

Volumes in High Dimensions - Home Work 2

It is highly recommended to do all the questions. You need to submit the solution to question 3.

Question 1 Let X be a random vector in \mathbb{R}^n , with $\mathbb{E}|X|^2 < \infty$ and X is not supported on an hyperplane. Prove that $\exists b \in \mathbb{R}^n$ and a matrix $A > 0$ such that $Ax + b$ is isotropic.

Question 2 For a centrally symmetric convex body $K \subseteq \mathbb{R}^n$ we define its polar body by

$$K^\circ = \{x \in \mathbb{R}^n; x \cdot y \leq 1, \forall y \in K\}.$$

Prove

1. For any K we have

$$(K^\circ)^\circ = K.$$

(Hint: If $x \notin K$, then there is a separating hyperplane)

2. We have $K^\circ = K$ if and only if K is the unit Euclidean ball. (Prove that $K \subseteq B_2^n$ and use the order-reversing property of polarity).
3. For any $p \geq 1$ we denote by B_p^n the unit ball in the space ℓ_p^n . Show that

$$(B_p^n)^\circ = B_q^n,$$

where $1/p + 1/q = 1$. (Hint: Hölder)

Question 3 In this question we prove the Santaló inequality. Let $K \subseteq \mathbb{R}^n$ be a centrally symmetric convex body. We define

$$\rho(K) = \text{Vol}(K) \text{Vol}(K^\circ).$$

Let $u \in S^{n-1}$ and define

$$T = S_u K,$$

where S_u is the Steiner symmetrization with respect to u^\perp .

1. Let A be an invertible matrix. Show that $\rho(AK) = \rho(K)$.
2. For any $A \subseteq \mathbb{R}^n$ and $y \in \mathbb{R}$ denote $A_y = \{x \in A; x_n = y\}$. Assuming $u = e_n$, show that

$$(K^\circ)_y + (K^\circ)_{-y} \subseteq 2T_y, \quad \forall y \in \mathbb{R}.$$

3. Prove that $\text{Vol}(K^\circ) \leq \text{Vol}(T^\circ)$ and that $\rho(K) \leq \rho(T)$.

(Hint: Brunn-Minkowski)

4. Prove that for any centrally symmetric convex body K we have

$$\rho(K) \leq \rho(B_2^n).$$

Question 4 Let $f : S^{n-1} \rightarrow (0, \infty)$ be a 1-Lipschitz function and set $M = \sqrt{\int f^2 d\sigma}$. Prove that for all $t > 0$,

$$\sigma(\{x \in S^{n-1}; |f(x) - M| \geq t\}) \leq C e^{-ct^2 n}$$

where $c, C > 0$ are universal constants.