Volumes in High Dimensions - Home Work 8

It is highly recommended to do all the questions. You need to submit the solution to question 2.
Question 1 This question shows different conditions that are equivalent to the sub-Gaussian condition.

1. Let X be a random variable. Prove that,

$$
\mathbb{P}(X \geq u) \leq 2 \exp \left(-\frac{u^{2}}{K^{2}}\right)
$$

if and only if

$$
\mathbb{E} e^{\lambda X} \leq e^{\lambda K_{2}^{2}}, \quad \forall \lambda
$$

Where K and K_{2} are comparable ($K \leq K_{2} \leq 3 K$). (Hint: moment generating map.)
2. Deduce that if $\left(Z_{i}\right)_{i=1, \ldots, n}$ are independent identically distributed, such that

$$
\mathbb{P}\left(Z_{1} \geq u\right) \leq 2 \exp \left(-\frac{u^{2}}{K^{2}}\right)
$$

then

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} Z_{i} \geq u\right) \leq 2 \exp \left(-\frac{n u^{2}}{c K^{2}}\right)
$$

3. Observe that if Z_{1} is a bounded random variable such that $\left|Z_{1}\right| \leq L$, then obviously for all u,

$$
\mathbb{P}\left(\left|Z_{1}\right| \geq u\right) \leq 2 \exp \left(-\frac{u^{2}}{2 L^{2}}\right)
$$

Question 2 In this question we prove a uniform Monte-Carlo bound for Lipschitz functions on [0, 1]. Let

$$
\mathcal{F}=\left\{f:[0,1] \rightarrow[0,1] ;\|f\|_{L i p} \leq 1\right\}
$$

Let μ be a probability measure on $[0,1]$, and let Y be a random variable distributed according to μ, and let Y_{1}, Y_{2}, \ldots be independent copies of Y.

1. Prove that for any $f \in \mathcal{F}$ we have

$$
\mathbb{E}\left|\frac{1}{n} \sum_{i=1}^{n} f\left(Y_{i}\right)-\mathbb{E} f(Y)\right| \leq \frac{C}{\sqrt{n}}
$$

where $C>0$ is a universal constant. (Note that $\sum f\left(Y_{i}\right) / n \rightarrow \mathbb{E} f(Y)$ a.s by the law of large numbers.)
2. For any $f \in \mathcal{F}$ define

$$
X_{f}=\frac{1}{n} \sum f\left(Y_{i}\right)-\mathbb{E} f(Y)
$$

Prove that $\left(X_{f}\right)_{f \in \mathcal{F}}$ has sub-Gaussian increments, with respect to the metric d, where

$$
\frac{\sqrt{n}}{C} d(f, g)=\|f-g\|_{\infty}=\sup _{x \in[0,1]}|f(x)-g(x)|
$$

(Hint: define $Z_{i}=f\left(Y_{i}\right)-g\left(Y_{i}\right)-(\mathbb{E} f(Y)-\mathbb{E} g(Y))$ and use Question 1.)
3. Prove that $\mathcal{N}(\mathcal{F}, d, \varepsilon) \leq(1 / \varepsilon)^{1 / \varepsilon}$.

Hint: see figure 3.

Figure 1: Approximate the red with the blue.
4. Prove that

$$
\mathbb{E} \sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} f\left(Y_{i}\right)-\mathbb{E} f(Y)\right| \leq \frac{C}{\sqrt{n}},
$$

where $C>0$ is a universal constant. (Hint: Dudley's inequality.)
5. Can we get the same result for continuous functions without the Lipschitz condition?

Remark 3 There are some improvements and generalizations to Question 2:

- We can generalize this to

$$
\mathcal{F}=\left\{f:[0,1] \rightarrow \mathbb{R} ;\|f\|_{L i p} \leq L\right\}
$$

and get

$$
\mathbb{E} \sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} f\left(Y_{i}\right)-\mathbb{E} f(Y)\right| \leq \frac{C L}{\sqrt{n}}
$$

- If we work in $[0,1]^{n}$ we can get covering number bounds of $e^{C / \varepsilon^{n}}$.

