Volumes in High Dimensions - Home Work 2

It is highly recommended to do all the questions. You need to submit the solution to question 3.
Question 1 Let X be a random vector in \mathbb{R}^{n}, with $\mathbb{E}|X|^{2}<\infty$ and X is not supported on an hyperplane. Prove that $\exists b \in \mathbb{R}^{n}$ and a matrix $A>0$ such that $A x+b$ is isotropic.

Question 2 For a centrally symmetric convex body $K \subseteq \mathbb{R}^{n}$ we define its polar body by

$$
K^{\circ}=\left\{x \in \mathbb{R}^{n} ; x \cdot y \leq 1, \forall y \in K\right\} .
$$

Prove

1. For any K we have

$$
\left(K^{\circ}\right)^{\circ}=K
$$

(Hint: If $x \notin K$, then there is a separating hyperplane)
2. We have $K^{\circ}=K$ if and only if K is the unit Euclidean ball. (Prove that $K \subseteq B_{2}^{n}$ and use the order-reversing property of polarity).
3. For any $p \geq 1$ we denote by B_{p}^{n} the unit ball in the space ℓ_{p}^{n}. Show that

$$
\left(B_{p}^{n}\right)^{\circ}=B_{q}^{n},
$$

where $1 / p+1 / q=1$. (Hint: Hölder)
Question 3 In this question we prove the Santaló inequality. Let $K \subseteq \mathbb{R}^{n}$ be a centrally symmetric convex body. We define

$$
\rho(K)=\operatorname{Vol}(K) \operatorname{Vol}\left(K^{\circ}\right) .
$$

Let $u \in S^{n-1}$ and define

$$
T=S_{u} K
$$

where S_{u} is the Steiner symmetrization with respect to u^{\perp}.

1. Let A be an invertible matrix. Show that $\rho(A K)=\rho(K)$.
2. For any $A \subseteq \mathbb{R}^{n}$ and $y \in \mathbb{R}$ denote $A_{y}=\left\{x \in A ; x_{n}=y\right\}$. Assuming $u=e_{n}$, show that

$$
\left(K^{\circ}\right)_{y}+\left(K^{\circ}\right)_{-y} \subseteq 2 T_{y}, \quad \forall y \in \mathbb{R}
$$

3. Prove that $\operatorname{Vol}\left(K^{\circ}\right) \leq \operatorname{Vol}\left(T^{\circ}\right)$ and that $\rho(K) \leq \rho(T)$.
(Hint: Brunn-Minkowski)
4. Prove that for any centrally symmetric convex body K we have

$$
\rho(K) \leq \rho\left(B_{2}^{n}\right) .
$$

Question 4 Let $f: S^{n-1} \rightarrow(0, \infty)$ be a 1-Lipschitz function and set $M=\sqrt{\int f^{2} d \sigma}$. Prove that for all $t>0$,

$$
\sigma\left(\left\{x \in S^{n-1} ;|f(x)-M| \geq t\right\}\right) \leq C e^{-c t^{2} n}
$$

where $c, C>0$ are universal constants.

