Volumes in High Dimensions - Home Work 4

It is highly recommended to do all the questions. You need to submit the solution to question 3.

Question 1 In this question we prove Khintchine's inequality: Let $p \ge 1$ and let $\varepsilon_1, \ldots, \varepsilon_n$ be independent Bernoulli random variables with $\mathbb{P}(\varepsilon_i = 1) = \mathbb{P}(\varepsilon_i = -1) = 1/2$. Prove that

$$c_p \|x\|_2 \le \left(\mathbb{E} \left| \sum_{i=1}^n \varepsilon_i x_i \right|^p \right)^{1/p} \le C_p \|x\|_2, \quad \forall x \in \mathbb{R}^n,$$
(1)

Where $C_p \approx \sqrt{p}$. A possible proof:

- 1. Show that $\cosh t \leq e^{t^2/2}$ for all $t \in \mathbb{R}$.
- 2. Show that $t^p \leq p^p e^{-p} e^t$ for all $t \geq 0$ and all $p \geq 1$.
- 3. Show that $\mathbb{E} \exp\left(\left|\sum_{i=1}^{n} \varepsilon_i x_i\right|\right) \le 2\sqrt{e}$ for all $x \in S^{n-1}$.
- 4. Prove inequality (1) for $p \ge 2$.
- 5. Prove inequality (1) for $1 \le p \le 2$. (Hint: Hölder)

Question 2 Let 2 . Our goal is to prove

$$c_1 n^{2/p} \le k(\ell_p^n) \le c_2 p n^{2/p}.$$
 (2)

- 1. Prove that b = 1 and $M \ge n^{1/q-1/2}$, where b and M are defined as in the Dvoretzky-Milman theorem.
- 2. Prove the left inequality in (2).
- 3. Assuming a subspace of ℓ_p^n that is 4-isomorphic to ℓ_2^k we have $u_1, \ldots, u_k \in \mathbb{R}^n$ such that

$$\|a\|_{2} \leq \left\|\sum_{i=1}^{k} a_{i} u_{i}\right\|_{p} \leq 4 \|a\|_{2}, \quad \forall a \in \mathbb{R}^{k}.$$
(3)

Show that

$$k^{p/2} \le c_p^p \sum_{i=1}^n \left(\sum_{j=1}^k u_{j,i}^2\right)^{p/2}$$

where $u_j = (u_{j,1}, \ldots, u_{j,n})$ and $c_p \approx \sqrt{q}$. (Hint: Khintchine - inequality (1))

4. Prove that

$$\sum_{j=1}^k u_{j,i}^2 \le 4^2$$

(Hint: use (3))

5. Prove the right inequality in (2).

$\mathbf{Question} \ \mathbf{3} \ \mathit{Prove that}$

$$c_1 \sqrt{\frac{\log k}{n}} \le \int_{S^{n-1}} \max_{i=1,\dots,k} |x_i| d\sigma_{n-1}(x) \le c_2 \sqrt{\frac{\log k}{n}},$$

where $c_1, c_2 > 0$ are universal constants.