Volumes in High Dimensions - Home Work 1

It is highly recommended to do all the questions. You need to submit the solution to question 1 or 3. Question 1. Let $n \ge 100$. Let $\theta = (\theta_1, \dots, \theta_n) \in \mathbb{R}$ be a unit vector such that

$$\forall i, \qquad |\theta_i| \le \frac{5}{\sqrt{n}}.$$

Let X be a random vector in \mathbb{R}^n , distributed uniformly in $[-\sqrt{3}, \sqrt{3}]^n$. Denote by $f_{\theta}(t)$ the continuous density of $\langle X, \theta \rangle$. Prove that

$$\left| f_{\theta}(t) - \frac{\exp(-t^2/2)}{\sqrt{2\pi}} \right| \le \frac{C}{n} \qquad (t \in \mathbb{R})$$

for a universal constant C > 0.

Question 2. For $\theta \in S^{n-1}$, $t \in \mathbb{R}$ we set $H_{\theta,t} = \{x \in \mathbb{R}^n ; x \cdot \theta = t\}$. Set,

$$f_{\theta}(t) = \frac{\operatorname{Vol}_{n-1} \{\sqrt{n} B_2^n \cap H_{\theta,t}\}}{\operatorname{Vol}_n \{\sqrt{n} B_2^n\}} = \frac{\operatorname{Vol}_{n-1} \left(B_2^{n-1}\right)}{\operatorname{Vol}_n \left(\sqrt{n} B_2^n\right)} \cdot \left(n - t^2\right)^{(n-1)/2}$$

Prove that

$$f_{\theta}(t) = \frac{e^{-t^2/2}}{\sqrt{2\pi}} + O\left(\frac{1}{n}\right).$$

Question 3. Let $p \ge 1$ be an integer, and consider the unit ball of ℓ_p^n , namely,

$$B_p^n = \left\{ x \in \mathbb{R}^n \, ; \, \|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \le 1 \right\}.$$

The cone measure μ on its boundary is defined, for a Borel set $A \subseteq \partial B_p^n$ via

$$\mu(A) = \frac{Vol_n(\{tx \, ; \, x \in A, 0 \le t \le 1\})}{Vol_n(B_n^n)}.$$

1. Let X_1, \ldots, X_n be i.i.d random variables, whose density is proportional to $\exp(-|t|^p)$ $(t \in \mathbb{R})$. Prove that

$$(X_1,\ldots,X_n)/\|X\|_p$$

is distributed according to the cone measure on ∂B_n^n .

- 2. Prove that $(X_1, \ldots, X_n)/||X||_p$ and $||X||_p$ are independent. What is the density of $||X||_p^p$?
- 3. Prove that the density of $\sum_{i=1}^{p} |X_i|^p$ is an exponential random variable of parameter one (i.e., density e^{-t} on $[0,\infty)$).
- 4. Let E be an exponential random variable of parameter one, independent of the X_i 's. Prove that $||X||_p/(||X||_p^p + E)^{1/p}$ has density nt^{n-1} in [0, 1].

5. Prove that

$$(X_1, \dots, X_n)/(||X||_p^p + E)^{1/p}$$

is distributed uniformly in B_p^n .

6. Conclude the generalized Archimedes principle: If (X_1, \ldots, X_n) is distributed according to the cone measure on ∂B_p^n , then (X_1, \ldots, X_{n-p}) is distributed uniformly in B_p^{n-p} .