Volumes in High Dimensions - Home Work 5

It is highly recommended to do all the questions. You need to submit the solution to question 1.
Question 1 Let $\varepsilon>0$ and $0<k<n$.

1. Let $F \subseteq \mathbb{R}^{n}$ be a subspace of dimension k. Let X be a random uniform vector in S^{n-1}. Show that

$$
\mathbb{P}\left(\left|\left|\operatorname{Proj}_{F}(x)\right|^{2}-\frac{k}{n}\right| \geq \varepsilon \frac{k}{n}\right) \leq \sqrt{\pi / 2} e^{-\varepsilon^{2} k / 8}
$$

2. Let $y_{1}, \ldots, y_{N} \in S^{n-1}$ where $N \leq e^{c \varepsilon^{2} k}$. Let F be a random subspace of dimension k. Show that

$$
\mathbb{P}\left(\left|\left|\operatorname{Proj}_{F}\left(y_{j}\right)\right|^{2}-\frac{k}{n}\right| \geq \varepsilon \frac{k}{n}, \forall j=1, \ldots, N\right) \leq e^{-c \varepsilon^{2} k}
$$

Question 2 Prove that for Gaussian variables, the density is proportional to $\exp (-\langle A x, x\rangle / 2)$ where A^{-1} is the covariance matrix. What happens when the covariance matrix is singular?

Question 3 Denote by $R(A)$ the minimal radius of a ball circumscribing A. Let $F \subseteq \mathbb{R}^{n}$ be a random subspace of dimension k. Prove that with probability greater than $1-e^{-c k}$ we have
1.

$$
R\left(\operatorname{Proj}_{F} K\right) \geq \sqrt{\frac{k}{n}} R(K)
$$

(Hint: start with $x \in K$ such that $|x|=R(K)$)
2.

$$
R\left(\operatorname{Proj}_{F} K\right) \geq c \max \left\{M^{*}, \sqrt{\frac{k}{n}} R(K)\right\}
$$

(Hint: Dvoretzky-Milman theorem)

