

Volumes in High Dimensions - Home Work 7

It is highly recommended to do all the questions. You need to submit the solution to questions 2 and 3.

Question 1 Let $h = h_\tau : \mathbb{R} \rightarrow [0, 1]$ be a smooth approximation of $1_{(-\infty, \tau]}$ as in the proof of Slepian's lemma (see Figure 1). Let

Figure 1: The function h_τ .

$$f(x) = \prod_i \left(1 - \prod_j h(x_{ij}) \right).$$

Using the function f prove Gordon's version of Slepian's lemma: Let $(X_{ut})_{u \in U, t \in T}$ and $(Y_{ut})_{u \in U, t \in T}$ be centered Gaussian processes. Assume that

$$\begin{cases} \mathbb{E}X_{ut}^2 = \mathbb{E}Y_{ut}^2, & \forall u, t, \\ \mathbb{E}|X_{ut} - X_{ut'}|^2 \leq \mathbb{E}|Y_{ut} - Y_{ut'}|^2, & \forall u, t, t', \\ \mathbb{E}|X_{ut} - X_{u't'}|^2 \geq \mathbb{E}|Y_{ut} - Y_{u't'}|^2, & \forall t, t' \text{ and } u \neq u'. \end{cases}$$

Then

$$\mathbb{P} \left(\inf_u \sup_t X_{ut} \geq \tau \right) \leq \mathbb{P} \left(\inf_u \sup_t Y_{ut} \geq \tau \right).$$

(Hint: see question 1 in home assignment 6.)

Question 2 Define a sub-exponential process $(X_t)_{t \in T}$ (not sub-Gaussian!) with respect to the metric space (T, d) .

1. For such a process prove

$$\mathbb{E} \sup_{t \in T} X_t \leq C \int_0^\infty \log \mathcal{N}(T, d, \varepsilon) d\varepsilon,$$

where $\mathcal{N}(T, d, \varepsilon)$ is the covering number.

2. Is it tight in the example where $X_t = \langle \Gamma, t \rangle$ where $t \in S^{n-1}$ and Γ is a standard Gaussian vector in \mathbb{R}^n ?

Question 3 Let e_1, \dots, e_n be the standard basis of \mathbb{R}^n . Set

$$T = \left\{ \frac{e_k}{\sqrt{\log k}}; k = 1, \dots, n \right\}.$$

1. Prove that the Dudley sum tends to infinity with the dimension:

$$\inf_{(T_k)} \sum_{k=0}^{\infty} 2^{k/2} \sup_{t \in T} d(t, T_k) \rightarrow \infty.$$

2. Prove that the generic chaining bound is bounded by a universal constant:

$$\gamma_2(T) = \inf_{(T_k)} \sup_{t \in T} \sum_{k=0}^{\infty} 2^{k/2} d(t, T_k) \leq C.$$

The infimum is taken over all admissible sequences (T_k) .

Question 4 We saw concentration of Gaussian random vector for Lipschitz functions with respect to expectation.

1. Prove that in the Gaussian concentration inequality, we may work with median (or 2/3 quantile) in place of expectation.
2. Let K be a symmetric convex body with non empty interior. Let $f(x) = \|x\|_K$. Prove that the Gaussian median of f and its Gaussian expectation differ at most by a universal constant.

Question 5 In class we proved that for a 1-Lipschitz function f on the sphere S^{n-1} , and a random k -dimensional subspace E ,

$$\mathbb{E} \sup_{x \in E} |f(x) - M| \leq C \sqrt{\frac{k}{n}},$$

where $M = \int f d\sigma_{n-1}$. Prove that

$$\mathbb{P} \left(\sup_{x \in E} |f(x) - M| \leq C \sqrt{\frac{k}{n}} \right) \geq 1 - C e^{-ck},$$

where $c, C > 0$ are universal constants.