Volumes in High Dimensions - Home Work 2

It is highly recommended to do all the questions. You need to submit the solution to question 3.

Question 1 Let X be a random vector in \mathbb{R}^n , with $\mathbb{E}|X|^2 < \infty$ and X is not supported on an hyperplane. Prove that $\exists b \in \mathbb{R}^n$ and a matrix A > 0 such that Ax + b is isotropic.

Question 2 For a centrally symmetric convex body $K \subseteq \mathbb{R}^n$ we define its polar body by

$$K^{\circ} = \{ x \in \mathbb{R}^n ; \ x \cdot y \le 1, \ \forall y \in K \}.$$

Prove

1. For any K we have

$$(K^{\circ})^{\circ} = K.$$

(Hint: If $x \notin K$, then there is a separating hyperplane)

- 2. We have $K^{\circ} = K$ if and only if K is the unit Euclidean ball. (Prove that $K \subseteq B_2^n$ and use the order-reversing property of polarity).
- 3. For any $p \geq 1$ we denote by B_p^n the unit ball in the space ℓ_p^n . Show that

$$\left(B_p^n\right)^\circ = B_q^n,$$

where 1/p + 1/q = 1. (Hint: Hölder)

Question 3 In this question we prove the Santaló inequality. Let $K \subseteq \mathbb{R}^n$ be a centrally symmetric convex body. We define

$$\rho(K) = Vol(K) Vol(K^{\circ}).$$

Let $u \in S^{n-1}$ and define

$$T = S_u K,$$

where S_u is the Steiner symmetrization with respect to u^{\perp} .

- 1. Let A be an invertible matrix. Show that $\rho(AK) = \rho(K)$.
- 2. For any $A \subseteq \mathbb{R}^n$ and $y \in \mathbb{R}$ denote $A_y = \{x \in A; x_n = y\}$. Assuming $u = e_n$, show that

 $(K^{\circ})_y + (K^{\circ})_{-y} \subseteq 2T_y, \quad \forall y \in \mathbb{R}.$

- 3. Prove that $Vol(K^{\circ}) \leq Vol(T^{\circ})$ and that $\rho(K) \leq \rho(T)$. (Hint: Brunn-Minkowski)
- 4. Prove that for any centrally symmetric convex body K we have

$$\rho(K) \le \rho(B_2^n)$$

Question 4 Let $f: S^{n-1} \to (0,\infty)$ be a 1-Lipschitz function and set $M = \sqrt{\int f^2 d\sigma}$. Prove that for all t > 0,

$$\sigma(\{x \in S^{n-1}; |f(x) - M| \ge t\}) \le Ce^{-ct^2n}$$

where c, C > 0 are universal constants.