Volumes in High Dimensions - Home Work 3

It is highly recommended to do all the questions. You need to submit the solution to question 1 or 3 .
Question 1 Let $f_{1}, \ldots, f_{n}:[0,1] \rightarrow \mathbb{R}$ be measurable functions with $\left|\sum_{j=1}^{n} f_{j}^{2}-n\right| \leq 1$. Assume that $\forall \theta \in S^{n-1}$ we have

$$
\int_{0}^{1}\left(\sum_{j=1}^{n} \theta_{j} f_{j}\right)^{2} \leq n^{1 / 10}
$$

Prove that $\exists \mathcal{F} \subseteq S^{n-1}$ with $\sigma_{n-1}(\mathcal{F}) \geq 1-1 / n$ such that for all $\theta \in \mathcal{F}$ we have

$$
\left|m\left\{x \in[0,1] ; \sum_{j=1}^{n} \delta_{i} f_{i} \geq t\right\}-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-s^{2} / 2}\right| \leq \frac{C}{n^{\alpha}}, \quad \forall t \in \mathbb{R}
$$

where $C, \alpha>0$.

Question 2

1. Prove that $(\varepsilon / \sqrt{n}) \mathbb{Z}^{n} \cap B_{2}^{n}$ is an $\varepsilon-$ net for B_{2}^{n} of size $(c / \varepsilon)^{n}$.
(Hint: $B_{2}^{n} \subseteq \sqrt{n} B_{1}^{n}$, and estimate the size of $(\varepsilon / \sqrt{n}) \mathbb{Z}^{n} \cap \sqrt{n} B_{1}^{n}$ by elementary combinatorics)
2. Let $0<\varepsilon<1$. Let $\mathcal{N}=\left\{X_{1}, \ldots, X_{m}\right\}$ be independent uniform points on S^{n-1}, where $m>(1 / \varepsilon)^{n}$. Prove that

$$
\mathbb{P}(N \text { is an } \varepsilon-n e t) \geq 1-C \exp \left(-c(1 / \varepsilon)^{n}\right),
$$

for some $C, c>0$. (Hint: $\exists \widetilde{\mathcal{N}}$ which is an $\varepsilon-$ net on S^{n-1})
Question 3 Let $K \subseteq \mathbb{R}^{n}$ be a centrally symmetric convex body, such that $B_{2}^{n} \subseteq K$. Assume that there exists an isotropic measure μ that is supported on the contact points of K and B_{2}^{n}.

Here we use the following definition of isotropic measures on the sphere: for all x we have

$$
\int_{S^{n-1}}\langle x, u\rangle^{2} d \mu(u)=\frac{1}{n}|x|^{2} .
$$

1. Let

$$
L=\left\{y \in \mathbb{R}^{n} ;\langle y, u\rangle \leq 1, \forall u \in \operatorname{supp}(\mu)\right\} .
$$

Show that $K \subseteq L$.
2. Let $E \subseteq L$ be an ellipsoid defined by

$$
E=\left\{x \in \mathbb{R}^{n} ; \sum_{i=1}^{n} \frac{\left\langle x, v_{i}\right\rangle^{2}}{\alpha_{i}^{2}} \leq 1\right\}
$$

for some orthonormal set v_{1}, \ldots, v_{n}, and positive $\alpha_{1}, \ldots, \alpha_{n}$. For any $u \in \operatorname{supp}(\mu)$ we define

$$
y(u)=\sum_{i=1}^{n} \alpha_{i}\left\langle u, v_{i}\right\rangle v_{i} .
$$

Show that $y(u) \in E$ and conclude that $\sum_{i=1}^{n} \alpha_{i}\left\langle u, v_{i}\right\rangle^{2} \leq 1$.
3. Prove that

$$
\frac{1}{n} \sum_{i=1}^{n} \alpha_{i} \leq 1
$$

(Hint: use part 2 of the question)
4. Show that $\operatorname{Vol}(E) \leq \operatorname{Vol}\left(B_{2}^{n}\right)$, and conclude that B_{2}^{n} is maximal at K. (Hint: arithmetic-geometric inequality.)

