function

v/ tan(ax) is decreasing on (0, 7).
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Proof. Let a > 0. The function tanh(az) satisfies lim,_,o tanh(az)/x = a, and it is strictly
concave on (0, 00). Thus by Lemma 5.1, we see that tanh(ax) /z is strictly decreasing on (0, o),
and since tanh(az) > 0 on (0,00), we obtain that z/tanh(ax) is increasing. Similarly, the
function tan(ax) satisfies lim,_,o tan(ax)/z = a, and it is strictly convex on (0, -). Thus by
Lemma 5.1, we see that tan(ax)/x is strictly increasing on (0, 5-), and since tan(az) > 0 on
(0, 57), we obtain that =7/ tan(z) is decreasing. |

Lemma 5.4. Let 0 < a < w/2. Then the function f : (0,7] — R given by

cos™!(cos?(a) + sin’(a) cos(x))

fx) =

X

is strictly decreasing on (0, ), and in particular attains its infimum at .
Proof. Define g : [0, 7] — R by

g(x) := cos™*(cos®(a) + sin*(a) cos(z)).
Then the function g satisfies

0%g

@(f) - (1 = (sin®(a) cos(x) 4 cos?(a))?)*? = —4sin*(a) cos?(a) sin*(z/2) < 0,

which implies that it is strictly concave on (0, 7). Moreover, the function f(z) = g(z)/z is
well-defined and continuous on [0, 7|. Hence by Lemma 5.1, we see that f is strictly decreasing.
O
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