Volumes in High Dimensions - Home Work 7

It is highly recommended to do all the questions. You need to submit the solution to questions 2 and 3 . Question 1 Let $h=h_{\tau}: \mathbb{R} \rightarrow[0,1]$ be a smooth approximation of $1_{(-\infty, \tau]}$ as in the proof of Slepian's lemma (see Figure 1). Let

Figure 1: The function h_{τ}.

$$
f(x)=\prod_{i}\left(1-\prod_{j} h\left(x_{i j}\right)\right)
$$

Using the function f prove Gordon's version of Slepian's lemma: Let $\left(X_{u t}\right)_{u \in U, t \in T}$ and $\left(Y_{u t}\right)_{u \in U, t \in T}$ be centered Gaussian processes. Assume that

$$
\begin{cases}\mathbb{E} X_{u t}^{2}=\mathbb{E} Y_{u t}^{2}, & \forall u, t \\ \mathbb{E}\left|X_{u t}-X_{u t^{\prime}}\right|^{2} \leq \mathbb{E}\left|Y_{u t}-Y_{u t^{\prime}}\right|^{2}, & \forall u, t, t^{\prime} \\ \mathbb{E}\left|X_{u t}-X_{u^{\prime} t^{\prime}}\right|^{2} \geq \mathbb{E}\left|Y_{u t}-Y_{u^{\prime} t^{\prime}}\right|^{2}, & \forall t, t^{\prime} \text { and } u \neq u^{\prime}\end{cases}
$$

Then

$$
\mathbb{P}\left(\inf _{u} \sup _{t} X_{u t} \geq \tau\right) \leq \mathbb{P}\left(\inf _{u} \sup _{t} Y_{u t} \geq \tau\right)
$$

(Hint: see question 1 in home assignment 6.)
Question 2 Define a sub-exponential process $\left(X_{t}\right)_{t \in T}$ (not sub-Gaussian!) with respect to the metric space (T, d).

1. For such a process prove

$$
\mathbb{E} \sup _{t \in T} X_{t} \leq C \int_{0}^{\infty} \log \mathcal{N}(T, d, \varepsilon) d \varepsilon
$$

where $\mathcal{N}(T, d, \varepsilon)$ is the convering number.
2. Is it tight in the example where $X_{t}=\langle\Gamma, t\rangle$ where $t \in S^{n-1}$ and Γ is a standard Gaussian vector in \mathbb{R}^{n} ?

Question 3 Let e_{1}, \ldots, e_{n} be the standard basis of \mathbb{R}^{n}. Set

$$
T=\left\{\frac{e_{k}}{\sqrt{\log k}} ; k=1, \ldots, n\right\}
$$

1. Prove that the Dudley sum tends to infinity with the dimension:

$$
\inf _{\left(T_{k}\right)} \sum_{k=0}^{\infty} 2^{k / 2} \sup _{t \in T} d\left(t, T_{k}\right) \rightarrow \infty
$$

2. Prove that the generic chaining bound is bounded by a universal constant:

$$
\gamma_{2}(T)=\inf _{\left(T_{k}\right)} \sup _{t \in T} \sum_{k=0}^{\infty} 2^{k / 2} d\left(t, T_{k}\right) \leq C
$$

The infimum is taken over all admissible sequences $\left(T_{k}\right)$.
Question 4 We saw concentration of Gaussian random vector for Lipschitz functions with respect to expectation.

1. Prove that in the Gaussian concentration inequality, we may work with median (or $2 / 3$ quantile) in place of expectation.
2. Let K be a symmetric convex body with non empty interior. Let $f(x)=\|x\|_{K}$. Prove that the Gaussian median of f and its Gaussian expectation differ at most by a universal constant.

Question 5 In class we proved that for a 1-Lipschitz function f on the sphere S^{n-1}, and a random k-dimensional subspace E,

$$
\mathbb{E} \sup _{x \in E}|f(x)-M| \leq C \sqrt{\frac{k}{n}}
$$

where $M=\int f d \sigma_{n-1}$. Prove that

$$
\mathbb{P}\left(\sup _{x \in E}|f(x)-M| \leq C \sqrt{\frac{k}{n}}\right) \geq 1-C e^{-c k}
$$

where $c, C>0$ are universal constants.

