Volumes in High Dimensions - Home Work 7

It is highly recommended to do all the questions. You need to submit the solution to questions 2 and 3.

Question 1 Let h = h, : R = [0,1] be a smooth approzimation of 1(_o 71 as in the proof of Slepian’s lemma
(see Figure 1). Let
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Figure 1: The function h..
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Using the function f prove Gordon’s version of Slepian’s lemma: Let (Xyi)uever and (Yui)uever be
centered Gaussian processes. Assume that
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(Hint: see question 1 in home assignment 6.)

Question 2 Define a sub-exponential process (Xi)ier (not sub-Gaussian!) with respect to the metric space
(T, d).
1. For such a process prove
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where N(T,d, ) is the convering number.

2. Is it tight in the example where X; = (T',t) where t € S"~! and T is a standard Gaussian vector in
R™?

Question 3 Let ey, ..., e, be the standard basis of R™. Set
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1. Prove that the Dudley sum tends to infinity with the dimension:
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2. Prove that the generic chaining bound is bounded by a universal constant:
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(1) (Tk)tegkz:;] (6T <

The infimum is taken over all admissible sequences (T}).

Question 4 We saw concentration of Gaussian random vector for Lipschitz functions with respect to expec-
tation.

1. Prove that in the Gaussian concentration inequality, we may work with median (or 2/3 quantile) in
place of expectation.

2. Let K be a symmetric convex body with non empty interior. Let f(x) = ||z|| ;. Prove that the Gaussian
median of f and its Gaussian expectation differ at most by a universal constant.

Question 5 In class we proved that for a 1-Lipschitz function f on the sphere S" ', and a random

k—dimensional subspace F,
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where M = [ fdo,_1. Prove that
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where ¢, C > 0 are universal constants.



