Volumes in High Dimensions - Home Work 4

It is highly recommended to do all the questions. You need to submit the solution to question 3 .
Question 1 In this question we prove Khintchine's inequality: Let $p \geq 1$ and let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be independent Bernoulli random variables with $\mathbb{P}\left(\varepsilon_{i}=1\right)=\mathbb{P}\left(\varepsilon_{i}=-1\right)=1 / 2$. Prove that

$$
\begin{equation*}
c_{p}\|x\|_{2} \leq\left(\mathbb{E}\left|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right|^{p}\right)^{1 / p} \leq C_{p}\|x\|_{2}, \quad \forall x \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

Where $C_{p} \approx \sqrt{p}$. A possible proof:

1. Show that $\cosh t \leq e^{t^{2} / 2}$ for all $t \in \mathbb{R}$.
2. Show that $t^{p} \leq p^{p} e^{-p} e^{t}$ for all $t \geq 0$ and all $p \geq 1$.
3. Show that $\mathbb{E} \exp \left(\left|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right|\right) \leq 2 \sqrt{e}$ for all $x \in S^{n-1}$.
4. Prove inequality (1) for $p \geq 2$.
5. Prove inequality (1) for $1 \leq p \leq 2$. (Hint: Hölder)

Question 2 Let $2<p<\infty$. Our goal is to prove

$$
\begin{equation*}
c_{1} n^{2 / p} \leq k\left(\ell_{p}^{n}\right) \leq c_{2} p n^{2 / p} \tag{2}
\end{equation*}
$$

1. Prove that $b=1$ and $M \geq n^{1 / q-1 / 2}$, where b and M are defined as in the Dvoretzky-Milman theorem.
2. Prove the left inequality in (2).
3. Assuming a subspace of ℓ_{p}^{n} that is 4 -isomorphic to ℓ_{2}^{k} we have $u_{1}, \ldots, u_{k} \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
\|a\|_{2} \leq\left\|\sum_{i=1}^{k} a_{i} u_{i}\right\|_{p} \leq 4\|a\|_{2}, \quad \forall a \in \mathbb{R}^{k} \tag{3}
\end{equation*}
$$

Show that

$$
k^{p / 2} \leq c_{p}^{p} \sum_{i=1}^{n}\left(\sum_{j=1}^{k} u_{j, i}^{2}\right)^{p / 2}
$$

where $u_{j}=\left(u_{j, 1}, \ldots, u_{j, n}\right)$ and $c_{p} \approx \sqrt{q}$. (Hint: Khintchine - inequality (1))
4. Prove that

$$
\sum_{j=1}^{k} u_{j, i}^{2} \leq 4^{2}
$$

(Hint: use (3))
5. Prove the right inequality in (2).

Question 3 Prove that

$$
c_{1} \sqrt{\frac{\log k}{n}} \leq \int_{S^{n-1}} \max _{i=1, \ldots, k}\left|x_{i}\right| d \sigma_{n-1}(x) \leq c_{2} \sqrt{\frac{\log k}{n}}
$$

where $c_{1}, c_{2}>0$ are universal constants.

